
GETTING STARTED WITH THE R COMMANDER:
A BASIC-STATISTICS GRAPHICAL USER INTERFACE TO R

JOHN FOX

Abstract. Unlike S-PLUS, R does not incorporate a statistical graphical user interface (GUI), but it
does include tools for building GUIs. Based on the tcltk package (which furnishes an interface to the
Tcl/Tk GUI builder) the Rcmdr package provides a basic-statistics graphical user interface to R called the
“R Commander.”
The design objectives of the R Commander were as follows: to support, through an easy-to-use, extensible,

cross-platform GUI, the statistical functionality required for a basic-statistics course (though its current
functionality has grown to include support for linear and generalized-linear models); to make it relatively
difficult to do unreasonable things; and to render visible the relationship between choices made in the GUI
and the R commands that they generate.
The R Commander uses a simple and familiar menu/dialog-box interface. Top-level menus include File,

Edit, Data, Statistics, Graphs, Models, Distributions, and Help, with the complete menu tree given in the
paper. Each dialog box includes a Help button, which leads to a relevant help page.
Menu and dialog-box selections generate R commands, which are recorded in a log/script window and

are echoed, along with output, to an output window. The log/script window also provides the ability to
edit, enter, and re-execute commands.
Data sets in the R Commander are simply R data frames, and can be read from attached packages or

imported from files. Although several data frames may reside in memory, only one is “active” at any given
time.
The purpose of this paper is to introduce and describe the basic use of the R Commander GUI and the

manner in which it can be extended. Most of the paper can serve as an introductory guide for students who
will use the R Commander

Date : 2 August 2004.
Please address correspondence to jfox@mcmaster.ca. The work described in this paper was supported by a grant from the

Social Science Research Board of McMaster University. Many individuals – too numerous to name here – have made helpful
suggestions for the Rcmdr package; please see the Changes file distributed with the package for their names. I am also grateful to
Tony Christensen for research assistance and to Bob Andersen for comments on a draft of this paper. This is a revised version
of a paper presented at the useR! Conference, Vienna, May 2004.

1

2

1. Background and Motivation

R (Ihaka and Gentleman, 1996; R Development Core Team, 2004) is a free, open-source implementation
of the S statistical computing language and programming environment. R is a command-driven system: One
normally specifies a statistical analysis in R by typing commands – that is, statements in the S language
that are executed by the R interpreter. S-PLUS (a commercial implementation of the S language), also
incorporates a graphical user interface (a “GUI”) to much of the statistical functionality of S.
In my opinion, a GUI for statistical software is a mixed blessing: On the one hand, a GUI does not require

that the user remember the names and arguments of commands, and decreases the chances of syntax and
typing errors. These characteristics make GUIs particularly attractive for introductory, casual, or infrequent
use of software. On the other hand, having to drill one’s way through successive layers of menus and dialog
boxes can be tedious and can make it difficult to reproduce a statistical analysis, perhaps with variations.
Moreover, providing a GUI for a statistical system that includes hundreds (or even thousands) of commands,
many incorporating extensive options, can produce a labyrinth.
Unlike S-PLUS, R does not include a statistical GUI, but it does furnish tools for building GUIs.1 The

Rcmdr package provides a basic-statistics GUI for R, which I call the “R Commander.” The design objectives
of the R Commander were as follows:

• Most important, to provide, through an easy-to-use, cross-platform, extensible GUI, the statistical
functionality required for a basic-statistics course.2 The original target text was David Moore’s The
Basic Practice of Statistics, Second Edition (Freeman, 2000). With the help of a research assistant
(Tony Christensen), I’ve since examined several other texts (including the third edition of Moore,
2004), collected suggestions from a number of individuals, and slightly expanded the horizons of the
R Commander – for example, to include linear and generalized-linear models.

• To make it relatively difficult to do unreasonable things (such as calculating the mean of a categorical
variable).

• To render visible the relationship between choices made in the GUI and the R commands that they
generate. Commands are both pasted into a log/script window in the R Commander and echoed to
an output window (see below). The log/script window is editable, commands in the window can be
executed or re-executed, and new commands can be entered. Scripts can also be saved to and loaded
from files.

The principal purpose of this paper is to introduce and describe the basic use of the R Commander GUI. In
particular, most of the paper can serve as an introductory guide for students who will use the R Commander.
In addition, the penultimate section of the paper explains how the R Commander can be extended, and the
final section provides some information for instructors. The help files for the Rcmdr package appear as an
appendix to the paper.

2. Starting R and the R Commander

Once R has started up, simply loading the Rcmdr package by typing the command library(Rcmdr)
into the R Console, starts the R Commander GUI. To function properly under Windows, the R Commander
requires the single-document interface (SDI) to R.3 After loading the package, R Console and R Commander
windows should appear more or less as in Figure 1. Figure 1 and other screen images in this document were

1The R Commander, described in this paper, is based on the tcltk package (Dalgaard, 2001, 2002), which provides an
interface to Tcl/Tk.

2The examples in this document use the Windows version of R, and parts of the document are specific to the Windows
version. R, however, is available on other computing platforms as well (Macintosh computers and Unix/Linux systems), and
the use of R and the R Commander on these other systems is very similar to their use under Windows. I focus here on the
Windows version of the software because I believe that the large majority of students in basic-statistics classes are Windows
users.

3The Windows version of R is normally run from a multiple-document interface (“MDI”), which contains the R Console
window and Graphical Device windows created during the session. In contrast, under the single-document interface (“SDI”),
the R Console and Graphical Device windows are not contained within a master window. There are several ways to run R in
SDI mode – for example, by editing the Rconsole file in R’s etc subdirectory, or by adding --sdi to the Target field in the
Shortcut tab of the R desktop icon’s Properties. This limitation of the Rcmdr package is inherited from the tcltk package, on
which Rcmdr depends.

GETTING STARTED WITH THE R COMMANDER 3

Figure 1. The R Console and R Commander windows at start-up

created under Windows XP configured to “classic” appearance; if you use another version of Windows (or,
of course, another computing platform), then the appearance of the screen may differ.
The R Commander and R Console windows float freely on the desktop.4 You will normally use the menus

and dialog boxes of the R Commander to read, manipulate, and analyze data. Printed output appears by
default in the lower text window in the R Commander window. When you create graphs, these will appear
in a separate Graphics Device window. You can also type R commands at the > (greater-than) prompt in
the R Console or into the upper text window in the R Commander ; the main purpose of the R Commander,
however, is to avoid typing commands.
There are several menus along the top of the R Commander window:

File: Menu items for loading and saving log/script files; setting options; and exiting.
Edit: Menu items (Cut, Copy, Paste, etc.) for editing the contents of the log/script and output
windows. Right clicking in the script or output window also brings up an edit “context” menu.

Data: Submenus containing menu items for reading and manipulating data.
Statistics: Submenus containing menu items for a variety of basic statistical analyses.
Graphs: Menu items for creating simple statistical graphs.
Models: Menu items for obtaining numerical summaries, hypothesis tests, diagnostics, and graphs for
a linear or generalized linear model, and for adding diagnostic quantities, such as residuals, to the
data set.

Distributions: Probabilities, quantiles, and graphs of standard statistical distributions (to be used,
for example, as a substitute for statistical tables).

Help: Menu items to obtain information about the R Commander (including this paper). As well,
each R Commander dialog box has a Help button (see below).

4Notice that Rcmdr requires some packages in addition to several of the “recommended” packages that are normally distributed
with R, and loads these packages at startup. Rcmdr, the required packages, and many other contributed packages are available
for download from the Comprehensive R Archive Network (CRAN) at <http://cran.r-project.org/>. If any of the required
packages are not present when the Rcmdr is loaded, it will open a dialog to download and install the missing packages.

4 JOHN FOX

The complete menu “tree” for the R Commander (version 0.9-10) is shown below. Most menu items lead
to dialog boxes, as illustrated later in this document.

File - Load script from file
|- Save script
|- Save script as
|- Save output
|- Save output as
|- Save R workspace
|- Save R workspace as
|- Options
|- Reset output width
|- Exit - from Commander

|- from Commander and R

Edit - Clear window
|- Cut
|- Copy
|- Paste
|- Delete
|- Find
|- Select all

Data - New data set
|- Import data - from text file
| |- from SPSS data set
| |- from Minitab data set
|- Data in packages - List data sets in packages
| |- Read data set from attached package
|- Active data set - Select active data set
| |- Help on active data set (if available)
| |- Variables in active data set
| |- Set case names
| |- Subset active data set
| |- Remove cases with missing data
| |- Export active data set
|- Manage variables in active data set - Recode variable

|- Compute new variable
|- Standardize variables
|- Convert numeric variable to factor
|- Bin numeric variable
|- Reorder factor levels
|- Define contrasts for a factor
|- Rename variables
|- Delete variables from data set

Statistics - Summaries - Active data set
| |- Numerical summaries
| |- Frequency distribution
| |- Table of statistics
| |- Correlation matrix
|- Contingency Tables - Two-way table
| |- Multi-way table
| |- Enter and analyze two-way table
|- Means - Single-sample t-test
| |- Independent-samples t-test

GETTING STARTED WITH THE R COMMANDER 5

| |- Paired t-test
| |- One-way ANOVA
| |- Multi-way ANOVA
|- Proportions - Single-sample proportion test
| |- Two-sample proportions test
|- Variances - Two-variances F-test
| |- Bartlett’s test
| |- Levene’s test
|- Nonparametric tests - Two-sample Wilcoxon test
| |- Paired-samples Wilcoxon test
| |- Kruskal-Wallis test
|- Dimensional analysis - Scale reliability
| |- Principal-components analysis
| |- Factor analysis
|- Fit models - Linear regression

|- Linear model
|- Generalized linear model

Graphs - Index plot
|- Histogram
|- Stem-and-leaf display
|- Boxplot
|- Quantile-comparison plot
|- Scatterplot
|- Scatterplot matrix
|- 3D scatterplot
|- Line graph
|- Plot of means
|- Bar graph
|- Pie chart
|- Save graph to file - as bitmap

|- as PDF/Postscript/EPS
|- 3D RGL graph

Models - Select active model
|- Summarize model
|- Add observation statistics to data
|- Hypothesis tests - ANOVA table
| |- Compare two models
| |- Linear hypothesis
|- Numerical diagnostics - Variance-inflation factors
| |- Breusch-Pagan test for heteroscedasticity
| |- Durbin-Watson test for autocorrelation
| |- RESET test for nonlinearity
| |- Bonferroni outlier test
|- Graphs - Basic diagnostic plots

|- Residual quantile-comparison plot
|- Component+residual plots
|- Added-variable plots
|- Influence plot
|- Effect plots

6 JOHN FOX

Distributions - Normal distribution - Normal quantiles
| |- Normal probabilities
| |- Plot normal distribution
|- t distribution - t quantiles
| |- t probabilities
| |- Plot t distribution
|- Chi-squared distribution - Chi-squared quantiles
| |- Chi-squared probabilities
| |- Plot chi-squared distribution
|- F distribution - F quantiles
| |- F probabilities
| |- Plot F distribution
|- Binomial distribution - Binomial quantiles
| |- Binomial tail probabilities
| |- Binomial probabilities
| |- Plot binomial distribution
|- Poisson distribution - Poisson probabilities

|- Plot Poisson distribution

Help - Commander help
|- About Rcmdr
|- Introduction to the R Commander

The R Commander interface includes a few elements in addition to the menus and dialogs:

• Below the menus is a “toolbar” with a row of buttons.
— The leftmost (flat) button shows the name of the active data set. Initially there is no active data
set. If you press this button, you will be able to choose among data sets currently in memory.
Most of the menus and dialogs in the R Commander reference the active data set. (The File,
Edit, and Distributions menus are exceptions.)

— Two buttons allow you to open a data editor to modify the active data set or a viewer to
examine it. The data-set viewer can remain open while other operations are performed.

— A flat button indicates the name of the active statistical model – either a linear model (such
as a linear-regression model) or a generalized linear model. Initially there is no active model. If
there is more than one model in memory, you can choose among them by pressing the button.

— A Submit button, at the far right of the toolbar, allows you to execute commands from the
script window.

• Immediately below the toolbar is the log/script window, a large scrollable text window. As men-
tioned, commands generated by the GUI are normally copied into this window. You can edit the
text in the log/script window or even type your own R commands into the window. Pressing the
Submit button (or, alternatively, the key combination Ctrl-s) causes the line containing the cursor
to be submitted (or resubmitted) for execution. If several lines are selected (e.g., by left-clicking
and dragging the mouse over them), then pressing Submit will cause all of them to be executed.
Commands entered into the log-script window can extend over more than one line, but if they do,
lines after the first must be indented with one or more spaces or tabs.

• At the bottom is a large scrollable and editable text window for output. Commands echoed to this
window appear in red, output in dark blue (as in the R Console).

Once you have loaded the Rcmdr package, you can minimize the R Console. The R Commander window
can also be resized or maximized in the normal manner. If you make the R Commander window wider, then
you may wish to reset the width of printed output from R via the File −→ Reset output width. . . menu.5

The R Commander is highly configurable: I have described the default configuration here. Changes to
the configuration can be made via the File −→ Options. . . menu, or by setting options in R. See the Rcmdr
help files for details.

5A menu item that terminates in ellipses (i.e., the dots, ...) leads to a dialog box; this is a standard GUI convention. In this
document, −→ represents selecting a menu item or submenu from a menu.

GETTING STARTED WITH THE R COMMANDER 7

3. Data Input

Most of the procedures in the R Commander assume that there is an active data set.6 If there are several
data sets in memory, you can choose among them, but only one is active. When the R Commander starts
up, there is no active data set.
The R Commander provides several ways to get data into R:

• You can enter data directly via Data −→ New data set.... This is a reasonable choice for a very
small data set.

• You can import data from a plain-text (“ascii”) file or from another statistical package (Minitab or
SPSS).

• You can read a data set that is included in an R package, either typing the name of the data set (if
you know it), or selecting the data set in a dialog box.

3.1. Reading Data From a Text File. For example, consider the data file Nations.txt.7 The first few
lines of the file are as follows:

TFR contraception infant.mortality GDP region
Afghanistan 6.90 NA 154 2848 Asia
Albania 2.60 NA 32 863 Europe
Algeria 3.81 52 44 1531 Africa
American-Samoa NA NA 11 NA Oceania
Andorra NA NA NA NA Europe
Angola 6.69 NA 124 355 Africa
Antigua NA 53 24 6966 Americas
Argentina 2.62 NA 22 8055 Americas
Armenia 1.70 22 25 354 Europe
Australia 1.89 76 6 20046 Oceania
.
.
.

• The first line of the file contains variable names: TFR (the total fertility rate, expressed as number
of children per woman), contraception (the rate of contraceptive use among married women, in
percent), infant.mortality (the infant-mortality rate per 1000), GDP (gross domestic product per
capita, in U.S. dollars), and region.

• Subsequent lines contain the data values themselves, one line per country. The data values are
separated by “white space” – one or more blanks or tabs. Although it is helpful to make the data
values line up vertically, it is not necessary to do so. Notice that the data lines begin with the country
names. Because we want these to be the “row names” for the data set, there is no corresponding
variable name: That is, there are five variable names but six data values on each line. When this
happens, R will interpret the first value on each line as the row name.

• Some of the data values are missing. In R, it is most convenient to use NA (representing “not
available”) to encode missing data, as I have done here.

• The variables TFR, contraception, infant.mortality, and GDP are numeric (quantitative) vari-
ables; in contrast, region contains region names. When the data are read, R will treat region as
a “factor” – that is, as a categorical variable. In most contexts, the R Commander distinguishes
between numerical variables and factors.

To read the data file into R, select Data −→ Import data −→ from text file ... from the R Commander
menus. This operation brings up a Read Data From Text File dialog, as shown in Figure 2. The default
name of the data set is Dataset. I’ve changed the name to Nations.
Valid R names begin with an upper- or lower-case letter (or a period, .) and consist entirely of letters,

periods, underscores (_), and numerals (i.e., 0—9); in particular, do not include any embedded blanks in a

6Procedures selected under via the Distributions menu are exceptions, as is Enter and analyze two-way table... under the
Statistics −→ Contingency tables menu.

7This file is included in the etc subdirectory of the Rcmdr package.

8 JOHN FOX

Figure 2. Reading data from a text file.

data-set name. You should also know that R is case-sensitive, and so, for example, nations, Nations, and
NATIONS are distinguished, and could be used to represent different data sets.
Clicking the OK button in the Read Data From Text File dialog brings up an Open file dialog, also shown

in Figure 2. Here I navigated to the file Nations.txt. Clicking the Open button in the Open file dialog will
cause the data file to be read. Once the data file is read, it becomes the active data set in the R Commander.
As a consequence, in Figure 3, the name of the data set appears in the data set button near the top left of
the R Commander window.
I clicked the View data set button to bring up the data viewer window (from David Firth’s relimp

package) also shown in Figure 3. Notice that the commands to read and attach the Nations data set (the
R read.table and attach commands) appear, partially obscured by the display of the data set, in the
log/script and output windows.
The read.table command creates an R “data frame,” which is an object containing a rectangular cases-

by-variables data set: The rows of the data set represent cases or observations and the columns represent
variables. Data sets in the R Commander are R data frames.

3.2. Entering Data Directly. To enter data directly into the spreadsheet data editor you can proceed as
follows. As an example, I use a very small data set from Problem 2.44 in Moore (2000):

• Select Data −→ New data set... from the R Commander menus. Optionally enter a name for the
data set, such as Problem2.44, in the resulting dialog box, and click the OK button. (Remember
that R names cannot include intervening blanks.) This will bring up a Data Editor window with an
empty data set.

GETTING STARTED WITH THE R COMMANDER 9

Figure 3. Displaying the active data set.

• Enter the data from the problem into the first two columns of the data editor. You can move from
one cell to another by using the arrow keys on your keyboard, by tabbing, by pressing the Enter
key, or by pointing with the mouse and left-clicking. When you are finished entering the data, the
window should look like Figure 4.

• Next, click on the name var1 above the first column. This will bring up a Variable editor dialog
box, as in Figure 5.

• Type the variable name age in the box, just as I have, and click the X button in the upper-right
corner of the Variable editor window, or press the Enter key, to close the window. Repeat this
procedure to name the second column height. The Data Editor should now look like Figure 6.

• Select File −→ Close from the Data Editor menus or click the X at the upper-right of the Data
Editor window. The data set that you entered is now the active data set in the R Commander.

4. Creating Numerical Summaries and Graphs

Once there is an active data set, you can use the R Commander menus to produce a variety of numerical
summaries and graphs. I will describe just a few basic examples here. A good GUI should be largely self-
explanatory: I hope that once you see how the R Commander works, you will have little trouble using it,
assisted perhaps by the on-line help files.
In the examples below, I assume that the active data set is the Nations data set, read from a text file in

the previous section. If you typed in the five-observation data set from Moore (2000) also described in the
previous section, then that is the active data set. Recall that you can change the active data set by clicking

10 JOHN FOX

Figure 4. Data editor after the data are entered.

Figure 5. Dialog box for changing the name of a variable in the data editor.

on the flat button with the active data set’s name near the top left of the R Commander window, selecting
from among a list of data sets currently resident in memory.
Selecting Statistics −→ Summaries −→ Active data set produces the results shown in Figure 7. For

each numerical variable in the data set (TFR, contraception, infant.mortality, and GDP), R reports the
minimum and maximum values, the first and third quartiles, the median, and the mean, along with the
number of missing values. For the categorical variable region, we get the number of observations at each
“level” of the factor. Had the data set included more than ten variables, the R Commander would have
asked us whether we really want to proceed – potentially protecting us from producing unwanted voluminous
output.
Similarly, selecting Statistics −→ Summaries −→ Numerical summaries... brings up the dialog box shown

in Figure 8. Only numerical variables are shown in the variable list in this dialog; the factor region is missing,
because it is not sensible to compute numerical summaries for a factor. Clicking on infant.mortality, and
then clicking OK, produces the following output:8

> mean(Nations$infant.mortality, na.rm=TRUE)
[1] 43.47761

> sd(Nations$infant.mortality, na.rm=TRUE)

8To select a single variable in a variable-list box, simply left-click on its name. In some contexts, you will have to select more
than one variable. In these cases, the usual Windows conventions apply: Left-clicking on a variable selects it and de-selects
any variables that have previously been selected; Shift-left-click extends the selection; and Ctrl-left-click toggles the selection
for an individual variable.

GETTING STARTED WITH THE R COMMANDER 11

Figure 6. The data editor window after both variable names have been changed.

[1] 38.75604

> quantile(Nations$infant.mortality, c(0,.25,.5,.75,1), na.rm=TRUE)
0% 25% 50% 75% 100%
2 12 30 66 169

By default, the R commands that are executed print out the mean and standard deviation of the variable,
along with quantiles (percentiles) corresponding to the minimum, the first quartile, the median, the third
quartile, and the maximum.
As is typical of R Commander dialogs, the Numerical Summaries dialog box in Figure 8 includes OK,

Cancel, and Help buttons. The Help button leads to a help page either for the dialog itself or (as here) for
an R function that the dialog invokes.
Making graphs with the R Commander is also straightforward. For example, selecting Graphs −→ His-

togram... from the R Commander menus brings up the Histogram dialog box in Figure 9; and clicking on
infant.mortality followed by OK, opens up a Graphics Device window with the histogram shown in Figure
10.
If you make several graphs in a session, then only the most recent normally appears in the Graphics Device

window. You can recall previous graphs using the Page Up and Page Down keys on your keyboard.9

5. Odds and Ends

5.1. Saving and Printing Output. You can save text output directly from the File menu in the R
Commander ; likewise you can save or print a graph from the File menu in an R Graphics Device window.
It is generally more convenient, however, to collect the text output and graphs that you want to keep
in a word-processor document. In this manner, you can intersperse R output with your typed notes and
explanations.
Open a word processor such as Word, WordPerfect, or even Windows WordPad. To copy text from the

output window, block the text with the mouse, select Copy from the Edit menu (or press the key combination
Ctrl-c, or right-click in the window and select Copy from the context menu), and then paste the text into
the word-processor window via Edit −→ Paste (or Ctrl-v), as you would for any Windows application. One

9At startup, the R Commander turns on the graph history mechanism; this feature is available only in Windows systems.

12 JOHN FOX

Figure 7. Getting variable summaries for the active data set.

Figure 8. The Numerical Summaries dialog box.

point worth mentioning is that you should use a mono-spaced (“typewriter”) font, such as Courier New,
for text output from R; otherwise the output will not line up neatly.
Likewise to copy a graph, select File −→ Copy to the clipboard −→ as a Metafile from the R Graphics

Device menus; then paste the graph into the word-processor document via Edit −→ Paste (or Ctrl-v).
Alternatively, you can use Ctrl-w to copy the graph from the R Graphics Device, or right-click on the graph

GETTING STARTED WITH THE R COMMANDER 13

Figure 9. The Histogram dialog.

Nations$infant.mortality

Fr
eq

ue
nc

y

0 50 100 150

0
20

40
60

80

Figure 10. A graphics window containing the histogram for infant mortality.

to bring up a context menu, from which you can select Copy as metafile.10 At the end of your R session,
you can save or print the document that you have created, providing an annotated record of your work.
Alternative routes to saving text and graphical output may be found respectively under the R Rcommander

File and Graphs menus.

5.2. Terminating the R Session. There are several ways to terminate your session. For example, you
can select File −→ Exit −→ From Commander and R from the R Commander menus. You will be asked to
confirm, and then asked whether you want to save the contents of the script and output windows. Likewise,

10As you will see when you examine these menus, you can save graphs in a variety of formats, and to files as well as to the
clipboard. The procedure suggested here is straightforward, however, and generally results in high-quality graphs.

14 JOHN FOX

you can select File −→ Exit from the R Console menus; in this case, you will be asked whether you want to
save the R workspace (i.e., the data that R keeps in memory); you would normally answer No.

6. Extending the R Commander

As is the case for any R package, a user can modify the source code for the Rcmdr package and recompile
the package. Two features make it possible, however, to modify or add to the Rcmdr package without
recompiling it:

(1) The R Commander menus are defined in the plain-text (ASCII) file Rcmdr-menus.txt, which resides
in the package’s etc directory. Modifying this file changes the menus. The format of the file is
described below.

(2) Files with extension (file type) .R in the etc directory are “sourced” (read into memory) when the
R Commander starts up. Consequently, functions and variables defined in .R files are available in
the global environment.

The following example assumes some familiarity with Tcl/Tk and the tcltk package: Suppose that we
want to provide a menu-item and dialog box for multivariate Box-Cox transformations to normality. The
car package, which is one of the packages that Rcmdr loads at startup, contains a function to perform the
necessary computations, box.cox.powers (see Fox, 2002, pp. 111—112). Because none of the existing R
Commander menus seems appropriate, I will add a Transform menu under Statistics, with the single item
Multivariate Box-Cox transformations. . . . This item will lead to a dialog box to select the variables to
be transformed. Finally, I will write a function, named BoxCox, to construct the dialog box and invoke
box.cox.powers.
The modified Rcmdr-menus.txt is as follows (eliding most of the lines in the file):

GETTING STARTED WITH THE R COMMANDER 15

R Commander Menu Definitions

last modified 11 June 04 by J. Fox

type menu/item operation/parent label command/menu

menu fileMenu topMenu "" ""
item fileMenu command "Load log from file..." loadLog
item fileMenu command "Save log..." saveLog

. . .
menu statisticsMenu topMenu "" ""
menu summariesMenu statisticsMenu "" ""
item summariesMenu command "Active data set" summarizeDataSet

. . .
item modelsMenu command "Linear model..." linearModel
item modelsMenu command "Generalized linear model..." generalizedLinearModel

menu transformMenu statisticsMenu "" ""
item transformMenu command "Multivariate Box-Cox transformations..." BoxCox

item topMenu cascade "Statistics" statisticsMenu
item statisticsMenu cascade "Summaries" summariesMenu
item statisticsMenu cascade "Contingency tables" tablesMenu
item statisticsMenu cascade "Means" meansMenu
item statisticsMenu cascade "Proportions" proportionsMenu
item statisticsMenu cascade "Variances" variancesMenu
item statisticsMenu cascade "Nonparametric tests" nonparametricMenu
item statisticsMenu cascade "Dimensional analysis" dimensionalMenu
item statisticsMenu cascade "Fit models" modelsMenu

item statisticsMenu cascade "Transform" transformMenu

menu graphsMenu topMenu "" ""
. . .

16 JOHN FOX

Variable Contents
.activeDataSet Name of the active data set; starts as NULL.
.activeModel Name of the active linear or generalized-linear model; starts as NULL.
.factors Names of factors in the active data set; length 0 if there are no factors.
.modelNumber Number of the active statistical model; starts at 0.
.numeric Names of numeric variables in the active data set; length 0 if there are no numeric variables.
.twoLevelFactors Names of two-level factors in the active data set; length 0 if there are no two-level factors.
.variables Names of all variables in the active data set.

Table 1. Variables exported by the Rcmdr package

I believe that the format of the file is largely self-explanatory, but allow me to draw your attention to the
following points:

• Each line in the file contains five entries (fields) and defines either a menu or a menu item.
• Each menu has a “parent” menu; top-level menus, such as File or Statistics, have topMenu as
their parent. Menu definition requires two lines: One to create the menu and another to place it
under its parent.

• The “operation” field in each line contains the parent menu (for menu creation), cascade (for placing
a menu under its parent), or command (for a menu item that invokes a command).

• The “label” field contains the text that labels a menu or menu item. By convention, menu items
leading to dialog boxes have labels ending in ellipses,

• The final field contains the name of a function to be invoked by a menu item, or the name of a menu
to be installed.

• The last two fields are empty ("") for menu (as opposed to item) lines.
Note the line in the modified Rcmdr-menus.txt file creating transformMenu as a child of statisticsMenu;

the line creating the Box-Cox item under transformMenu; and the line cascading transformMenu under
statisticsMenu.
The remaining task is to write the BoxCox function. The Rcmdr package exports a number of functions

and global variables to assist in writing dialogs and performing computations; these are shown in Tables
1 and 2.11 The dialog box to be created is very simple: It should have a variable list from which one or
more numeric variables are to be selected, along with OK, Cancel, and Help buttons. A relatively painless
procedure is to find an Rcmdr dialog that is similar and modify it, rather than creating code from scratch.
In this case, I started with the code for the scatterPlotMatrix dialog, removing unnecessary elements and
making small changes. The resulting code is as follows:
BoxCox <- function(){

if (!checkActiveDataSet()) return()
if (!checkNumeric()) return()
initializeDialog(title="Box-Cox Transformations")
variablesBox <- variableListBox(top, .numeric, selectmode="multiple",

title="Select variables (one or more)")
onOK <- function(){

variables <- getSelection(variablesBox)
if (length(variables) < 1) {

errorCondition(recall=BoxCox,
message="You must select one or more variables.")

return()
}

if (.grab.focus) tkgrab.release(top)
tkdestroy(top)

11There are, in addition, several statistical functions exported by the Rcmdr package: colPercents and rowPercents for
nicely formatted percentage tables; reliability to estimate the reliability of composite scales; partial.cor for matrices of
partial correlations; stem.leaf for high-quality stem-and-leaf displays (generously made available to me by Peter Wolf); Hist
for enhanced histograms; and scatter3d for dynamic 3D scatterplots.

GETTING STARTED WITH THE R COMMANDER 17

Function Purpose
activeDataSet Returns or sets the name of the active data set.
activeModel Returns or sets the name of the active model.
checkActiveDataSet Checks for existence of active data set.
checkActiveModel Checks for existence of active model.
checkBoxes * Constructs a set of check boxes.
checkFactors Checks for existence of (sufficient number of) factors in active data set.
checkNumeric Checks for existence of (sufficient number of) numeric variables in active data set.
checkReplace Allows user to verify replacement of an object.
checkTwoLevelFactors Checks for existence of (sufficient number of) two-level factors in active data set.
checkVariables Checks for existence of (sufficient number of) variables in active data set.
dialogSuffix * Housekeeping to complete dialog definition.
doItAndPrint Executes a command, given as a character string, prints command and output.
errorCondition * Reports an error and (optionally) restarts the dialog.
getFrame Returns the frame of a listbox object.
getSelection Returns the currently selected elements of a listbox object.
groupsBox * Constructs a button and associated sub-dialog box for selecting a grouping factor.
groupsLabel * Constructs a text field that shows the currently selected groups.
initializeDialog * Initial housekeeping for a Tk dialog box.
is.valid.name Checks that a character string is a valid R name.
justDoIt Executes a character string without echoing it to the Commander log window.
listDataSets Lists names of data frames, by default in the global environment.
listFactors Lists names of factors in the active data set.
listGeneralizedLinearModels Lists names of glm objects, by default in the global environment.
listLinearModels Lists names of lm objects, by default in the global environment.
listNumeric Lists names of numeric variables in the active data set.
listTwoLevelFactors Lists names of two-level factors in the active data set.
listVariables Lists names of variables in the active data set.
logger Echoes a character string to output window without executing it as a command.
modelFormula * Constructs a dialog component for entering a model formula.
OKCancelHelp * Constructs OK, Cancel, and Help buttons.
radioButtons * Constructs a set of related radio buttons.
subOKCancelHelp * Constructs OK, Cancel, and Help buttons for a sub-dialog.
subsetBox * Constructs a text box for entering a subsetting expression.
variableListBox Constructs an object containing a scrollable list box.

Table 2. Functions exported by the Rcmdr package. * Functions marked with an asterisk
are “macro-like” in their behaviour, in that they execute in the environment of the calling
function. These functions were created with a slightly modified version of Thomas Lumley’s
defmacro function (described in Lumley, 2001).

command <- paste("box.cox.powers(na.omit(cbind(",
paste(variables, collapse=","), ")))", sep="")

doItAndPrint(command)
tkfocus(.commander)
}

OKCancelHelp(helpSubject="box.cox.powers")
tkgrid(getFrame(variablesBox), sticky="nw")
tkgrid(buttonsFrame, sticky="w")
dialogSuffix(rows=2, columns=1)
}

An illustrative dialog box created by this functions appears in Figure 11.

18 JOHN FOX

Figure 11. An illustrative dialog box produced by the BoxCox function.

Notice the use of the doItAndPrint to execute the command, send the command to the log, and send the
command and output to the output window. This approach will work in most cases.
The code for this example is in the file BoxCox.demo in the etc directory of the Rcmdr package. Rename

the file to BoxCox.R to activate it. Likewise, the Rcmdr-menus.txt file distributed with the package contains
commented-out lines for the example; remove the comment characters (#) from the beginnings of these lines
to activate them.

7. Some Suggestions for Instructors

Some of the social-science students whom I encounter in introductory statistics classes have difficulty
installing and configuring software. I imagine that this situation varies with discipline and locale, but I also
expect that it is reasonably common. I assume here that students will be using R and the R Commander
under Windows, but it should not be hard to transpose these suggestions to other operating systems.
I distribute to students a CD/ROM with a live, installed version of R, including all necessary packages,

and configured to open R in SDI mode, to the load the Rcmdr package at startup, and to use compiled HTML
help in R. Students can simply double-click on the file Run-R.bat in the root directory of the CD to start
R. This batch file contains a single line:
start rw1091\bin\Rgui.exe

There is another batch file in the root directory of the CD for installing R on the student’s computer.
This batch file runs the R installer (located in the R directory of the CD) and then copies over the necessary
installed packages and configuration files. The contents of Install-R.bat are as follows:
R\rw1091.exe
xcopy rw1091\library\abind*.* "c:\program files\R\rw1091\library\abind\" /I /E /Y
xcopy rw1091\library\car*.* "c:\program files\R\rw1091\library\car\" /I /E /Y
xcopy rw1091\library\effects*.* "c:\program files\R\rw1091\library\effects\" /I /E /Y
xcopy rw1091\library\lmtest*.* "c:\program files\R\rw1091\library\lmtest\" /I /E /Y
xcopy rw1091\library\multcomp*.* "c:\program files\R\rw1091\library\multcomp\" /I /E /Y
xcopy rw1091\library\mvtnorm*.* "c:\program files\R\rw1091\library\mvtnorm\" /I /E /Y
xcopy rw1091\library\Rcmdr*.* "c:\program files\R\rw1091\library\Rcmdr\" /I /E /Y
xcopy rw1091\library\relimp*.* "c:\program files\R\rw1091\library\relimp\" /I /E /Y
xcopy rw1091\library\rgl*.* "c:\program files\R\rw1091\library\rgl\" /I /E /Y
xcopy rw1091\etc\Rconsole "c:\program files\R\rw1091\etc\Rconsole" /Y
xcopy rw1091\etc\Rprofile "c:\program files\R\rw1091\etc\Rprofile" /Y

This procedure is a bit awkward, and I expect that it will eventually be superseded by facilities for
customizing the R Windows installer.
There is a ReadMe.txt file in the root directory of the CD with the following contents:

This CD/ROM is intended for Windows 9x, ME, NT, 2000, and XP systems.

The CD/ROM contains the following files and directories:

o The file Install-R.bat will install the R software on your computer
and configure it for use in the course. Double-click on the file in

REFERENCES 19

the Windows Explorer to initiate the installation process. Take all
of the defaults in the R installer. In particular, make sure that R
is installed into the directory C:\Program Files\R\rw1091\.

o The directory rw1091\ contains a pre-installed copy of R that can
be run directly from the CD/ROM. Double-click on the file Run-R.bat
in the Windows Explorer to run R from the CD/ROM.

o The directory R\Packages\ contains zip files for all of the
packages on CRAN (the Comprehensive R Archive Network).

Finally, the Rprofile file has the following contents:
options(chmhelp=TRUE)
library(Rcmdr)

while the Rconsole file contains the line
MDI = no

along with its other, unmodified, contents.

References

Dalgaard, P. (2001). A primer on the R-Tcl/Tk package. R News, 1(3):27—31.
Dalgaard, P. (2002). Changes to the R-Tcl/Tk package. R News, 2(3):25—71.
Fox, J. (2002). An R and S-PLUS Companion to Applied Regression. Sage, Thousand Oaks CA.
Ihaka, R. and Gentleman, R. (1996). A language for data analysis and graphics. Journal of Computational
and Graphical Statistics, 5:299—314.

Lumley, T. (2001). Programmer’s niche: Macros in R. R News, 1(3):11—13.
Moore, D. S. (2000). The Basic Practice of Statistics, Second Edition. Freeman, New York.
Moore, D. S. (2004). The Basic Practice of Statistics, Third Edition. Freeman, New York.
R Core Development Team (2004). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna.

Department of Sociology, McMaster University

