![]() |
# robuste Regressionsgerade
x <- c(0.5,0.9,1,1.2,2.3,2.6,2.8,3.3,3.9,4.2,4.4,6.5) y <- c(0.5,0.9,0.7,1.3,1.5,2.0,2.5,2.1,2.6,3.4,3.2,1.1) # Konstruktion TUKEY: pdf("robline.pdf",width=5,height=5) par(mar=c(4,4,1,1)) plot(x,y,cex.lab=1.3) xord <- order(x) xs <- x[xord] ys <- y[xord] points(median(xs[1:4]),median(ys[1:4]),pch=3,cex=1.3) points(median(xs[5:8]),median(ys[5:8]),pch=3,cex=1.3) points(median(xs[9:12]),median(ys[9:12]),pch=3,cex=1.3) legend(0.5,3.4,c("Datenpunkt","Gruppenmedian"),pch=c(1,3),cex=1.3) dev.off() | |
![]() |
# robuste Regressionsgerade
x <- c(0.5,0.9,1,1.2,2.3,2.6,2.8,3.3,3.9,4.2,4.4,6.5) y <- c(0.5,0.9,0.7,1.3,1.5,2.0,2.5,2.1,2.6,3.4,3.2,1.1) # Gesamter Algo von TUKEY: pdf("roblineall.pdf",width=5,height=5) par(mar=c(4,4,1,1)) plot(x,y,cex.lab=1.3) xord <- order(x) xs <- x[xord] ys <- y[xord] xl <- median(xs[1:4]) yl <- median(ys[1:4]) xm <- median(xs[5:8]) ym <- median(ys[5:8]) xr <- median(xs[9:12]) yr <- median(ys[9:12]) points(xl,yl,pch=3,cex=1.3) points(xm,ym,pch=3,cex=1.3) points(xr,yr,pch=3,cex=1.3) b <- (yr-yl)/(xr-xl) a <- 1/3*(yl-b*(xl-xm)+ym+yr-b*(xr-xm)) abline(a-b*xm,b) r <- ys-(a+b*(xs-xm)) yl <- median(r[1:4]) ym <- median(r[5:8]) yr <- median(r[9:12]) b1 <- (yr-yl)/(xr-xl) a1 <- 1/3*(yl-b*(xl-xm)+ym+yr-b*(xr-xm)) bneu <- b+b1 aneu <- a+a1 abline(aneu-bneu*xm,bneu) r1 <- (ys-(aneu+(bneu)*(xs-xm))) yl <- median(r1[1:4]) ym <- median(r1[5:8]) yr <- median(r1[9:12]) b1 <- (yr-yl)/(xr-xl) a1 <- 1/3*(yl-b*(xl-xm)+ym+yr-b*(xr-xm)) bneu <- bneu+b1 aneu <- aneu+a1 abline(aneu-bneu*xm,bneu) dev.off() |