3.2 Eindimensionale Ausreiss ererkennung

pdf("boxplotout1.pdf",width=10,height=5)
par(mfrow=c(1,2))
source( " outnorm.RData " )
n <- c(10,50,100,500,1000,5000,10000)
plot(n,100*outnorm[,1],ylim=c(0,max(100*outnorm)),type="l",log="x",
ylab="% identifizierte Ausreisser",xlab="Anzahl der Beobachtungen",col=1,lty=1,lwd=2)
lines(n,100*outnorm[,2],col=1,lty=2,lwd=2)
lines(n,100*outnorm[,3],col=1,lty=3,lwd=2)
abline(h=0,lty=4,col=1)
text(400,8,"mean +/- 2 s",cex=1,col=1,pos=4)
segments(200,8,350,8,col=1,lty=1,lwd=2)
text(400,7,"median +/- 2 s_MAD",cex=1,col=1,pos=4)
segments(200,7,350,7,col=1,lty=2,lwd=2)
text(400,6,"Boxplot",cex=1,col=1,pos=4)
segments(200,6,350,6,col=1,lty=3,lwd=2)
title("(A) Normalverteilung")

source( " outlnorm.RData " )
n <- c(10,50,100,500,1000,5000,10000)
plot(n,100*outlnorm[,1],ylim=c(0,max(100*outlnorm)),type="l",log="x",
ylab="% identifizierte Ausreisser",xlab="Anzahl der Beobachtungen",col=1,lwd=2)
lines(n,100*outlnorm[,2],lty=2,col=1,lwd=2)
lines(n,100*outlnorm[,3],lty=3,col=1,lwd=2)
abline(h=0,lty=4,col=1)
text(150,13,"mean +/- 2 s",cex=1,col=1,pos=4)
segments(50,13,100,13,col=1,lty=1,lwd=2)
text(150,12,"median +/- 2 s_MAD",cex=1,col=1,pos=4)
segments(50,12,100,12,col=1,lty=2,lwd=2)
text(150,11,"Boxplot",cex=1,col=1,pos=4)
segments(50,11,100,11,col=1,lty=3,lwd=2)
title("(B) Log-Normalverteilung")
par(mfrow=c(1,1))
dev.off()

pdf("boxplotout2.pdf",width=10,height=5)

par(mfrow=c(1,2))

source( " outnormp.RData " )
xperc <- seq(from=0,to=40,by=1)
plot(xperc,100*outnormp[,1],ylim=c(0,max(100*outnormp)),type="l",
xlab="% simulierte Ausreisser",ylab="% identifizierte Ausreisser",col=1,lty=1,lwd=2)
lines(xperc,100*outnormp[,2],lty=2,col=1,lwd=2)
lines(xperc,100*outnormp[,3],lty=3,col=1,lwd=2)
abline(h=0,lty=4,col=1)
abline(v=0,lty=4,col=1)
abline(c(0,1),lty=4,col=1)
text(10,38,"mean +/- 2 s",cex=1,col=1,pos=4)
segments(3,38,8,38,col=1,lty=1,lwd=2)
text(10,34,"median +/- 2 s_MAD",cex=1,col=1,pos=4)
segments(3,34,8,34,col=1,lty=2,lwd=2)
text(10,30,"Boxplot",cex=1,col=1,pos=4)
segments(3,30,8,30,col=1,lty=3,lwd=2)

title("(A) Normalverteilung")

source( " outlnormp.RData " )
plot(xperc,100*outlnormp[,1],ylim=c(0,max(100*outlnormp)),type="l",
xlab="% simulierte Ausreisser",ylab="% identifizierte Ausreisser",col=1,lty=1,lwd=2)
lines(xperc,100*outlnormp[,2],lty=2,col=1,lwd=2)
lines(xperc,100*outlnormp[,3],lty=3,col=1,lwd=2)
abline(h=0,lty=4,col=1)
abline(v=0,lty=4,col=1)
abline(c(0,1),lty=4,col=1)
text(10,38,"mean +/- 2 s",cex=1,col=1,pos=4)
segments(3,38,8,38,col=1,lwd=2,lty=1)
text(10,34,"median +/- 2 s_MAD",cex=1,col=1,pos=4)
segments(3,34,8,34,col=1,lwd=2,lty=2)
text(10,30,"Boxplot",cex=1,col=1,pos=4)
segments(3,30,8,30,col=1,lwd=2,lty=3)
title("(B) Log-Normalverteilung")
dev.off()