![]() |
# Quantile Quantile Plots fuer Symmetrie
q <- seq(-4,4,0.1) n <- length(q) k <- trunc(2*n/5) fq <- dnorm(q) Fq <- pnorm(q) pdf("qqsymm1.pdf",width=5,height=4) par(mar=c(4,4,1,1)) plot(0,0,xlim=c(-4,4),ylim=c(-0.05,0.45),type="n", xlab="",ylab="Dichtefunktion f",cex.lab=1.2) lines(q,fq) abline(h=0) text(0,0,"a",pos=1) segments(0,0,0,0.43,lty=3) text(q[k],0,"a-t",pos=1) segments(q[k],0,q[k],fq[k],lty=2) text(q[n+1-k],0,"a+t",pos=1) segments(q[n+1-k],0,q[n+1-k],fq[n+1-k],lty=2) dev.off() | |
![]() |
# Quantile Quantile Plots fuer Symmetrie
q <- seq(-4,4,0.1) n <- length(q) k <- trunc(2*n/5) fq <- dnorm(q) Fq <- pnorm(q) pdf("qqsymm2.pdf",width=5,height=4) par(mar=c(4,4,1,1)) plot(0,0,xlim=c(-4,4),ylim=c(-0.08,1.08),type="n", xlab="",ylab="Verteilungsfunktion F",cex.lab=1.2) lines(q,Fq) abline(h=c(0,1)) text(0,0,"a",pos=1) segments(0,0,0,1,lty=3) text(q[k],0,"a-t",pos=1) segments(q[k],0,q[k],Fq[k],lty=2) text(q[n+1-k],0,"a+t",pos=1) segments(q[n+1-k],0,q[n+1-k],Fq[n+1-k],lty=2) dev.off() | |
![]() |
# Quantile Quantile Plots fuer Symmetrie
# Buffalo Snowfall Daten data(buffalo,package="gss") dat <- buffalo n <- length(dat) k <- n/2 xs <- sort(dat) xm <- median(dat) pdf("qqsymm3.pdf",width=5,height=5) par(mar=c(4,4,1,1)) plot(xm-xs[1:k],xs[n:(k+1)]-xm,cex=0.8,pch=16, xlab="Median minus untere Quantile",ylab="Obere Quantile minus Median", cex.lab=1.2,xlim=c(0,57),ylim=c(0,57)) abline(c(0,1)) dev.off() | |
![]() |
# Quantile Quantile Plots fuer Symmetrie
# Buffalo Snowfall Daten data(buffalo,package="gss") dat <- buffalo n <- length(dat) k <- n/2 xs <- sort(dat) xm <- median(dat) pdf("qqsymm4.pdf",width=5,height=5) par(mar=c(4,4,1,1)) plot(xs[n:(k+1)]-xs[1:k],xs[n:(k+1)]+xs[1:k],cex=0.8,pch=16, xlab="Differenz der Quantile",ylab="Summe der Quantile",cex.lab=1.2) abline(h=2*xm) dev.off() |