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Abstract

Sequential Factor Analysis (seqFA) is presented here as an enhanced alternative to multivariate factorial techniques
including robust and classical Factor Analysis (FA) or Principal Component Analysis (PCA). A geochemical data set
of 145 sediment samples from very heterogeneous, mainly riverine, deposits of the Rhine-Meuse delta (The Netherlands)
analyzed for 27 bulk parameters was used as a test case. The innovative approach explicitly addresses the priority issues
when performing PCA or FA: heterogeneity and overall integrity of the data, the number of factors to be extracted, and
which optimum minimal set of key variables to be included in the model. The stepwise decision process is based on quan-
titative and objectively derived statistical criteria, yet also permitting arguments based on geochemical expertize. The
results show that seqFA, preferably in combination with robust methods, yields a highly consistent factor model, and
is favorable over classical methods when dealing with heterogeneous data sets. It optimizes rotation of the factors, and
allows the extraction of less distinct factors supported by only a few variables, thus uncovering additional geochemical
processes and properties that would easily be missed with other approaches. The identification of key variables simplifies
the geochemical interpretation of the factors, and greatly facilitates the construction of a geochemical conceptual model.
For the case of the fluvial deposits, the conceptual model effectively describes their bulk chemical variation in terms of a
limited number of governing processes.
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1. Introduction

Factor Analysis (FA) and Principal Component
Analysis (PCA) are widely used statistical
techniques in environmental geochemistry. These
multivariate approaches are used to reduce the large
.
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number of variables that result from extensive labo-
ratory characterization of sediment or soil samples.
More importantly, they are applied to identify the
main sources of variance within geochemical data-
sets, and link them to geochemical processes or
properties.

In geochemical baseline and exploration studies,
FA or PCA has been used to analyze geochemical
data for soil or stream sediment samples trying to
identify possible imprints of contamination or min-
eralization over the natural geochemical background
composition (Chork and Salminen, 1993; De Vivo
et al., 1997; Morsy, 1993; Reimann et al., 2002; Tri-
pathi, 1979). In these types of studies, factor scores
have usually been plotted as geochemical maps to
identify geochemical anomalies, which are indicative
for mineralization or contaminant sources. The geo-
chemical maps have also been combined with other
attribute maps like land use, geology, or soil type,
to explain the spatial distribution of geochemical
anomalies. Factor analysis and PCA have also been
applied in sedimentary geochemistry, mainly to
identify the effects of provenance and diagenetic pro-
cesses on the bulk chemistry of unconsolidated
material (Hakstege et al., 1993; Huisman and Kiden,
1998; Moura and Kroonenberg, 1990; Tebbens
et al., 1999, 2001). Also in many hydrogeochemical
studies (Cameron, 1996; Dalton and Upchurch,
1979; Duffy and Brandes, 2001; Evans et al., 1996;
Frapporti et al., 1993; Gupta and Subramanian,
1998; Lawrence and Upchurch, 1982; Lee et al.,
2001; Meng and Maynard, 2001; Suk and Lee,
1999) multivariate techniques have been used to
identify a variety of processes that control water
chemistry, including natural mineral dissolution,
ground water contamination, salt water intrusion
in fresh water aquifers, recharge area, and seasonal
variation in surface water composition.

Although FA and PCA are widely applied in geo-
chemistry and hydrochemistry, there are still very
few studies that explicitly evaluate the quality of
the results and their reproducibility, as these depend
on several, often implicit, assumptions and the statis-
tical distribution of the data. Reimann et al. (2002)
state some of the most critical issues that should be
dealt with when performing FA or PCA, being:

1. What is the role of extreme values (or multivari-
ate outliers, which may not be extreme in any of
the individual attribute space directions) on the
multivariate results?

2. How many factors should be extracted?
3. Which variables should be included in the factor
model?

The first question is relevant considering the
reproducibility of the results and the stability of
the multivariate model that is adopted. Since in
many environmental studies the datasets are large
and samples may come from many different loca-
tions, these datasets may be subject to a large de-
gree of heterogeneity. This will translate into
(groups) of outlying values, which may corrupt
the assumption that the dataset meets with some
minimum degree of normality, which is needed
for a proper application of FA or PCA. It has
been proposed in several studies (Reimann and
Filzmoser, 2000; Reimann et al., 2002) to apply a
robust version of the multivariate statistical meth-
ods to overcome this problem. Although there
are many different robust methods available and
there are still new ones developing, they all use
the main principle of selecting subsets of observa-
tions that would be most homogeneous and repre-
sentative for the dataset as a whole. This way, the
chance of outlying values distorting the multivari-
ate analysis is minimized.

Answers to the second question, i.e., how many
factors should be in the factor model, have been
generally formulated as criteria for minimum
eigenvalues, explained portion of variance, or
scree plots (Cattell, 1966), and more objectively
by statistical tests, information criteria, or resam-
pling methods (Basilevski, 1994; Johnson and
Wichern, 1998). Answers to the third question
are less easily found in the literature, and in most
applied studies they are not addressed at all. An
exception is the study of Reimann et al. (2002).
Although they do not formulate unique answers,
they perform an extensive analysis of different
subsets of variables. Still, the criteria used to deal
with these last two issues appear to remain subjec-
tive as they heavily depend on the experience and
individual research goals.

In this paper, the main goal is to present
sequential Factor Analysis (seqFA) as a new ap-
proach to standard FA or PCA. The new ap-
proach explicitly addresses the questions 1–3,
considering heterogeneity of the input data, the
number of factors to be extracted, and the set of
variables to be chosen, where it permits both sta-
tistical arguments and geochemical expertize. In
addition, the approach is developed in robust
and non-robust versions and both have been
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applied to the same geochemical dataset, which al-
lows comparison. The dataset consists of geochem-
ical data of unconsolidated Late Quaternary
deposits as found in the Rhine-Meuse delta plain,
The Netherlands. The final result of this case study
is, in the terminology of (Meng and Maynard,
2001), a conceptual model for the geochemical
properties and processes that govern the chemical
composition of these sedimentary deposits. This
conceptual model is a clever balance between the
available data, geochemical expert knowledge,
and statistical arguments.

2. Materials and methods

2.1. The geochemical data set

A geochemical dataset was derived from 145
sediment samples taken from Late Quaternary
deposits (Holocene and Pleistocene), mainly of
meandering rivers, in the Rhine-Meuse delta,
The Netherlands (see Fig. 1). Geochemical charac-
terization of these deposits has been more exten-
sively treated in van Helvoort (2003). As a result
of abundant channel avulsing during the Holocene
(Stouthamer and Berendsen, 2000), a dense,
stacked network of palaeo-channels exists causing
a high degree of heterogeneity over short distances
(see cross-section in Fig. 1). The sedimentary het-
erogeneity translates into geochemical heterogene-
ity because there are close relations between grain
size and mineralogy (Huisman and Kiden, 1998;
Johnsson, 1993; Moura and Kroonenberg, 1990;
Nesbitt and Young, 1996; Passmore and Macklin,
1994; Tebbens et al., 2001). For this reason, the
deposits have been grouped into 6 sedimentary fa-
cies (Table 1) based on textural and structural
properties, using an existing facies classification
for fluvial deposits (Miall, 1985, 1996) that has
been adapted to this region (Berendsen, 1984;
Törnqvist et al., 1994). Each facies has been sam-
pled at various locations and depths along several
transects (Fig. 1), covering most of the composi-
tional variation present in these deposits. The sed-
iment samples were dried at 70 �C and
mechanically ground (Herzog HSM apparatus).
X-ray Fluorescence (XRF) was used for major
element (Al2O3, CaO, Fe2O3, K2O, MgO, MnO,
Na2O, P2O5, SiO2 and Ti2O), and trace element
(As, Ba, Bi, Cd, Ce, Cr, Cs, Cu, Ga, La, Mo,
Nb, Ni, Pb, Rb, S, Sb, Sn, Sr, Th, U, V, Y, Zn
and Zr) determinations. Loss on ignition (LOI)
was determined at 1150 �C. In addition, the
CEC was determined on freeze dried sub samples
(unground) using a standard buffered salt method
(Hesse, 1971). For a selection of samples, the
CEC determination was carried out in quadrupli-
cates and in each batch of 32 samples 3 blanks
and 3 ISE standards were analyzed. Soil Organic
Matter (SOM) and carbonate contents were deter-
mined on ground samples by Thermal Gravimetric
Analysis, using a LECO TGA 608 apparatus.
Grain size analysis was done by laser-diffraction,
after removal of the >2000 lm fraction by sieving,
and removal of both organic matter and carbon-
ates using standard methods (van Doesburg,
1996). All samples were analyzed in duplicate
using a Coulter LS230 apparatus, which has a
detection range between 0.04 and 2000 lm discret-
ized into 116 grain size classes. Quality of all ana-
lytical procedures was checked by incorporating
random duplicates and international standards.

Prior to statistical analysis, the data were checked
for accuracy and measurement artefacts. The obser-
vations for Bi, Cd,Ce, La,Mo, Sb, Sn, Th andUwere
left out of further analysis because over 10% of the
observations were below the detection limit. For the
other elements, observations under detectionwere re-
placed by 2/3 times the detection limit. In addition,
log transformation was applied, which for most vari-
ables yielded improved normal distributions, or at
least improved symmetry. In the non-robust or classi-
cal PCA, the removal of obvious outliers was com-
bined with the first step of the seqFA procedure (see
Section 2.2).

The authors realize that compositional data is
always subject to (some degree of) data closure,
because major components analysis usually sum
up to 100% (Aitchison, 1981, 1984; Otero et al.,
2005). Aitchison (1981) introduced the log-ratio
transformation, which diminishes data closure by
eliminating the constant-sum and associated cur-
vature in the data set. However, a log-ratio trans-
formation was not applied, because the authors
preferred as few data manipulations as possible
while focussing on the new approach to factor
analysis. Instead of log-ratio transformation, the
major component analysis was not normalized
on 100%, leading to ‘‘open’’ total analyses varying
between 97% and 104%. Also, it was found that
curvature in the data was scarce but present,
and was reduced after log transformation of all
components. In addition, SiO2 was excluded from
factor analysis, being the dominant component in



Fig. 1. Location of case study field area, sampling sites, and geological transect.
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most samples (up to 95 wt%). The a priori re-
moval of SiO2 therefore reduced the presence of
curvatured relation ships down to a minimum,
while the most relevant geochemical relations were
preserved. This approach seemed to be satisfying
for the goals of this paper.



Table 1
Facies units, facies properties, and sample classification

Facies unit Lithology Geometry Number of samples

Channel deposits Very fine to coarse sand (105–2000 lm) 5–10 m thick, 50–2000 m wide 43
Natural levee and
crevasse-splay deposits

Horizontally laminated sandy–silty clay,
small lenses of (very) fine sand (105–210 lm)

Levees: 0.5–1.10 m thick,
50–500 m wide; crevasse-splays:
1–2 m thick, 0.1–5 km wide

23

Flood basin deposits Massive to very thin laminated clay and humic clay 1–5 m thick, 0.1–10�s km wide 30
Organic deposits Peat 0.1–5 thick, 0.1–10�s km wide 20
Eolian dune deposits Structureless of very fine to fine sand (105–210 lm) 1–10 m thick, 50–2000 m wide 17
Loam bed deposits Massive sandy–clay to clayey sand; clay in

admixture with sand in the fraction 210–300 lm
0.1–1.5 m thick, 1–10�s km wide 12

Total 145
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2.2. Sequential Factor Analysis approach

2.2.1. General approach

The general procedure of the seqFA approach is
summarized in Fig. 2, which shows the 4 consecutive
steps. Defining k, m and n as integers, and defining
k = m + n, these steps can be explained as follows:

1. Define the optimum number of factors (and
remove obvious outliers when using non-robust
methods). The resulting factor model is called
the Complete Factor Model based on kmeasured
variables.

2. Reduce the number of k variables to a set of m
key variables, by stripping off n highly correlated
variables. The result is the Stripped Factor
Model, with only m key variables.
Fig. 2. The general procedure of seqF
3. Expand the Stripped Factor Model with m key
variables back to its full size of k variables by cal-
culating the loadings for the stripped variables.
The result is the Expanded Factor Model.

4. Compare the Expanded Factor Model with the
Complete Factor Model in terms of explained
variance.

Step 1. Optimizing the number of factors extracted

and identifying outliers. The optimum number of
factors (step 1 in Fig. 2) is found by an iterative pro-
cess, in which the number of factors (to which any
rotation method may be applied), is increased by
one at a time, starting from a minimum of two
factors. Each time the factor model is extended by
a new factor, the distributions of the loadings are
examined. When the optimum factor configuration
A, indicating the 4 main steps.
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has been reached, the following 3 criteria should ap-
ply to the rotated factor loading matrix:

• maximum extension criterion: there should be
extracted as many factors as possible until one
of the criteria below is not fulfilled;

• minimum loading criterion for factors: each fac-
tor should have at least one loading with an
absolute value above a threshold value;

• minimum loading criterion for variables: each
variable should have at least one loading with
an absolute value above a threshold value.

The first criterion is the driving force to extend
the numbers of factors in the model to as many as
possible. Theoretically, there can be as many factors
as variables, but many of them will be meaningless
from both statistical and geochemical expert points
of view. The other two criteria act as a counter bal-
ance against excessive factors, and will be heavier as
the threshold is increased. The result of step 1 is the
Complete Factor Model based on the full set of k
measured variables, and has the optimum number
of p factors explaining a portion of variance repre-
sented by S2

kC. This step is critical in the whole pro-
cedure, because the number of factors determines
how many sources of variance will be acknowl-
edged, and how many unique geochemical processes
or properties can be isolated from the dataset. In the
case of classical PCA, also the removal of obvious
outliers is included in this step (see Section 2.2.2).

Step 2. Selecting the key variables by variable

stripping. In this step, the number (m) and identity
of the principal variables that represent unique
sources of variance are identified, giving the factors
discerned in the Complete Factor Model their core
or �key� identity. These principal variables are there-
fore called key variables, and have unique loading
patterns. The other variables are stripped off using
a similarity criterion for their factor loading pat-
terns. This criterion states that if for all factors the
difference between the loadings is less than a preset
value, one of the two variables can be stripped off
from the factor model, because it does not represent
a unique source of variance. In other words, the to-
tal amount of variance explained by the model does
not significantly change when the variable is left out
of the model. The main reason to strip off variables
is to get rid of collinearity, which generally causes
an uneven distribution of variables over the factors.
This leads to several imbalances when a rotation
method is applied hampering the recognition and
interpretation of weaker factors, which could be
equally interesting from a geochemical point of
view. The model that results from this step is called
the Stripped Factor Model, and it only includes a
set of m key variables with unique loading patterns
(see Fig. 2).

Step 3 and 4. Expansion and performance check of

the Stripped Factor Model. In the third step, the
Stripped Factor Model is expanded to its original
size of k variables by including the stripped vari-
ables again, creating the Expanded Factor Model.
The expansion is done by calculating the loadings
of the stripped variables in the factor space of the
Stripped Factor Model. The factor loadings are
used to compute the communalities of the stripped
variables, which then allow estimating the total por-
tion of explained variance of the Expanded Factor
Model ðS2

kEÞ based on k variables. In step 4, the per-
formance of the Expanded Factor Model is tested
by comparing the communalities and total portion
of explained variance of the Expanded FactorModel
with the Complete Factor Model. Step 3 and 4 are
elaborated with the following expressions.

The portion of explained variance by the
Stripped Factor Model ðS2

mSÞ with p factors and m

key variables is given by:

S2
mS ¼

1

m

Xm
i¼1

Xp

r¼1

a2ir; ð1Þ

where air represents the loading of the ith key vari-
able on the rth factor after rotation. The key vari-
able loadings will be summarized in the matrix
Am. The term

Pp
r¼1a

2
ir represents the communality

h2i , which is the fraction of the total variance of
key variable j explained by p factors (Davis, 1986).
After estimating the factor scores matrix Fm (Davis,
1986), the Stripped Factor Model can be repre-
sented as

Xm ¼ FmA
T
m þ Em; ð2Þ

where Xm is the standardized data matrix with the m
key variables, and Em an error term. In step 3, using
the factor space of the Stripped Factor Model, and
supposing that n variables have been stripped, the
standardized data matrix of the stripped variables
(denoted by Xn), can be factorized as

Xn ¼ FmC
T
n þ En ð3Þ

with En being an error term, and Cn is the loading
matrix referring to the stripped variables. Since the
factor model (3) can also be considered as a regres-
sion model, the ‘‘regression coefficients’’ CT

n can be
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estimated by multivariate linear regression (Johnson
and Wichern, 1998). For a more formal representa-
tion on the estimation of the loadings Cn is given in
Filzmoser (1997). Now, the portion of explained
variance of n stripped variables in the Expanded
Factor Model is analogous to (1):

S2
nE ¼ 1

n

Xn

j¼1

Xp

r¼1

c2jr ð4Þ

with cjr being an element of Cn, representing the esti-
mated loading of the jth stripped variable on the rth
factor. Also,

Pp
r¼1c

2
jr represents the communality h2j

of the stripped variable j. Combining expressions (1)
and (4), the portion of explained variance by the
Expanded Factor Model ðS2

kEÞ with k variables can
be calculated:

S2
kE ¼ m

mþ n

� �
S2
mS þ

n
mþ n

� �
S2
nE. ð5Þ

In the evaluation step 4, the overall performance of
the Stripped Factor Model can be expressed as the
ratio of the explained portions of variance by the
Expanded Factor Model ðS2

kEÞ and the Complete
Factor Model ðS2

kCÞ:

Model performance ¼ S2
kE

S2
kC

. ð6Þ

Accordingly, the performance per variable can be
expressed as the ratio of communalities in the Ex-
panded Factor Model and the Complete Factor
Model for any variable k:

Variable performance ¼ h2kE
h2kC

. ð7Þ

With these two indicators, the effect of stripping off
variables on both the overall portion of explained
variance and the individual communalities can be
assessed.
2.2.2. Computational procedures and outlier

replacement

All statistical computations were made in the R
environment (version, 1.9.1), a powerful statistical
software package which is freely available at
http://www.R-project.org. PCA was performed on
the correlation matrix with Varimax rotation (Kai-
ser, 1958). Although any FA method can be used in-
stead in combination with the seqFA procedure, we
preferred PCA here because it is the simplest multi-
variate method and needs no additional assump-
tions. Hence, the authors used a slightly adapted
version of an R-function initially designed for Prin-
cipal Factor Analysis (PFA), but setting the unique-
nesses all to zero. For the robust version, the fast
MCD algorithm (Pison et al., 2003; Rousseeuw
and van Driessen, 1999) was used to calculate the
robust correlation matrix, based on 75% of the data.
Thus, a maximum amount of 25% of outliers might
be present in the data without affecting the estima-
tion of the correlation matrix, which is considered
acceptable (see Pison et al. (2003)).

For the non-robust PCA, the classical sample
correlation matrix was used, after some obvious
outliers were replaced by median values. First, po-
tential outliers were identified by box plots and Q–
Q plots. Second, as a part of the step 1 of seqFA,
the factor score distributions of the unrotated
PCA model were examined on extreme values, pro-
duced by outliers. The outliers responsible for ex-
treme factor scores were eliminated one by one
through substitution of median values of the facies
to which the cases belonged. It was decided not to
leave out the entire case, because the observations
for the other variables were not marked as outliers
and should not disturb the PCA model. This was re-
peated, until the unrotated PCA model produced no
extreme factor scores anymore. This resulted in
replacement of only 6 observations (for Fe2O3,
MnO, and P2O5), occurring in 3 cases, and 2 of
them belonging to the organic deposits. The extreme
values were associated with dense concentrations of
vivianite or Fe/Mn-(hydr)oxides, which had already
been spotted during field sampling. Note that the
number of replacements was very small compared
to the whole data array of 3915 observations (145
cases times 27 variables). The rest of the computa-
tional procedure is explained below.

Step 1. In step 1 of seqFA, PCA was repeated
while increasing the number of factors one by one,
until the loading matrix did not meet with one of
the minimum loading criteria. The largest factor
configuration that still fulfilled all criteria was
marked as the optimum configuration, being the
maximum number of factors that should be in-
cluded in the Complete Factor Model. The mini-
mum loading criteria were set to 0.60 for robust
and non-robust PCA, this will be discussed further
in the Section 3.1.1.

Step 2. In step 2, variable stripping was applied
to the loading matrix belonging to the optimum
configuration selected in the previous step. Variable
stripping was done as follows:

http://www.R-project.org


Table 2
Highest factor loadings on the last extracted factor for robust and
non-robust PCA after Varimax rotation

Number of factors Robust Non-robust

1 Cs 0.93 Nb 0.87
2 Carbonate 0.91 Ba 0.77
3 S 0.91 S 0.95
4 Zr 0.90 Carbonate 0.92
5 MnO 0.74 Zr 0.89
6 Pb 0.30 P2O5 0.63
7 MnO 0.65
8 V 0.69
9 Pb 0.64

10 Cu 0.26
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2.a. The variables were ranked on communality;
2.b. Moving down the list, the loadings were

checked on similarity;
2.c. When two variables had similar loadings for

all factors, the one with smallest communality
was stripped, and the one with the highest was
retained. The stripped variable thus was
removed from the Complete Factor Model,
and the retained one became a key variable;

2.d. After working through the list, the PCA was
run again without the stripped variables to
generate a new rotated loading matrix, but
using the appropriate rows and columns of
the initial (robust) correlation matrix esti-
mated for the Complete Factor Model;

2.e. Step 2.a through 2.d were iterated, until no
further variables could be stripped off accord-
ing to the similarity criterion.

The final result is the Stripped Factor Model,
with key variables only. The similarity criterion
(threshold for loadings) for stripping off was varied
to see how this would influence the resulting set of
key variables. Depending on the similarity criterion,
the number of iterations (step 2.a to 2.d) needed to
arrive at the final set of key variables varied. The
stripping procedure has been automated by creating
a special function in R, and is available from the
authors on request.

Step 3 and 4. In step 3, the factor scores produced
by the Stripped Factor Model were used to estimate
the loadings for the stripped variables by regres-
sion (expression 3), creating the Expanded Factor
Model. The Expanded Factor Model has a load-
ing matrix of the same dimensions as the Complete
Factor Model, which makes a statistical perfor-
mance check (step 4 of seqFA) of the Expanding
Factor Model possible, by using expression 6
(model performance) and expression 7 (variable
performance).

3. Results

3.1. The robust and non-robust factor models

3.1.1. Optimizing the number of factors: the

Complete Factor Models

The optimum number of factors for the test case
is 5 for robust PCA (Table 2). When a 6th factor
was added to the robust model, both minimum
loading criteria were no longer fulfilled, as Pb had
the highest loading of only 0.30 on factor 6. When
extending the robust model even further to 7 fac-
tors, Na2O emerged on the last factor (0.42), which
also was too low. For the non-robust PCA, the
Complete Factor Model could be extended as far
as the 9th factor, before the minimum factor loading
criterion failed for the 10th factor by 0.26 (for Cu).
However, it was decided to develop the non-robust
Complete Factor Model also for 5 factors to have
exactly the same configuration as for robust PCA.
This is necessary for a sound comparison of the final
results produced by robust and non-robust PCA.

Fig. 3a and b provide a detailed picture of the
loading distributions per variable with the extension
of the Complete Factor Model from 2 to 7 factors,
both for the robust (left panel) and non-robust
(right panel) PCA. Generally, the loadings for both
robust and non-robust PCA had bimodality, with
typically a single high loading (>0.60) per variable,
and several loadings lower than 0.60. However,
bimodality was most evident and was maintained
with increasing number of factors for the robust
loadings. For non-robust PCA, the bimodality
tended to weaken with increasing number of factors
(Fig. 3b). Adding new factors, the highest factor
loadings were weakened, because the Varimax
rotation became less efficient in enhancing the load-
ings. A plausible explanation for the sub optimal
rotation results in non-robust PCA is that less obvi-
ous outliers start affecting the rotation procedure
when the number of factors increases. If the rotation
is influenced by these outliers, it will be more
difficult to produce enhanced loadings on all
factors. Histograms further illustrate that for the
robust PCA the minimum loading criterion of 0.60
is optimal, because at this value the divide in the
bimodal distribution between high and low loadings
is found (see Fig. 4a for the 5 factor configuration,
also compare Fig. 3a). For the non-robust PCA



Fig. 3. Diagrams of factor loading distributions per variable (rotated solution) for: (a) robust and (b) non-robust PCA with an increasing
number of factors. Although no capitals could be used in the diagrams, the usual chemical symbols are used for trace elements, and
variable names of the oxides are abbreviated to single element names. Abbreviations for CEC, SOM, and carbonates, are respectively ec,
om and ca. Elements that do not meet with the minimum loading criteria also appear at the bottom end of the diagrams.
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Fig. 4. Bimodality of absolute factor loadings for the: (a) robust
and (b) non-robust PCA configuration of 5 factors (rotated
solution).
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an optimal threshold for minimum loadings cannot
actually be defined (Figs. 4b and 3b), hence also the
optimum number of factors could not objectively be
derived (Table 2). This further justifies the choice of
a 5 factor model also for the non-robust case.

Anotherway to visualize the progressive extension
of theComplete FactorModels is presented inFig. 5a
andb.These diagrams showper factorwhich variable
had the highest loading (i.e., the principal variable),
depict the relations between consecutive factor con-
figurations, and give a brief geochemical interpreta-
tion. The extension of the robust Complete Factor
Model shows a very regular pattern, as all new factors
originated from the first or the second factor. This is
indicated by the dotted connections between the prin-
cipal variables of the new factors and the factors on
which they previously had the highest loadings. In
addition, there were very few changes in principal
variable of the same factor, and all factors remained
in the same order with respect to the relative portion
of variance explained. The diagram for non-robust
PCA is very different, with several changes of princi-
pal variables, and factors that swapped position. This
irregular pattern is evidence for instability of the
model, as the factors changed identity and rank when
including more factors for Varimax rotation. Thus,
increasing the number of factors, the whole model
changed fundamentally, because the Varimax rota-
tion was very susceptible to a newly included source
of variance. From these diagrams it is concluded that
robust PCA yields much more stable – i.e., less sensi-
tive to the number of factors chosen – and better
reproducible results than non-robust PCA.

3.1.2. Selection of key variables: The Stripped Factor

Models

Table 3 lists the key variable sets for the 5 factor
configuration resulting from different similarity cri-
teria for the robust and non-robust Stripped Factor
Models. As expected, the number of stripped vari-
ables always increased with decreasing strictness of
the similarity criterion (from 0.10 to 0.30). When
similarity was set to 0.40 or more, the 5 factor con-
figuration was not supported by the remaining set of
key variables in terms of the minimum loading cri-
teria defined previously, and therefore was consid-
ered invalid.

The composition of the key variable set was quite
similar for the robust and non-robust PCA,
although the stripping usually proceeded more effi-
ciently for the robust PCA (mostly one iteration)
versus the non-robust PCA (2 or 3 iterations). With
a similarity of 0.30, the common key variables iden-
tified are Cs, MnO, S, Na2O, Zr, Sr, SOM, and
Al2O3, in order of decreasing communality ratios
(see expression 7). The non-robust solution has one
more variable (Y) in the Stripped Factor Model.
Thus, it is concluded that for the selected factor con-
figuration with 5 factors, the robust and non-robust
PCA Stripped Factor Models are highly congruent.
The results for the most condensed Stripped Factor
Models, i.e., with a similarity stated at 0.30, will be
discussed quantitatively in the next section.

3.1.3. The Expanded Factor Models and statistical

performance

Tables 4A and 4B show the factor loadings
(>0.30) for the Complete Factor Model and the
Expanded Factor Model, both for the robust



Fig. 5. Diagrams representing the gradual extension of: (a) robust and (b) non-robust Complete Factor Models (after Varimax rotation)
and a brief geochemical interpretation (not discussed).
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and non-robust solution. The following is ob-
served for both the robust and non-robust PCA
solutions:

• The ratio of overall explained variance ðS2
E=S

2
CÞ is

close to unity, and shows that the Expanded Fac-
tor Model performance is only a fraction less
than the Complete Factor Model, which means
that the Stripped Factor Model is quite represen-
tative in explaining the dominant variance
sources of the dataset, including the stripped
variables.
• In general, the communality ratios ðh2iE=h2iCÞ for
the key variables exceed unity (0.96–1.15),
whereas for the stripped variables these are all
lower than 1. This means that the Stripped Fac-
tor Model performs relatively better on the key
variables at the cost of the stripped variables,
which have been excluded for Varimax rotation.
The reason is, obviously, that the Stripped Fac-
tor Model was optimized for the key variables.

• The variance explained by the Stripped Factor
Model alone ðS2

mSÞ is more evenly distributed
over the factors than in the Complete Factor



Table 3
Key variable sets (>0.30) for the 5-factor configuration with different similarity criteria for variable stripping, both for robust and non-
robust Stripped Factor Models

All variables Robust Stripped Factor Models Non-robust Stripped Factor Models

0.10 0.15 0.20 0.25 0.30 0.10 0.15 0.20 0.25 0.30

Al2O3 Al2O3 Al2O3 Al2O3 Al2O3 Al2O3 Al2O3 Al2O3 Al2O3 Al2O3 Al2O3

As As As As As
Ba Ba Ba Ba
Carbonate Carbonate Carbonate Carbonate
CEC
Cr Cr
Cs Cs Cs Cs Cs Cs Cs Cs Cs Cs Cs
Cu Cu Cu Cu Cu Cu
Fe2O3 Fe2O3 Fe2O3

Ga
K2O K2O K2O K2O K2O
MgO
MnO MnO MnO MnO MnO MnO MnO MnO MnO MnO MnO
Na2O Na2O Na2O Na2O Na2O Na2O Na2O Na2O Na2O Na2O Na2O
Nb Nb Nb Nb
Ni
Pb Pb Pb
P2O5 P2O5 P2O5 P2O5 P2O5 P2O5 P2O5 P2O5

Rb Rb
S S S S S S S S S S S
SOM SOM SOM SOM SOM SOM SOM SOM SOM SOM
Sr Sr Sr Sr Sr Sr Sr Sr Sr Sr Sr
TiO2 TiO2 TiO2 TiO2 TiO2 TiO2 TiO2

V V V V
Y Y Y Y Y Y Y Y
Zn Zn Zn Zn Zn Zn
Zr Zr Zr Zr Zr Zr Zr Zr Zr Zr Zr
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Model (compare S2
mS with S2

C for the individual
factors in Tables 4A and 4B). The reason is that
in the Complete Factor Model most high load-
ings were found on the first factor (F1), and
therefore this factor explains the larger part of
the variance. However, in the Stripped Factor
Model the highest loadings are more evenly dis-
tributed over the factors, because much of the
collinearity has been removed by variable
stripping.

Comparing results between the robust and non-
robust solution, it is evident that the results for
the Stripped/Extended Factor Model are far more
similar to each other than those for the Complete
Factor Model. For the Complete Factor Models,
the Varimax rotation obviously leads to distinctly
different orientations of the principal axes. The dif-
ference is also evident in the communalities of the
(key) variables. The Stripped/Expanded Models
show highly similar orientations, but for a shuffling
of ranks between F3 and F4, and also very similar
communalities.
The main implications of these results are 4-fold.
First of all, the Stripped Factor Model is the most
condensed way to summarize the main sources of
variance in a geochemical dataset, without loosing
any key information, and without loosing signifi-
cant explained variance via the Expanded Factor
Model. Secondly, the Stripped Factor Model yields
higher loadings for the remaining key variables,
which facilitates interpretation of the factors.
Thirdly, the Stripped Factor Model enhances weak-
er factors at the cost of stronger ones. This validates
the extraction of weaker factors with smaller eigen-
values in the first step of the seqFA. Finally, the
Stripped (and Extended) Factor Model is more
robust to outliers in minor variables than the Com-
plete Factor Model.

3.2. A conceptual geochemical model for riverine

deposits

3.2.1. Interpretation of the factors

The loading matrix of the robust Expanded
Factor Model (Table 4A) was used to develop a



Table 4A
Factor loadings (>0.30) for the robust Complete and Expanded Factor Model (variables sorted on communality ratiosb)

Complete Factor Model Expanded Factor Model E/Cb

F1 F2 F3 F4 F5 Communality F1 F2 F3 F4 F5 Communality

Csa 0.92 0.88 0.96 0.97 1.11
MnOa 0.35 0.52 0.65 0.90 0.91 0.98 1.09
Sa 0.31 0.90 0.91 0.94 0.98 1.07
Na2O

a 0.76 0.44 0.94 0.89 0.33 0.97 1.02
Zra 0.30 0.90 0.97 0.91 0.99 1.02
Sra 0.35 0.86 0.94 0.73 0.53 0.95 1.01
SOMa 0.70 0.59 0.97 0.60 0.63 0.39 0.97 1.00
Al2O3

a 0.86 0.33 0.99 0.75 0.36 0.31 0.31 0.95 0.96

TiO2 0.75 0.31 0.31 0.47 0.99 0.62 0.36 0.34 0.50 0.96 0.98
Y 0.83 0.38 0.97 0.74 0.31 0.32 0.44 0.95 0.98
CEC 0.77 0.45 0.95 0.66 0.48 0.36 0.34 0.92 0.97
Fe2O3 0.79 0.35 0.97 0.67 0.38 0.47 0.32 0.95 0.97
Ni 0.78 0.32 0.30 0.92 0.67 0.38 0.38 0.34 0.90 0.97
Cr 0.78 0.33 0.35 0.35 0.98 0.64 0.41 0.35 0.39 0.94 0.96
MgO 0.81 0.35 0.32 0.97 0.69 0.39 0.39 0.93 0.96
Nb 0.83 0.37 0.91 0.76 0.42 0.88 0.96
Rb 0.86 0.37 0.98 0.74 0.38 0.32 0.35 0.94 0.96
Zn 0.83 0.42 0.97 0.71 0.47 0.35 0.94 0.96
V 0.83 0.38 0.98 0.71 0.43 0.36 0.31 0.94 0.96
Carbonate 0.91 0.93 0.72 0.57 0.89 0.95
Ga 0.85 0.30 0.34 0.97 0.72 0.41 0.33 0.92 0.95
K2O 0.84 0.48 0.97 0.72 0.47 0.30 0.92 0.94
Cu 0.83 0.36 0.87 0.72 0.43 0.32 0.81 0.93
Pb 0.64 0.32 0.36 0.41 0.81 0.52 0.38 0.31 0.40 0.75 0.92
As 0.58 0.69 0.89 0.47 0.64 0.35 0.81 0.91
P2O5 0.63 0.43 0.46 0.86 0.51 0.58 0.78 0.91
Ba 0.89 0.31 0.93 0.78 0.32 0.83 0.90

S2mS 0.26 0.20 0.19 0.18 0.14 0.97
S2nE 0.43 0.15 0.08 0.14 0.09 0.89

S2kC 0.51 0.15 0.13 0.09 0.05 0.94 S2kE 0.38 0.16 0.11 0.15 0.11 0.92 0.97

a Key variables.
b Ratio of communality in Expanded Factor Model (E) to Complete Factor Model (C).
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geochemical model for the Late Quarternary depos-
its in the Rhine-Meuse delta by interpreting each
factor carefully. The factor scores were plotted in
Fig. 6 to illustrate the geochemical differences be-
tween the facies. The non-robust Expanded Factor
Model is not discussed in a separate section, because
of its similarity to the robust model.

Factor 1. Variation in clay content. The first fac-
tor represents the variation of the finest grain size
fraction in the riverine deposits. The factor scores
of F1 reflect the textural difference between facies
very well, placing them in order of increasing clay
content. As a result of (hydrodynamic) sorting pro-
cesses, clay content increases from eolian dune,
channel, loam bed, crevasse-levee, organic to flood
plain deposits (see Table 1). Note that in the organic
deposits the clastic matrix has been diluted by SOM,
leading to lower clay contents than in the flood
plain deposits. Factor 1 has the highest loadings
for the key variables Cs (0.96) and Al2O3 (0.75),
and almost all other trace elements that have been
stripped off (Table 4A). Cesium is highly adsorptive
to clay mineral surfaces (Gier and Johns, 2000;
Shahwan and Erten, 2001), whereas Al2O3 is the
most important building block of clay minerals.
However, contrary to other regional studies using
factor analysis to describe geochemical variation in
sedimentary deposits (Huisman and Kiden, 1998;
Moura and Kroonenberg, 1990; Tebbens et al.,
2001), Al2O3 was not found to be the principal var-
iable describing clay mineral content. The explana-
tion is that Al2O3 does not occur uniquely in clay
minerals, but also in other silicates that occur in lar-
ger grain size categories (see F3).

Factor 2. Variation in reduced sulfur and SOM

contents. Factor 2 is interpreted as the variation in



Table 4B
Factor loadings (>0.30) for the non-robust complete and Expanded Factor Model (variables sorted on communality ratiosb)

Complete Factor Model Expanded Factor Model E/Cb

F1 F2 F3 F4 F5 Communality F1 F2 F3 F4 F5 Communality

MnOa 0.37 0.38 0.74 0.85 0.90 0.98 1.15
Sa 0.90 0.87 0.94 0.98 1.13
Csa 0.88 0.90 0.96 0.97 1.08
Na2O

a 0.43 0.54 0.55 0.94 0.90 0.34 0.97 1.04
Sra 0.82 0.35 0.94 0.31 0.60 0.63 0.95 1.01
Zra 0.31 0.91 0.98 0.32 0.90 0.99 1.01
SOMa 0.58 0.72 0.96 0.57 0.65 0.42 0.96 1.00
Ya 0.81 0.35 0.98 0.77 0.34 0.42 0.97 0.99
Al2O3

a 0.64 0.39 0.34 0.51 0.99 0.72 0.36 0.35 0.35 0.95 0.96

Fe2O3 0.66 0.48 0.40 0.96 0.67 0.39 0.49 0.95 0.98
TiO2 0.59 0.40 0.32 0.38 0.47 0.99 0.61 0.36 0.36 0.31 0.48 0.97 0.98
CEC 0.64 0.61 0.95 0.65 0.52 0.38 0.92 0.97
P2O5 0.53 0.54 0.76 0.50 0.58 0.73 0.97
Zn 0.69 0.56 0.97 0.70 0.47 0.39 0.94 0.97
Cr 0.60 0.45 0.34 0.42 0.35 0.98 0.64 0.40 0.38 0.31 0.36 0.94 0.96
Rb 0.63 0.38 0.39 0.51 0.98 0.71 0.37 0.38 0.36 0.94 0.96
Carbonate 0.90 0.94 0.64 0.63 0.89 0.95
Cu 0.70 0.52 0.88 0.71 0.44 0.36 0.84 0.95
MgO 0.59 0.46 0.38 0.46 0.96 0.66 0.41 0.40 0.31 0.91 0.95
Ni 0.78 0.31 0.35 0.91 0.71 0.40 0.85 0.94
V 0.68 0.68 0.64 0.64 0.94
Ga 0.59 0.47 0.31 0.51 0.97 0.69 0.43 0.34 0.90 0.93
K2O 0.54 0.41 0.66 0.97 0.67 0.33 0.53 0.91 0.93
Nb 0.87 0.34 0.94 0.76 0.31 0.41 0.87 0.92
Ba 0.59 0.67 0.93 0.72 0.40 0.82 0.88
As 0.33 0.77 0.33 0.90 0.43 0.66 0.38 0.78 0.87
Pb 0.37 0.37 0.53 0.36 0.77 0.48 0.31 0.31 0.35 0.31 0.64 0.83

S2mS 0.29 0.19 0.19 0.16 0.14 0.97
S2nE 0.40 0.14 0.16 0.09 0.07 0.86

S2kC 0.34 0.19 0.16 0.14 0.09 0.92 S2kE 0.36 0.16 0.17 0.12 0.09 0.89 0.97

a Key variables.
b Ratio of communality in Expanded Factor Model (E) to Complete Factor Model (C).
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reduced S and SOM. As reduced S precipitates in
sulfide compounds like pyrite (FeS2), it is a very
good indicator for low redox environments. Sulfides
commonly occur with SOM (Berner, 1971), because
the mineralization of SOM results in low redox
potentials leading to SO4 reduction and subsequent
precipitation of metal sulfides. This is well demon-
strated in Fig. 6, where the organic facies rich in
SOM has clearly the highest factor scores for F2.
The covariation of As (Table 4A) suggests that this
element has been incorporated into sulfides, which is
not uncommon in Dutch subsoil sediments (Huis-
man, 1998).

The smaller loadings of Al2O3 and most other
(trace) elements on this factor suggest also a grain
size effect, because low redox potentials are well pre-
served in finely grained deposits with low permeabil-
ity. This effect is shown by the high median factor
score on F2 for the flood plain deposits (Fig. 6).
Low redox potentials are also found in the loam
bed deposits, which have been buried since the
Holocene ground water rise (Berendsen, 1998; Ber-
endsen and Stouthamer, 2001), and now occur at
depth. The channels and crevasse-levee deposits,
with their high permeability forming the main aqui-
fers, are the most oxic facies.

Factor 3. Variation of albitic feldspar and carbon-

ate contents. Factor 3 has high loadings for the key
variables Na2O (0.89) and Sr (0.73). Sodic plagio-
clase (albite, NaAlSi3O8) has been suggested to be
the most important source of Na2O in Holocene
and Pleistocene sandy sediments in The Netherlands
(Huisman and Kiden, 1998). However, the weak
covariation of K2O (0.47) suggests that albite occurs
in a mixture with K-feldspar [KAlSi3O8], or that
Na2O and K2O jointly occur in albitic K-feldspar



Fig. 6. Boxplots showing the factor score distributions per factor and per facies. Boxes represent interquartiles, with median indicated by
the horizontal bar. Whiskers show maximum and minimum scores that fall within 1.5 times the interquartile range of the box measured
from the upper and lower quartiles, respectively.
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Fig. 7. K2O vs. Na2O (weight percentages) for the sandy eolian
dune and channel facies.
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[(Na,K)AlSi3O8]. Fig. 7 shows a steady increase of
K with Na in a ratio of about 3:2 (weight percent-
ages) in the sandy facies, suggesting that the albitic
K-feldspar or the mineralogical mixture has a
constant composition. According to Fig. 8, these sil-
icates are enriched in the 20–150 lm grain size frac-
tion, and should be abundant in the channel, eolian
dune and crevasse-levee facies. The weak loading
for Al2O3 on this factor confirms that the variation
of Al2O3 is not solely dictated by clay mineral
content.

The high loading for Sr translates into the varia-
tion of carbonate content, because Sr is a common
substitute for Ca in carbonates and aragonites
(Kinsman and Holland, 1969). This is clear from
the identical loading patterns for Sr and carbonate
in the Expanded Factor Model. In these deposits,
carbonate has mainly been identified as being pres-
ent as detrital fragments of biogenic origin, which
have been concentrated in silty facies (crevasse-levee
deposits) along with Na-bearing silicates (see Fig. 6)
because of their similar weight. For this reason, car-
bonate content covaries with Na2O content, and
loads on the same factor.

As F3 has a mixed geochemical significance, the
factor score distributions in Fig. 6 should be inter-
preted with care. On geochemical grounds, it might
be better to consider the principal variables sepa-
rately, i.e., the Na2O and Sr/carbonate contents.
Though Table 4A and Fig. 8 suggest high carbonate
contents occurring with intermediate grain sizes, for
the eolian dune facies this relation is not present be-
cause all carbonate was leached out during the Early
Holocene when the eolian dunes were uncovered.
The covariation of carbonate and feldspar contents
in the crevasse-levee facies tends to dominate this
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relationship, but it should be assessed for the other
facies individually.

Factor 4. Variation in Mn and P mineral contents.

This factor has the highest loading for key variable
MnO (0.91), and weaker loadings for P2O5, Fe2O3,
carbonate, and Sr. The factor is interpreted as the
variation in secondarily formed Mn and P-
bearing minerals like Mn-(hydr)oxides, vivianite
[Fe3(PO4)2 Æ 8H2O], and apatite [Ca5(PO4)3(OH)].
In aquifer sediments, Mn (hydr)oxides commonly
occur with Fe(III)-(hydr)oxides under (sub)oxic
conditions (Appelo and Postma, 1994; Heron and
Christensen, 1994; Larsen and Postma, 1997), while
vivianite has been reported as a sink for P and
Fe(II) in anaerobic, clayey abandoned channel
deposits of the Meuse river (Tebbens et al., 1999).
In addition, apatite forms under alkaline conditions
in the presence of Ca, which is often the case in the
shallow subsoil under arable land as a result of
excessive Ca and P-fertilizer application (Sposito,
1989). Hence, MnO, P2O5 and Fe2O3 are related
via secondary mineral phases and therefore occur
in the same factor. Fig. 6 shows that the organic
and crevasse-levee deposits have been enriched in
Mn/P bearing minerals. This is complementary to
field observations of vivianite occurrence in reduced
organic deposits, and Mn/Fe (hydr)oxides in sub-
oxic crevasse-levee deposits occurring close to the
ground water table. The covariation of Sr/carbonate
with MnO largely follows grain size (see Fig. 8), be-
cause the silty crevasse-levee facies is enriched in both
Fe/Mn (hydr)oxides and carbonates. The eolian
dune deposits are depleted of Mn/P minerals.

Factor 5. Variation in heavy mineral content. This
factor has the highest loading for Zr, and weaker
ones for TiO2, Nb, and Y. It is interpreted as reflect-
ing the variation in heavy mineral content, including
zircon (Zr), rutile (TiO2), and associated trace ele-
ments Nb and Y, which are known to be least mo-
bile during weathering processes (Humphris and
Thompson, 1982; Thompson, 1973). Fig. 8 suggest
that Zr is enriched in the silt fraction, and Fig. 6
confirms that heavy minerals have indeed been
enriched in the silty crevasse-levee and loam bed fa-
cies. In addition, heavy minerals have been enriched
in the sandy eolian dune facies, which are not silty.
The explanation is that the sandy eolian dunes have
been depleted of most other components by leach-
ing and eolian sorting processes, leaving a relative
concentration of heavy minerals.

3.2.2. A conceptual geochemical model

The robust Expanded Factor Model can be
translated into a conceptual geochemical model,
describing the chemical variation in the sedimen-
tary deposits of the Rhine-Meuse delta plain in
terms of independent physical and chemical pro-
cesses. This approach is very similar to Meng
and Maynard (2001), who formulated a conceptual
model describing the dominant processes governing
water chemistry in a Brazilian aquifer. Tables 5A
and 5B list the 4 processes derived from the Ex-
panded Factor Model, being: depositional sorting,
peat formation, redox processes, and dissolution/
precipitation of secondary minerals. These pro-
cesses have been grouped as either syn-depositional
or post-depositional processes.

Table 5A shows that F1 and F5 represent only
one process, whereas the other factors incorporate
several processes. For this reason, F1 and F5 are
labelled as ‘‘pure’’ factors, and F2, F3, and F4 as
‘‘mixed’’ factors. The pure factors were easiest to
interpret but for the mixed factors, additional
geochemical expertize or field observations are
needed to assess their meaning properly. Likewise,
variables can be classified as ‘‘pure’’ or ‘‘mixed’’,



Table 5B
Representation of governing processes by the key variables in the robust Expanded Factor Model

Process Cs Al2O3 SOM S Na2O Sr MnO Zr

Syn-depositional
Depositional sorting · · · · · · ·
Peat formation · ·

Post-depositional
Redox · ·
Precipitation/dissolution · ·

Table 5A
Representation of governing processes by the individual factors of the robust Expanded Factor Model

Process F1 F2 F3 F4 F5

Syn-depositional
Depositional sorting (clay minerals, feldspar, heavy minerals, carbonate fragments) · · · ·
Peat formation (SOM accumulation) ·

Post-depositional
Redox (formation of sulphides, Mn/Fe oxides, vivianite) · ·
Precipitation/dissolution (carbonate leaching, apatite precipitation) · ·
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dependent on whether they are associated with a
single or several processes. Table 5B shows that
the key variables Cs, Al2O3, Na2O, and Zr are
‘‘pure’’, and associated with only one process (syn-
depositional grain sorting). The distribution of
other constituents has been affected by several pro-
cesses, and thus are of the ‘‘mixed’’ type. Note that
Tables 5A and 5B are complementary because a fac-
tor can only be ‘‘pure’’ when the key variable with
the highest loading is ‘‘pure’’ as well.

It is concluded that the robust Expanded Model
is more than just 5 separated sources of variance
extracted from a geochemical dataset, but also
accurately describes many geochemical and miner-
alogical properties of the sedimentary deposits in
the Rhine-Meuse delta. These properties can be
linked to 4 governing independent physical and
geochemical processes, leading to a conceptual
model that helps understanding of the geochemical
variation of these deposits in detail.

4. Discussion and conclusions

Over the years, there has been extensive discussion
about how FA or PCA should be applied (Garrett,
1993; Reimann and Filzmoser, 2000; Reimann
et al., 2002). Important issues invariably have been
the effect of outliers, and the number of factors and
variables that should be included in the multivariate
solution. The novel sequential approach presented
in this paper clarifies these issues substantially.
Using a heterogeneous geochemical dataset, the
authors took the opportunity to assess the effect of
multivariate outliers on PCA by comparing the ro-
bust and non-robust solutions. Using the robust
estimate of the correlation matrix as input for
PCA, it was observed from the gradual extension
of the Complete Factor Model that the rotated fac-
tor solutions are very consistent whereas the non-
robust solutions are not. Also, the change from
the Complete Factor Model towards the Stripped/
Extended Factor Model seems to be more moderate
for the robust solution. Therefore, it is concluded
that a robust approach is superior to a non-robust
approach, and the authors recommend always
applying robust PCA or FA to geochemical data-
sets, minimizing the effect of multivariate outliers
on the rotated factor solutions.

The number of factors that should be extracted
has been identified in an objective manner. A mini-
mum loading criterion has been identified from the
rotated loading distributions produced by robust
PCA. The loading distributions showed a persistent
bimodality, indicating that Varimax rotation works
optimally for the robust case. The minimum loading
criterion should therefore be set at the lower bound-
ary of the high end distribution, and used for deter-
mining objectively the optimum number of factors
that should be extracted. This is an important
achievement of seqFA, because so far, there were
no adequate objective guides for factor extraction.
However, the researcher may decide to deviate from
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the optimum, but in doing so should realize that the
factor model tends to become over or underspecified
with too many or too few factors respectively.

The issue of variable extraction has been ad-
dressed in a systematical approach. In this study,
similarity criteria and communality sorting were
used to identify key variables. The results are
therefore objective and statistically optimized,
highly condensed, and easy to interpret. However,
the results could also be generated in a more flex-
ible way. For instance, if researchers are interested
in trace element chemistry, they could manually
preset for each factor the trace element with the
highest communality as the key variable.
Although they would not find the statistical opti-
mum, they would be developing the factor model
towards trace element chemistry, because the fac-
tor rotation is manipulated (optimized) towards
the preset keys. This makes the variable stripping
procedure flexible, as the results can always be
checked by comparing the explained variance
and communalities of the Complete Factor Model
and the Expanded Factor Model.

In general, it is concluded that seqFA is a very
useful approach to explore heterogeneous geochem-
ical datasets multivariately. Using robust statistics,
seqFA leads to a balanced set of factors and vari-
ables, because the results are produced in several
steps. Within each step, the researcher obtains new
information concerning the multivariate structures
in the dataset, the stability of the factor model,
and the developing identities of the extracted fac-
tors. This opens the way to a broad range of appli-
cations of robust PCA or FA, including
multivariate outlier detection and stability analysis,
variance source identification, and variable cluster-
ing. In addition, the identification of hidden geo-
chemical processes and properties is improved
relative to traditional approaches. This applied
study demonstrates that with seqFA, the authors
were able to derive a consistent geochemical concep-
tual model to explain the compositional variability
of the heterogeneous Late Quaternary deposits in
the Rhine-Meuse delta (The Netherlands).
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