
1

CLASSIFICATION EFFICIENCIES FOR ROBUST

LINEAR DISCRIMINANT ANALYSIS

Christophe Croux1, Peter Filzmoser2 and Kristel Joossens1

1K.U. Leuven and 2Vienna University of Technology

Abstract: Linear discriminant analysis is typically carried out using Fisher’s method.

This method relies on the sample averages and covariance matrices computed from

the different groups constituting the training sample. Since sample averages and

covariance matrices are not robust, it has been proposed to use robust estimators

of location and covariance instead, yielding a robust version of Fisher’s method. In

this paper relative classification efficiencies of the robust procedures with respect to

the classical method are computed. Second order influence functions appear to be

useful for computing these classification efficiencies. It turns out that, when using

an appropriate robust estimator, the loss in classification efficiency at the normal

model remains limited. These findings are confirmed by finite sample simulations.
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1. Introduction

In discriminant analysis one observes several groups of multivariate observa-

tions, forming together the training sample. For the data in this training sample,

it is known to which group they belong. A discriminant rule is constructed on

the basis of the training sample, and used to classify new observations into one

of the groups. A simple and popular discrimination method is Fisher’s linear dis-

criminant analysis. Over the last decade several more sophisticated non-linear

classification methods, like support vector machines and random forests, have

been proposed, but Fisher’s method is still often used and performs well in many

applications. Also, the Fisher discriminant function is a linear combination of

the measured variables, being easy to interpret.

At the population level, the Fisher discriminant function is obtained as fol-

lows. Consider g populations in a p-dimensional space, being distributed with

centers µ1, . . . , µg and covariance matrices Σ1, . . . ,Σg. The probability that an
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observation to classify belongs to group j is denoted by πj , for j = 1, . . . , g, with
∑

j πj = 1. Then the within groups covariance matrix W is given by the pooled

version of the different scatter matrices

W =

g
∑

i=j

πjΣj. (1.1)

The observation to classify is assigned to that group for which the “distance”

between the observation and the group center is smallest. Formally, x is assigned

to population k for which

Dk(x) = min
j=1,...,g

Dj(x),

where

D2
j (x) = (x− µj)

tW−1(x− µj) − 2 log πj. (1.2)

Note that the squared distances, also called the Fisher discriminant scores, in

(1.2) are penalized by the term −2 log πj, such that an observation is less likely

to be assigned to groups with smaller prior probabilities. By adding the penalty

term in (1.2), the Fisher discriminant rule is optimal (in the sense of having a

minimal total probability of misclassification) for source populations being nor-

mally distributed with equal covariance matrix (see Johnson and Wichern 1998,

page 685). In general, a prior probability πj is unknown, but can be estimated by

the empirical frequency of observations in the training data belonging to group

j, for 1 ≤ j ≤ g.

At the sample level, the centers µj and covariance matrices Σj of each group

need to be estimated, which is typically done using sample averages and sample

covariance matrices. But sample averages and covariance matrices are not ro-

bust, and outliers in the training sample may have an unduly large influence on

the classical Fisher discriminant rule. Hence it has been proposed to use robust

estimators of location and covariance instead and plugging them into (1.1) and

(1.2), yielding a robust version of Fisher’s method. Such a plug-in approach for

obtaining a robust discriminant analysis procedure was, among others, taken by

Chork and Rousseeuw (1992), Hawkins and McLachlan (1997) and Hubert and

Van Driessen (2004) using Minimum Covariance Determinant estimators, and by

He and Fung (2000) and Croux and Dehon (2001) using S-estimators. In most
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of these papers the good performance of the robust discriminant procedures was

shown by means of simulations and examples, but we would like to obtain the-

oretical results concerning the classification efficiency of these methods. Such

a classification efficiency measures the difference between the error rate of an

estimated discriminant rule and the optimal error rate. Asymptotic relative clas-

sification efficiencies (as defined in Efron 1975) will be computed. A surprising

result is that second order influence functions can be used for computing them.

The second order influence function measures the effect that an observation in

the training set has on the error rate of an optimal linear discriminant analy-

sis procedure. In this paper we only consider optimal discriminant procedures,

meaning that they achieve the optimal error rate at the homoscedastic normal

model, when the training sample size tends to infinity.

Our contribution is twofold. First of all, we theoretically compute influence

functions measuring the effect of an observation in the training sample on the

error rate for optimal discriminant rules. In robustness it is standard to com-

pute an influence function for estimators, but here we focus on the error rate of

a classification rule. When a discriminant rule is optimal, it turns out that one

needs to compute a second order influence function, since the usual first order

influence function equals zero. Influence functions for the error rate of two group

linear discriminant analysis were computed by Croux and Dehon (2001). How-

ever, they used a non-optimal classification rule, by omitting the penalty term in

(1.2), leading to a different expression for the influence function (in particular,

the first order influence function will not vanish).

The second contribution of this paper is that we compute asymptotic relative

classification efficiencies using this second order influence function. As such, we

can measure how much increase in error rate is expected if a robust instead

of the classical procedure is used when no outliers are present. Classification

efficiencies were introduced by Efron (1975), who compared the performance

of logistic discrimination with linear discrimination for two-group discriminant

analysis. Up to our best knowledge, this is the first paper to compute asymptotic

relative classification efficiencies for robust discriminant procedures.

Theoretical results will only be presented for the two group case, since com-

puting influence functions and asymptotic classification efficiencies for more than
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two groups becomes analytically intractable.

The paper is organized as follows. Notations are introduced in Section 2.

Section 3 derives expressions for the second order influence function, and relative

classification efficiencies are given in Section 4. A simulation study is presented

in Section 5, where also the multi-group case is considered. Conclusions are made

in Section 6.

2. Notations

Let X be a p-variate stochastic variable containing the predictor variables,

and Y be the variable indicating the group membership, so Y ∈ {1, . . . , g}. The

training sample (X1, Y1), . . . , (Xn, Yn) is a random sample from the distribution

H. In this section we will define the Error Rate (ER) as a function of the distri-

bution H, yielding a statistical functional H → ER(H), needed for computing

influence functions in Section 3.

Denote Tj(H) and Cj(H) the location and scatter of the conditional distri-

bution X|Y = j, for j = 1, . . . , g, with (X,Y ) ∼ H. The location and scatter

functionals may correspond to the expected value and the covariance matrix,

but any other affine equivariant location and scatter measure is allowed. The

functional representation of the within groups covariance matrix (1.1) is then

W (H) =

g
∑

j=1

πj(H)Cj(H), (2.1)

with πj(H) = PH(Y = j) being the group probabilities under H, for j = 1, . . . , g.

The Fisher discriminant scores are then given by

D2
j (x,H) = (x− Tj(H))tW (H)−1(x− Tj(H)) − 2 log πj(H), (2.2)

for j = 1 . . . , g. A new observation x will be assigned to population k for which

the discriminant score is minimal. In the above formula, the prior group prob-

abilities πj(H) are estimated from the training data. So we have a prospective

sampling scheme in mind, meaning that the group proportions of the data to clas-

sify are the same as for the training data. Denote by Hm the model distribution

of the data to classify, assumed to verify
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(M) For 1 ≤ j ≤ g, X|Y = j follows a normal distribution Hj ≡ N(µj,Σ).

The centers µj are different and Σ is non-singular. Furthermore, every πj =

PHm
(Y = j) is strictly positive.

In ideal circumstances we have that the data to classify are generated from the

same distribution as the training data set, so H = Hm. When computing an

influence function, however, we need to take for H a contaminated version of

Hm. With πj = PHm
(Y = j), for j = 1, . . . , g, one has for any distribution H of

the training data:

ER(H) =

g
∑

j=1

πj PHm

(

Dj(X,H) > min
k 6=j

k=1,...,g

Dk(X,H) | Y = j
)

. (2.3)

The above expression is difficult to manipulate, therefore we restrict ourselves

from now on to the case with two groups. One can show, e.g. following the lines

of Croux and Dehon (2001), that the following result holds:

Proposition 1 For g = 2, with training data distributed according to H and

observations to classify distributed according to Hm verifying (M), we have that

ER(H) = π1Φ(
A(H) +Bt(H)µ1
√

Bt(H)ΣB(H)
) + π2Φ(

−A(H) −Bt(H)µ2
√

Bt(H)ΣB(H)
) (2.4)

with

B(H) = W (H)−1(T2(H) − T1(H)) (2.5)

A(H) = log(π2(H)/π1(H)) −B(H)t(T1(H) + T2(H))/2. (2.6)

Throughout the paper, we use the notation Φ for the cumulative distribution

function of a univariate standard normal, and φ for its density. Recall that π1

and π2 in (2.4) are the (unknown) group probabilities of the data to classify,

while π1(H) and π2(H) in (2.6) are the group probabilities of the training data

H. At the model distribution Hm, they coincide and expression (2.4) can be

simplified. Since we will work with location and scatter functionals being consis-

tent at normal distributions, we have (Tj(Hm), Cj(Hm)) = (µj,Σ) for 1 ≤ j ≤ 1,

hence W (Hm) = Σ, and we get

ER(Hm) = π1Φ(
θ

∆
− ∆

2
) + π2Φ(− θ

∆
− ∆

2
) (2.7)
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where θ = log(π2/π1) and ∆ is given by

∆ =
√

(µ1 − µ2)tΣ−1(µ1 − µ2). (2.8)

3. Influence Functions

To study the effect of an observation on a statistical functional it is common

in the robustness literature to use influence functions (see Hampel et al 1986).

As such, the influence function of the error rate at the model Hm is defined as

IF((x, y); ER,Hm) = lim
ε→0

ER
(

(1 − ε)Hm + ε∆(x,y)

)

− ER(Hm)

ε

with ∆(x,y) the Dirac measure putting all its mass in (x, y). Recall that x is a

p-variate observation, and y indicates the group membership. More generally, we

define the k-th order influence function of a statistical functional T as

IFk((x, y);T,H) =
∂k

∂εk
T ((1 − ε)Hm + ε∆(x,y))

∣

∣

ε = 0

. (3.1)

Note that we do note take the approach of the partial influence functions of Pires

and Branco (2002), who assume that the sampling proportion of each group

in the training data is fixed in advance. We prefer to work with a random

group membership variable Y , allowing to estimate the group probabilities from

the training data (under a prospective sampling scheme), yielding an optimal

discriminant rule.

If there is a (small) amount of contamination in the training data, due to

the presence of a possible outlier (x, y), then the error rate of the discriminant

procedure based on Hε = (1 − ε)Hm + ε∆(x,y) can be approximated by the

following Taylor expansion:

ER(Hε) ≈ ER(Hm) + εIF((x, y); ER,Hm) +
1

2
ε2 IF2((x, y); ER,Hm). (3.2)

Of course, the above equation only holds for ε small, implying that IF and IF2

can only measure the effect of small amounts of contamination. Maxbias curves

could be used for larger contamination levels. In Figure 3.1, we picture ER(Hε)

as a function of ε. The Fisher discriminant rule is optimal at the model distri-

bution Hm, and we denote ER(Hm) = ERopt throughout the text. This implies

that any other discriminant rule, in particular the one based on a contaminated
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Figure 3.1: Error rate of an optimal discriminant rule based on a contaminated model

distribution Hε as a function of the amount of contamination ε.

training sample, can never have an error rate smaller than ERopt. Hence, nega-

tive values of the influence function are excluded. From the well known property

that E[IF((x, y); ER,Hm)] = 0 (Hampel et al 1986, page 84), it follows then that

IF((x, y); ER,Hm) ≡ 0 (3.3)

almost surely, as will be proven formally in Proposition 2. According to (3.2),

the behavior of the error rate under small amounts of contamination needs then

to be characterized by the second order influence function IF2. It is clear from

Figure 3.1 that this second order influence function should be non-negative ev-

erywhere.

In the next proposition, we derive the second order influence function for

the error rate. The obtained expression depends on population quantities, and

on the influence functions of the location and scatter functionals used. At a p-

dimensional distribution F , these influence functions are denoted by IF(x;T, F )

and IF(x;C,F ). We will need to evaluate them at the normal distributions Hj ∼
N(µj,Σ). For the functionals associated with sample averages and covariances

we have IF(x;T,Hj) = x−µj and IF(x;C,Hj) = (x−µj)(x−µj)
t −Σ. Influence

functions for several robust location and scatter functionals have been computed

in the literature: we will use the expressions of Croux and Haesbroeck (1999)

for the Minimum Covariance Determinant (MCD) estimator, and of Lopuhaä
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(1989) for S-estimators. In this paper, we use the 25% breakdown point versions

of these estimators, with a Tukey Biweight loss function for the S-estimator.

The error rate of the Fisher discriminant procedure is invariant under an affine

transformation. Hence, we may assume without loss of generality that we work

at a canonical model distribution, verifying

(M’) For j = 1, 2, X|Y = j follows a distribution Hj ≡ N(µj , Ip), with

µ1 = (−∆/2, 0, . . . , 0)t, and µ2 = −µ1.

Proposition 2 For g = 2 groups, and at the canonical model distribution Hm

verifying (M’), the influence function of the error rate of the Fisher discriminant

rule based on affine equivariant location and scatter functionals T and C is zero,

and the second order influence function equals

IF2((x, y); ER,Hm) = π1φ

(

θ

∆
− ∆

2

)

∆
{[ IF((x, y);A,Hm)

∆
−

θet1
IF((x, y);B,Hm)

∆2

]2
+

IF((x, y);B,Hm)t

∆

[

Ip − e1e
t
1

] IF((x, y);B,Hm)

∆

}

(3.4)

with A and B the functionals defined in (2.5) and (2.6), ∆ is defined in (2.8),

θ = log(π2/π1), and e1 = (1, 0, . . . , 0)t is the first canonical vector. Furthermore,

the influence functions of A and B are given by

IF((x, y);B,Hm) = −∆IF(x;C,Hy)e1 +
δy,2 − δy,1

πy
IF(x;T,Hy) (3.5)

and

IF((x, y);A,Hm) = − ∆

2πy
et1IF(x;T,Hy) +

δy,2 − δy,1

πy
, (3.6)

with δy,j the Kronecker symbol (so δy,j = 1 for y = j and zero for y 6= j).

From the expressions above, one can see that the influence of an observa-

tion is bounded as soon as the IF of the location and scatter functionals are

bounded. The MCD- and S-estimators have bounded influence functions, yield-

ing a bounded IF2(·; ER,Hm). Also note that the smaller πy, the larger IF2 will

be, simply meaning that the effect of an observation is larger in the group with

the smaller sample size. In Figure 3.2, we plot the IF2 as a function of x, for the

two possible values of y, with p = 1, ∆ = 1 and π1 = π2 = 0.5. The IF2 are plot-

ted for Fisher discriminant analysis using the classical estimators, the MCD, and
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Figure 3.2: Second order influence function of the error rate at the canonical model

Hm with π1 = π2, ∆ = 1, and for p = 1 using the classical estimators (top right), the

MCD (bottom left), and S-estimator (bottom right). The solid curve gives IF2 for an

observation with y = 1, the dotted line for y = 2. The top left figures shows the densities

of X |Y = 1 and X |Y = 2.

the S-estimator. Note that IF2 is non-negative everywhere, since contamination

in the training sample may only increase the error rate, given that we work with

an optimal classification rule at the model.

From Figure 3.2, we see that outlying observations may have an unbounded

influence on the error rate of the classical procedure. The MCD yields a bounded

IF2, but we see that it is more vulnerable to inliers, as is perceived by the high

peaks quite near the population centers. The S-based discriminant procedure is

doing much better in this respect, having a much smaller value for the maximum

influence (the so-called “gross-error sensitivity”). Moreover, its IF2 is smooth
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and has no jumps. Notice that extreme outliers still have a positive bounded

influence on the error rate of the robust methods, even though we know that both

the MCD and S location and scatter estimators have a redescending influence

function. This is because an extreme outlier still has a (small) effect on the

estimators of the group probabilities appearing in the first term of (2.6), and

resulting in the constant term in equation (3.6), the only contribution to the IF

for extreme outliers. In the next section we will use IF2 to compute classification

efficiencies.

4. Asymptotic Relative Classification Efficiencies

At finite samples, discrimination rules are estimated from a training sample,

resulting in an error rate ERn. This error rate depends on the sample, and

gives the total probability of misclassification when working with an estimated

discriminant rule. When training data are from the model Hm, the expected loss

in classification performance is

Lossn = EHm
[ERn − ERopt]. (4.1)

This is a measure of our expected regret, in terms of increased error rate, due to

the use of an estimated discrimination procedure instead of the optimal one (see

Efron 1975), the latter being defined at the population level. The larger the size of

the training sample, the more information available for accurate discrimination,

and the closer the error rate will be to the optimal one. Efron (1975, Theorem 1)

showed that the expected loss decreases to zero at a rate of 1/n. Efron (1975)

did not use influence functions, but in the following proposition we show how the

expected value of the second order influence function is related to the expected

loss. Some standard regularity conditions on the location/scatter estimators are

needed and stated at the beginning of the proof in the Appendix.

Proposition 3 At the model distribution Hm, we have that the expected loss in

error rate of an estimated optimal discriminant rule verifies

Lossn =
1

2n
EHm

[IF2((X,Y ); ER,Hm)] + op(n
−1). (4.2)

The Asymptotic Loss is then defined as

A-Loss = lim
n→∞

nLossn =
1

2
EHm

[IF2((X,Y ); ER,Hm)], (4.3)
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and we write

ERn ≈ ERopt +
A-Loss

n
,

corresponding to (3.2) with ε = 1/
√
n. Efron (1975) proposed to compare the

classification performance of two estimators by computing Asymptotic Relative

Classification Efficiencies (ARCE). In this paper, we will compare the loss in

expected error rate using the classical procedure, Loss(Cl), with the loss of the

robust Fisher’s discriminant analysis, Loss(Robust). The ARCE of the robust

with respect to classical Fisher’s discriminant analysis is then

ARCE(Robust,Cl) =
A-Loss(Cl)

A-Loss(Robust)
. (4.4)

An explicit expression for the ARCE can be obtained at the model distribution.

Since the error rate is invariant w.r.t. affine transformations, we may suppose

w.l.o.g. that Hm is a canonical model distribution.

Proposition 4 For g = 2 groups and at Hm satisfying (M), we have that the

asymptotic loss of Fisher’s discriminant analysis based on the location and scatter

measures T and C is given by

A-Loss =
φ(θ/∆ − ∆/2)

2π2∆

{

(

p− 1 +
∆2

4
+
θ2

∆2
+ (π1 − π2)θ

)

ASV (T1)

+(p− 1)∆2 π1π2ASV (C12) + θ2π1π2ASV (C11) + 1
}

(4.5)

with ∆ = µ2−µ1 and θ = log(π2/π1). Here, ASV(T1), ASV(C12), and ASV(C11)

stand for the asymptotic variance of, respectively, a component of T , an off-

diagonal element of C, and a diagonal element of C, all evaluated at N(0, Ip).

Computing expression (4.5) for both the robust and the classical procedure yields

the ARCE in (4.4). We will compute the ARCE for S-estimators and for the

Reweighted MCD-estimator (RMCD), both with 25% breakdown point. Note

that it is common to perform a reweighting step for the MCD, in order to im-

prove its efficiency. Asymptotic variances for the S- and RMCD-estimator are

reported in Croux and Haesbroeck (1999). From Figure 4.3, we see how the

ARCE varies with ∆ and with the log-odds ratio θ, for p = 2. First we note that

the ARCE of both robust procedures is quite high, where the S-based method
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Figure 4.3: The asymptotic relative classification efficiency of Fisher’s discriminant rule

based on RMCD and S w.r.t. the classical method, for p = 2, as a function of ∆ (left

figure, for θ = 0) and as a function of θ (right figure, for ∆ = 1).

is the more efficient. Both robust discriminant rules lose some classification ef-

ficiency when the distance between the population centers increases, and this

loss is more pronounced for the RMCD-estimator. On the other hand, the effect

of θ on the ARCE is very limited; changing the group proportions has almost

no effect on the relative performance of the different discriminant methods we

considered.

Plotting the ARCE for other values of p gives similar results, but the curves

become flatter with increasing dimension. The Asymptotic Loss, as can be seen

from (4.5), is increasing in p, meaning that there is more loss in error rate when

more variables are present. In Figure 4.4 we plot the values of A-Loss for the

classical, S-, and RMCD-based Fisher discriminant procedure, for p = 5. First

of all we notice that all curves are close to each other, hence the ARCEs will be

quite high. As expected, the loss of RMCD is a bit larger as for S, while the loss

for the classical method is smallest. From the left panel of Figure 4.4 we see that

the loss in error decreases quickly in ∆. Indeed, for ∆ large, it will be easy to

discriminate between the two groups, while for ∆ close to zero, the 2 groups are

almost impossible to distinguish. From the right panel of Figure 4.4 it follows

that the A-Loss is decreasing in θ. The more disproportional the 2 groups are,

the more easy to be close to the optimal error rate. Indeed, in the limiting case of

an empty group, every discriminant rule allocating any observation to the largest
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Figure 4.4: The asymptotic loss of Fisher’s discriminant analysis based on the classical

(solid line), the S (dashed line) and the RMCD (dashed-dotted line) estimators, for

p = 5, as a function of ∆ (left figure, for θ = 0) and as a function of θ (right figure, for

∆ = 1).

group will yield an error rate close to 0.

5. Simulations

In a first simulation experiment we show that the derived ARCE of Section 4

are confirmed by finite sample results. Afterwards, we present a simulation ex-

periment for the three group case. As before, we will compare three different

versions of Fisher’s discrimination method: using the classical method, where

sample averages and covariance matrices are used in (1.1) and (1.2), and the

methods using RMCD and S-estimators. The latter are computed using the fast

algorithms of Rousseeuw and Van Driessen (1999) for the RMCD, and Salibian-

Barrera and Yohai (2005) for the S-estimator.

In a first simulation setting we generate m = 1000 training samples of size

n according to a mixture of two normal distributions. We set π1 = π2 = 0.5,

µ2 = (1
2 , 0, . . . , 0) = −µ1, and Σ = Ip. For every training sample, we compute

the discriminant rule and denote the associated error rate by ERk
n, for k =

1, . . . ,m. Since we know the true distribution of the data to classify, ERk
n can

be estimated without any significant error by generating a test sample from the

model distribution of size 100000, and computing the empirical frequency of

misclassified observations over this test sample. The model distribution satisfies
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condition (M), and we compute the optimal error rate as in (2.7). The expected

loss in error rate is approximated by the Monte Carlo average

Lossn =
1

m

m
∑

k=1

ERk
n − ERopt = ERn − ERopt. (5.1)

The finite sample relative classification efficiency of the robust method with

respect to the classical procedure is defined as

RCEn(Robust,Cl) =
Lossn(Cl)

Lossn(Robust)
, (5.2)

and estimated via Monte Carlo by Lossn(Cl)/Lossn(Robust). In Table 5.1 these

efficiencies are reported for different training sample sizes for dimensions p = 2

and p = 5, and for the RMCD- and the S-estimator as robust estimators. We

also added the ARCE, using formula (4.5), in the row “n = ∞”. Standard errors

around the reported results have been computed and are between 0.01% and

0.08% for the ERn, and around 0.05 for the RCEn.

Let us first consider the average error rates, in the most right columns of

Table 5.1. The ERn decrease monotonically with the training sample size to

ERopt. The loss in error rate is always the smallest for the classical procedure,

closely followed by the S, while the RMCD looses some more. This observation

confirms Figure 4.4. The same pattern arises for p = 5, where the error rates are

slightly larger as for p = 2. While for n = 50 the difference with ERopt is about

2%, it is around 1% and 0.5% for n = 100, respectively n = 200. This illustrates

the order n−1 convergence rate of Lossn, see Proposition 3.

The left columns of Table 5.1 present the finite sample efficiencies, which

turn out to be very close to the asymptotic ones. Hence the ARCE is shown to

be a representative measure of the relative performance of two classifiers at finite

samples. Only for the RMCD the convergence is slower for p = 5. The RCEn of

both robust procedures are very high, confirming that the loss in classification

performance with respect to the classical Fisher rule is limited, as we could also

see from Figure 4.3. Note in particular the high classification efficiency for the

S-estimator, also at finite samples.

In a second simulation experiment, we simulate data coming from 3 dif-

ferent groups, according to a normal model H∗
m with µ1 = (1, 0, . . . , 0)t, µ2 =
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Table 5.1: Simulated finite sample relative classification efficiencies, together with aver-

age error rates in percentages, for RMCD- and S-based discriminant analysis, for several

values of n and for p = 2, 5. Results are for g = 2 groups, and ∆ = 1.

Relative Efficiencies Error rates

RCEn(Cl,·) ERn(·)
n RMCD S Cl RMCD S

p=2 50 0.857 0.987 32.72 33.04 32.76

100 0.893 0.975 31.79 31.91 31.82

200 0.906 0.971 31.41 31.32 31.31

∞ 0.878 0.938 30.85 30.85 30.85

p=5 50 0.798 0.998 33.01 33.55 33.01

100 0.832 0.989 31.93 32.15 31.94

200 0.887 0.994 31.39 31.45 31.39

∞ 0.922 0.978 30.85 30.85 30.85

(−1
2 ,

√
3

2 , 0, . . . , 0)
t, µ3 = (−1

2 ,−
√

3
2 , 0, . . . , 0)

t, Σ = Ip, and π1 = π2 = π3. Since

H∗
m satisfies (M), Fisher discriminant analysis will be optimal with error rate

given by (2.3). In this stylized setting, it is not difficult to derive that

ER(H∗
m) = 1 + Φ(1) − 2

∫ ∞

−1
Φ(

√
3(z + 1))dΦ(z).

We can simulate values for the finite sample relative classification efficiencies but

we do not have an expression for the A-loss in the 3 group case, hence asymptotic

efficiencies are not available. From Table 5.2 we see that the error rates converge

quite quickly to ERopt, for the three considered methods. Clearly, the loss in

error rate is more important for the higher dimensions. By looking at the values

of the RCEn, the very high efficiency of the S-based procedure is revealed, while

the RMCD also performs well. We also see that the finite sample efficiencies are

quite stable over the different sample sizes.

The simulation studies confirm that the loss in classification performance

when using a robust version of the Fisher discriminant rule remains limited at

the model distribution. But if outliers are present, then the robust method

completely outperforms, in terms of better error rate, the classical Fisher rule, as

was already shown in several simulation studies (e.g. He and Fung 2000, Hubert
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Table 5.2: Simulated finite sample relative classification efficiencies, together with aver-

age error rates in percentages, for RMCD- and S-based discriminant analysis, for several

values of n and for p = 2, 5. Results for a setting with g = 3 groups.

Relative Efficiencies Error rates

RCEn(Cl,·) ERn(·)
n RMCD S Cl RMCD S

p=2 50 0.879 0.998 32.48 32.77 32.48

100 0.863 0.989 31.41 31.58 31.42

200 0.890 0.986 30.90 30.96 30.90

∞ 30.35 30.35 30.35

p=5 100 0.876 0.969 35.53 36.27 35.70

200 0.861 0.965 33.88 34.45 34.01

∞ 30.35 30.35 30.35

and Van Driessen 2004, Filzmoser et al 2006 for the multiple group case).

6. Conclusions

This paper studies classification efficiencies of Fisher’s linear discriminant

analysis, where the centers and covariances appearing in the population discrim-

inant rule can be estimated by their sample counterparts, or by plugging in robust

estimates. Asymptotic relative classification efficiencies were computed, and it

was shown that they can be computed by taking the expected value or the second

order influence functions for the error rate E[IF2]. We found this result surpris-

ing, since for computing asymptotic variances of an estimator, one computes the

expected value of the squared first order influence function of the estimator, i.e.

E[IF2] (see Hampel et al 1986, page 85, or Pires and Branco 2002 for multiple

populations).

A comparison of asymptotic variances of two estimators requires that both

are consistent. Similarly, discriminant rules need to have error rates converg-

ing to the optimal error rate before we can compute their ARCE. In particular,

the inclusion of a penalty term in (1.2) is necessary. This requires that the

group probabilities (i) are estimated from the training data under a prospective

sampling scheme, or (ii) are correctly specified by the prior probabilities. The
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calculations in this paper were made according to (i), but similar results can

be derived if (ii) holds. Most papers on influence in discriminant analysis (e.g.

Critchley and Vitiello 1991, Croux and Dehon 2001) assume that the prior prob-

abilities are equal, leading to a simple expression for the error rate, i.e. Φ(−∆/2),

but also to non-optimal discriminant rules at the normal model. In Section 3 we

showed that the IF of the error rate of an optimal discriminant rule vanishes, and

that second order influence functions are needed. Previous work on influence in

linear discriminant analysis has not given any attention to the different behavior

of optimal (where the influence function vanishes, and the IF2 is appropriate)

and non-optimal discriminant rules (where the usual IF can be used).

The expressions for IF2 derived in Section 3 could be used for detecting obser-

vations that are highly influential on the error rate of the discriminant procedure.

We refer to Croux and Joossens (2005) who discuss a robust influence function

based procedure for constructing robust diagnostics in quadratic discriminant

analysis (but for non-optimal rules). Another approach for diagnosing influen-

tial observations on the probability of misclassification in discriminant analysis

is taken by Fung, both for the two group case (Fung 1992) and the multiple

group case (Fung 1995, 1996). In these papers there is no formal computation

of an IF, but the influence of an observation in the training data on the error

rate is measured using the leave-one-out principle, leading to case-wise deletion

diagnostics. This approach is recommendable for diagnosing the classical Fisher

discriminant rule. A case-wise deletion approach, however, does not allow to

compute the asymptotic relative classification efficiencies, as we did in Section 5.

Relative asymptotic classification efficiencies could in principle also be com-

puted for more than two groups. But in the general case, expression (2.3) for

the error rate is analytically intractable. It was shown by Fung (1995) that (2.3)

equals a (p− 1) dimensional multinormal integral. Bull and Donner (1987) com-

puted the ARCE of multinomial regression with respect to classical multi-group

Fisher discriminant analysis, by making the assumption of collinear population

centers. Under the same stringent assumption of collinear population means, it

is also possible to obtain expressions for IF2 and for ARCE in the multi-group

case, along the same lines as for the two-group case.

Acknowledgment



18 Christophe Croux, Peter Filzmoser and Kristel Joossens

We would like to thank the Associate Editor and referees for their helpful

and constructive comments. This research has been supported by the Research

Fund K.U. Leuven and the “Fonds voor Wetenschappelijk Onderzoek”-Flanders

(Contract number G.0385.03).

Appendix

Proof of Proposition 2: We fix (x, y) and denote Hε = (1 − ε)Hm + ε∆(x,y),

where Hm has the canonical form (M’). Aim is to compute the first two deriva-

tives of ER(Hε) from (2.4). We introduce the functionals E = A(B tB)−1/2 and

F = B(BtB)−1/2, where we drop the dependency on H. We have E(Hm) = θ/∆,

F (Hm) = e1, A(Hm) = θ and B(Hm) = ∆e1. We use the shorthand notation

IF(·) = IF((x, y); ·,Hm). By straightforward derivation we get

IF(E) = IF(A)/∆ − θet
1IF(B)/∆2 and IF(F ) = (Ip − e1e

t
1)IF(B)/∆. (A.1)

By definition of F , we have F t(Hε)F (Hε) = 1 for all ε, from which it follows

IF(F )te1 = 0 and IF2(F )te1 = −IF(F )tIF(F ) = − IF(B)t

∆
(I − e1e

t
1)

IF(B)

∆
,

(A.2)

where we used (A.1) for the last equality. A trivial, but important equality is

π1φ(
θ

∆
− ∆

2
) = π2φ(− θ

∆
− ∆

2
) (A.3)

The equality is valid for optimal discriminant functions only. Together with the

first equation of (A.2), the above property ensures that

IF(ER)= π1φ(
θ

∆
− ∆

2
)(IF(E) + µt

1IF(F )) + π2φ(− θ

∆
− ∆

2
)(−IF(E) − µt

2IF(F ))

= −∆π1φ(
θ

∆
− ∆

2
)IF(F )te1 = 0

The second order derivative of ER(Hε) at ε = 0 equals

π1φ
′(
θ

∆
− ∆

2
)[IF(E) + µt

1IF(F )]2 + π2φ
′(− θ

∆
− ∆

2
)[−IF(E) − µt

2IF(F )]2

+π1φ(
θ

∆
− ∆

2
)[IF2(E) + IF2(F )tµ1] + π2φ(− θ

∆
− ∆

2
)[−IF2(E) − IF2(F )tµ2]

Since φ′(u) = −uφ(u), together with the first equality of (A.2) and (A.3), the

above equation reduces to

π1φ(θ/∆ − ∆/2)
(

∆IF(E)2 − ∆IF2(F )te1
)
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The above expression together with (A.1) results in (3.4).

For obtaining formulas (3.5) and (3.6) one should evaluate (2.5) and (2.6)

in Hε and compute the derivative at ε = 0. Some care needs to be taken here.

Since the group probabilities are estimated, one gets a term πj(Hε) = (1−ε)πj +

εδjy, for j = 1, 2. Also, it can be verified that the contaminated conditional

distributions have the form Hj,ε = (1 − ψyj(ε))Hj + ψyj(ε)∆x, where ψyj(ε) =

εδyj/πj(Hε), for j = 1, 2. Hence

IF((x, y);Tj ,Hm) = IF(x;T,Hj)
∂

∂ε
ψyj(ε)∣

∣

ε = 0

= IF(x;T,Hy)
δyj

πj

for j = 1, 2. Similarly, one derives from (2.1) that IF((x, y);W,Hm) = IF(x;C,Hy).

With these ingredients, it is easy to obtain (3.5) and (3.6). 2

Proof of Proposition 3: Collect the estimates of location and scatter being

used to construct the discriminant rule in a vector θ̂n and denote Θ the cor-

responding functional. Suppose that IF((X,Y );Θ,Hm) exists and that θ̂n is

consistent and asymptotically normal with

lim
n→∞

nCov(θ̂) = ASV (θ̂n) = EHm
[IF((X,Y );Θ,Hm)IF((X,Y );Θ,Hm)t]. (A.4)

Evaluating (2.3) at the empirical distribution function H = Hn, gives ERn =

ER(Hn) = g(θ̂n), for a certain (complicated) function g. Denote θ0 the true

parameter, for which g(θ0) = ERopt. Since θ0 corresponds to a minimum of g,

the derivative of g evaluated at θ0 equals zero. A Taylor expansion of g around

θ0 yields then

ERn = ERopt +
1

2
(θ̂n − θ0)

tHg(θ̂n − θ0) + op(‖θ̂n − θ0‖2),

with Hg the Hessian matrix of g at θ0. It follows that

nE[ERn − ERopt] =
1

2
E[

(

n1/2(θ̂n − θ0)
)t
Hg

(

n1/2(θ̂n − θ0)
)

] + op(1)

=
1

2
Hg traceE[

(

n1/2(θ̂n − θ0)
) (

n1/2(θ̂n − θ0)
)t

] + op(1)

=
1

2
Hg trace /ASV (θ̂n) + op(1).

From (A.4) and definition (5.1) we have then

Lossn =
1

2n
Hgtrace

(

EHm
[IF((X,Y );Θ,Hm)IF((X,Y );Θ,Hm)t]

)

+ op(n
−1).

(A.5)
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On the other hand, at the level of the functional it holds that ER ≡ g(Θ),

and definition (3.1) and the chain rule imply

IF2((x, y); ER,Hm) = IF((x, y);Θ,Hm)tHgIF((x, y);Θ,Hm)

since Θ(Hm) = θ0 and the derivative of g at θ0 vanishes. Using trace properties,

we get

E[IF2((x, y); ER,Hm)] = Hgtrace
(

EHm
[IF((X,Y );Θ,Hm)IF((X,Y );Θ,Hm)t]

)

.

(A.6)

Combining (A.5) and (A.6) yields the result (4.2) of Proposition 3. 2

Proof of Proposition 4: Without loss of generality, suppose that (M’) holds.

We write the second order influence function of the error rate in (3.4) as

π1∆φ
( θ

∆
− ∆

2

){[ IF(A)

∆
− θ

∆

et1IF(B)

∆

]2
+

p
∑

k=2

[etkIF(B)

∆

]2}

, (A.7)

with e1, . . . , ep the canonical basis vectors. Using obvious notations and (A.4), we

have ASV (A) = E[IF(A)2], for k = 1, . . . , p, ASV (Bk) = etkE[IF(B)IF(B)t]ek,

and the asymptotic covariance ASC(A,B1) = et1E[IF(B)IF(A)]. By a symmetry

argument, ASV (B2) = . . . = ASV (Bp). Taking the expected value of (A.7) gives

then

π1

∆
φ
( θ

∆
− ∆

2

)

{ASV (A) − 2θ

∆
ASC(A,B1) +

θ2

∆2
ASV (B1) + (p− 1)ASV (B2)}.

(A.8)

The asymptotic variances and covariances are computed using (A.4), for example

ASV (A) = EHm
[IF 2((X,Y );A;Hm)]. When taking expected values, Y should

be considered as a random variable, e.g. EHm
[1/πY ] = 1/(π1π2). From (3.5) and

(3.6) it follows, after tedious calculation that

ASV (A) = ((∆/2)2 ASV (T1) + 1)/(π1π2)

ASV (B1) = ASV (T1)/(π1π2) + ∆2ASV (C11)

ASC(A,B1) = −∆(π1 − π2)ASV (T1)/(2π1π2)

ASV (B2) = ∆2ASV (C12) +ASV (T1)/(π1π2).

Note that, due to translation invariance of the asymptotic variance of the location

function T , we have that ASV (T1) = EHm
[IF 2(X;T,HY )] equals

π1EH1
[IF 2(X;T,H1)] + π2EH2

[IF 2(X;T,H2)] = EH0
[IF 2(X;T,H0)],
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where H0 ≡ N(0, Ip). Hence, all 3 expected values in the above equation are

the same. The same argument holds for C12 and C11. Inserting the obtained

expressions for the asymptotic (co)variances in (A.8) results in (4.5). 2
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