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Robust continuum regression

Abstract

Several applications of continuum regression to non-contaminated data

have shown that a significant improvement in predictive power can be obtained

compared to the three standard techniques which it encompasses (Ordinary

least Squares, Principal Component Regression and Partial Least Squares).

For contaminated data continuum regression may yield aberrant estimates due

to its non-robustness with respect to outliers. Also for data originating from

a distribution which significantly differs from the normal distribution, con-

tinuum regression may yield very inefficient estimates. In the current paper,

robust continuum regression (RCR) is proposed. To construct the estimator,

an algorithm based on projection pursuit is proposed. The robustness and

good efficiency properties of RCR are shown by means of a simulation study.

An application to an X-ray fluorescence analysis of hydrometallurgical sam-

ples illustrates the method’s applicability in practice.

Keywords: Continuum regression (CR), Projection Pursuit, Robust contin-

uum regression (RCR), Robust multivariate calibration.

1 Introduction

Parametric statistics has been developed as a science which endeavors to proffer ap-

plied scientists the ability to draw conclusive inference from data. The methodology
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is based upon the random nature of the samples one has at disposition, combined

with some assumptions made beforehand. These assumptions nearly always encom-

pass the assertion that the data be drawn from a specified type of distributions, often

taken to be the class of normal distributions. This order of proceeding has over the

last century been successful in sundry practical applications, albeit the probability

that the data have exactly been originated by the distribution assumed, is close to

zero. From this insight a new branch of the statistical sciences has emerged, robust

statistics. In robust statistics, one develops methods that take into account that

the true data generating distribution is not necessarily equal to the imposed model

distribution. In particular, robust methods can cope with the presence of outliers,

being observations that are not all generated by the model. As in many practical

applications the statistical model assumptions are violated, such that the ensuing

inference becomes unreliable, robust statistics has become a mainstay in any field

of applied sciences where one expects not to have enough control over the process

of data generation. Chemometrics is no exception when regarding its vulnerability

to possible erroneous or outlying observations.

A problem frequently addressed in applied sciences is the prediction of a de-

pendent variable based on a linear model. Ever since Gauß [1] first touched this

subject, adaptations and new estimation procedures have been designed. A spe-

cial case frequently occurring in chemometrics consists of an ill-conditioned problem

where the number of samples at hand is vastly exceeded by the number of explica-
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tory variables, some of which may be correlated as well, so that the least squares

regression estimates become unstable or do not even exist. In order to remediate

these problems, various techniques have been proposed, all of which try to reduce

the number of variables by compressing the data into a smaller set of uncorrelated,

so-called latent, variables. A major question arising whilst applying this methodol-

ogy, is how these latent variables should be defined, such that an optimal prediction

of the dependent variable from these latent variables is obtained. For example, in

principal component regression (PCR) the latent variables are linear combinations

of the predictor variables having maximal variance. Another possibility is to perform

partial least squares (PLS) [2], which constructs latent variables maximizing their

covariance with the predictand, and one can expect this method to be better fit for

prediction than PCR which constructs latent variables regardless of the predictand.

Envisaging the necessity of a more general objective function, Stone and Brooks [3]

proposed a joint maximization criterion called continuum regression (CR), which

encompassed the before mentioned latent variables regression techniques as well as

ordinary least squares regression. In continuum regression, a parameter δ (belonging

to the interval [0, 1]) needs to be chosen or selected by cross-validation enabling one

to decide which value of δ is best for the data at hand. Most values of δ do not

correspond to existing methods, and justify the existence of continuum regression in

its own right. Continuum regression only reduces to Ordinary Least Squares (OLS),

PLS and PCR if δ equals 0, 0.5 or 1, respectively. Sundry practical applications

in varying fields of science have shown that the application of continuum regres-
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sion indeed improves prediction compared to the methods that existed before (see

e.g. [4, 5, 6]).

It is thus the main purpose of this paper, to provide a robust version of the con-

tinuum regression framework. We will directly robustify the criterion which defines

continuum regression by using robust estimators of variance and covariance. This

framework provides the possibility to define a plethora of different robust contin-

uum regression estimators, depending on which robust estimators of variance and

covariance have been plugged into the criterion. In the current paper, we propose

an algorithm to compute robust continuum regression estimators. As robust esti-

mator of variance, we focus on the trimmed variance, being simple to compute and

combining good robustness and efficiency properties. For similar reasons, trimmed

sample covariances will estimate the covariance. We will show both by a simulation

study and a practical application, that the robust continuum regression estimator

we propose, is a valuable alternative for the existing robust estimation methods.

2 Definition of classical and robust continuum re-

gression

Continuum regression was proposed by [3] as a unified regression technique embrac-

ing ordinary least squares, partial least squares and principal component regression.

Let X be a centred data matrix with n rows, containing the observations, and

p columns, containing the predictor variables. Let y be a column vector containing
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the n observations of the response variable. Continuum regression is basically a

technique to estimate the vector of regression coefficients β in the linear model

y = Xβ + ε (1)

with an error term ε. As mentioned in the introduction, instead of directly solving

(1), a latent variable model

y = T hξ + ε (2)

is considered, with the so-called score matrix T h = XW h and W h = (w1, . . . , wh)

being a p × h matrix of weights. The score matrix T h contains the values of the

h latent variables in its columns. Since h will typically be much smaller than p,

the dimensionality of the regression problem is greatly reduced. The continuum

regression weight vectors wi (i = 1, . . . , h) are defined as proposed by [3], according

to the criterion

wi = argmax
a

{
Cov(Xa, y)2Var(Xa)

δ
1−δ

−1
}

(3a)

under the constraints that

‖ wi ‖= 1 and Cov(Xwi,Xwj) = 0 for j < i. (3b)

The parameter δ takes values between 0 and 1, and it adjusts the amount of infor-

mation of the x-part to be considered for predicting the y-part. It is now easy to

see from (3a) that we recover for δ = 0, 0.5, 1 the well-known methods OLS, PLS

and PCR, respectively.
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In the criterion (3a), the abbreviations “Cov” and “Var” stand for the estimated

covariance and variance, respectively. In classical continuum regression the usual

sample covariance and variance estimators are used. But for robust continuum

regression a robust estimator of covariance and variance needs to be used. Note

that the covariance is only computed between two univariate variables, allowing for

the use of simple robust covariance estimators, like a trimmed sample covariance.

The goal of continuum regression is to estimate the regression coefficients β in

(1). In classical continuum regression the maximization problem (3) is either solved

analytically which leads to a complex and inefficient algorithm, or approximated by

a method called continuum power regression (CPR) [7], where a specific choice of

δ and the dimension h has to be made. Then the parameter ξ in the model (2) is

determined by ordinary least squares estimation, yielding

ξ̂
CPR

δ,h = (T T
h T h)

−1T T
h y.

Since ŷCPR
δ,h = XW hξ̂

CPR

δ,h , estimates for the regression coefficients β are given by

β̂
CPR

δ,h = W h(T
T
h T h)

−1T T
h y (4)

for given values of δ and h. In the robust case, the estimation of the regression

coefficients has to be done in a robust manner, and will be outlined in the next

Section. A remaining important question to address is how the optimal values for

δ and h can be determined. We will touch this important aspect of continuum

regression modeling in Section 4.
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3 Algorithm

3.1 Continuum regression by projection pursuit (CR-PP)

In the current section we will focus on how to compute robust continuum regression

for given values of δ and h. In the case of classical continuum regression, an ana-

lytical solution to the maximization problem can be obtained. In the case of robust

continuum regression, the latter is impossible. We decided to adopt the approach

of projection pursuit. Projection pursuit (PP) as such has been initially proposed

in 1974 ( [8]) in order to reveal some relevant directions in an arbitrary data set; it

has thenceforth been applied to a myriad of statistical problems (see e.g. [9]). PP

has been particularly successful in the context of the construction of multivariate

robust estimators such as a robust PP estimate of the scatter matrix [9], principal

component analysis [10,11,12] and canonical correlation analysis [13].

Projection pursuit can be applied whenever the estimator to be constructed is

defined by maximizing over all possible directions in the p dimensional space of a

criterion computed solely from the data projected onto each direction, the projected

data being one dimensional. Hence, as can be seen from (3a), PP can be applied

to compute the weighting vectors in continuum regression. Note that a direction

is characterized by a unit vector a, and the data projected on it are given by Xa.

To sumarize, projection pursuit comes down to scanning all possible directions and

computing an estimate of the criterion to be maximized for each direction. The

direction which yields the maximal value for the criterion is the solution to the
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maximization problem. When all possible directions are thus scanned, the solution

obtained is exact. However, in practice, only a limited number of directions can

be considered, so that the final solution obtained is only an approximation. Not

only the accuracy of the solution obtained, but also the computation time required

strongly depends on the number k of directions scanned. As it is very unlikely that

the maximum should be found in a direction of the p dimensional space where no

data are present, we propose to construct the k directions (k ≥ n) to be considered

as k arbitrary linear combinations of the data points at hand (the first n directions

being the directions given by the n observations available).

As an illustration, the regression coefficients estimated by our projection pursuit

algorithm (using the classical sample covariance and variance and for δ = 0.5) for the

first 24 observations of the (mean-centered) “Fearn” data [14] have been computed.

Here and elsewhere in the article, computations were carried out in the Octave pro-

gramming environment (University of Wisconsin, USA)1. The estimates obtained

by our projection pursuit algorithm are compared in Table 1 to the SIMPLS [15]

regression coefficients, corresponding to the exact solution when using the standard

sample variance and covariance in the criterion. The numerical values obtained for

both estimates are very similar indicating that the approximation is satisfactory.

One might object to this statement that a relative difference of about ten percent

can be observed, but in fact the main goal of any regression technique is prediction,

which does not deteriorate when approximation errors of this order of magnitude

1The Octave m-files can be obtained upon request from the corresponding author.
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affect the regression coefficients. An interesting question to address is in which case

Table 1: Regression coefficients of CR-PP (δ = 0.5) compared to the SIMPLS

regression for the Fearn data, 104 generated directions.

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

CR-PP

0.0039 0.0137 -0.0489 -0.0252 0.0021 0.0281

0.0039 0.0417 0.1397 0.1287 0.0082 0.0017

0.0041 0.0386 0.1317 0.1472 0.2459 0.2349

0.0029 -0.0190 -0.1856 -0.1888 -0.2213 -0.2404

0.0040 -0.0375 0.0098 0.0135 0.0104 0.0118

0.0017 0.0036 -0.0239 -0.0830 -0.0460 -0.0356

SIMPLS

0.0039 0.0132 -0.0430 -0.0173 0.0007 0.0281

0.0039 0.0432 0.1383 0.1291 0.0108 0.0017

0.0041 0.0401 0.1284 0.1414 0.2443 0.2349

0.0029 -0.0210 -0.1903 -0.1945 -0.2201 -0.2404

0.0040 -0.0377 0.0100 0.0140 0.0104 0.0118

0.0019 0.0035 -0.0193 -0.0800 -0.0472 -0.0356

the projection pursuit approximation might produce erroneous estimates. The con-

vergence properties of projection pursuit have been described for related estimators

(see e.g. [9, 10]) and hence we can assume similar convergence behaviour for the

projection pursuit estimator presented here, implying that erroneously approximate
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estimates will only occur in situtations where it is not viable to apply continuum

regression in se.

Although in times of increasing computational power, computation times are not a

convincing argument to opt for a certain method, robust estimators still frequently

suffer from the drawback of a high computational cost making the methods less

attractive for routine use. Hence, it is a necessary step to give the reader an idea

of the computational performance of CR-PP. For the dataset used in the previous

example, we computed the computation times of the estimator on a PC with a 2.2

GHz processor for a different number of directions constructed. The goal of Figure

1 is to show the dependency of the computation time of the method on the number

k of constructed directions. From Table 1 we concluded that k = 104 directions

results in a very good approximation of the exact solution. From Figure 1 it can be

seen that the computation time for this choice of k remains sufficiently low.

[Figure 1 about here]

Another important factor affecting the computational cost is the dimension of

the data matrix X. As heeded in the introduction, a case occurring frequently in

practice is the case where p À n. When regressors are very high-dimensional, it

is standard to carry out a data compression before the PP algorithm itself. This

is accomplished as follows: we carry out a full singular value decomposition on XT

such that:

XT = VDUT (5)
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In the case where p À n, it is well known that the matrices V and D take on the

partitioned form:

V =
(
Ṽ 0p−n

)
(6a)

and

D =




D̃

0p−n


 (6b)

Now the projection pursuit algorithm is run with the modified data matrix X̃ =

UD̃
T
, reducing the dimension of the directions to be constructed to n instead of p,

saving computational effort. The regression coefficients, identical to those computed

without prior data compression, are given by

β̂δ,h = Ṽ
˜̂
βδ,h (7)

where
˜̂
βδ,h are the regression coefficients relating X̃ and y. Including a data compres-

sion makes the method virtually independent of the dimension p of the data matrix.

It can be concluded that only at a very high number of directions k considered

the method becomes computationally intensive. Thus, CR-PP is fit for quotidian

routine applications.

3.2 Robust continuum regression by projection pursuit (RCR-

PP)

In order to obtain a robust estimate of the continuum regression vector of regression

coefficients, the only adaptation to the PP algorithm that in principle has to be
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done, is to alter the maximization criterion. This means that we evaluate Criterion

(3) with robust measures of covariance and variance at k constructed directions and

conclude that the point maximizing the criterion is the robust continuum regression

weighting vector. Note that when using robust variances and covariances it is not

possible to solve the optimization problem by a closed formula, and one needs to

resort to approximations like the PP algorithm described before.

As robust counterpart one could consider a robust estimate of the joint covari-

ance matrix of X and y and decompose this matrix into the parts needed in (3).

However, these estimates often require either n > 2p or a high computational cost.

Fortunately, we can take advantage here of the PP formulation of the problem:

one only needs to compute robust variances of univariate variables or covariances

between a pair of univariate variables. Simple robust estimators are given by an

α-trimmed covariance between Xa and y and an α-trimmed variance of Xa in

Equation (3a). Here α (0 < α < 0.5) determines the trimming proportion. The

α-trimmed covariance between two data vectors x and y with n univariate observa-

tions is defined as follows. First the trimmed means x̄α and ȳα of both data vectors

are computed by dropping the smallest and largest l observations and computing

the average of the remaining n− 2l observations, where l = [nα] + 1. (Here [k] gives

the smallest integer larger than k. The α-trimmed covariance between x and y is

then computed as

Covα(x,y) =
1

n− 2l

n−l∑

i=l+1

z(i) with zi = (xi − x̄α)(yi − ȳα) (8)

and z(1) ≤ . . . ≤ z(n) are the cross-products zi sorted from smallest to largest. The α-
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trimmed variance is obtained by setting x = y in the above formula. The parameter

α determines the robustness of the procedure: a high value for α makes the method

more robust to outliers. On the other hand, a high value of α implies that one

deviates more from the usual definition of sample variance and covariance, yielding

a loss in efficiency in the statistical sense, i.e. one may expect the estimates to be

prone to a higher variance (at least at normal models). Unless otherwise stated,

throughout the paper we took α = 0.1 as a good compromise between robustness

and efficiency.

Once the weight matrix W h is computed, we can proceed with the regression

model (2) since T h = XW h. Of course, we will not use the least squares estimator

explained in Section 2, but we perform robust multiple linear regression of y on

T h. We denote the estimated parameters by ξ̂
RCR

δ,h . In analogy to Equation (4), the

robust estimator of the regression coefficients β is obtained by β̂
RCR

δ,h = W hξ̂
RCR

δ,h .

Note that the robust regression to be performed is a robust regression of an n

vector on an n× h matrix. Since h will in practical applications be of modest size,

virtually any robust regression method can be used here. In our implementation, we

opted to use a Huber M-regression [16] estimator, but this method can be replaced

by any other robust regression method (see e.g. [17]).

A final aspect to discuss is the construction of the weighting vectors in case h > 1.

In order to comply with the second side condition of the maximization criterion (in

Equation (3b)), a deflation of the original data matrix is carried out such that the

14



estimated score vectors are uncorrelated. This is done in the usual way [2]:

Ei =

(
In −

i−1∑
j=1

t̂j t̂
T

j

t̂
T

j t̂j

)
X (9)

for i > 1. In order to obtain the weighting vector ŵi, the algorithm is run with as

inputs the deflated data matrix Ei and the response vector y.

4 Selection of the optimal δ and h

The optimal values for δ and h are usually determined by dint of cross-validation

[3]. An adapted criterion has been reported which allows to determine the optimal

δ analytically [6, 18]. However, as this is only applicable to classical continuum

regression, it will not be usable for the robust version of continuum regression we

present here and will henceforth be disregarded. For robust continuum regression,

we propose also to use cross-validation, although in a slightly modified way. Different

types of cross-validation exist. In the context of classical PLS regression, it has been

reported that the correct number of factors (optimal h) is only found by means of a

full cross-validation (i.e. leave-multiple-out cross-validation with random repeats);

simpler approaches such as leave-one-out cross-validation have been shown to over-

estimate the optimal number of factors [19]. Hence, it is obvious that also in the

case of robust continuum regression, a variant of full cross-validation should be

implemented. However, full cross-validation may lead to an erroneous estimate

in case outliers are present in the data. As in cross-validation random subsets

are selected from the data, it is highly probable that in the selected subset to be
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predicted, outliers will be present. Prediction errors for these outliers will be large,

since they are not coming from the same model being estimated by the calibration

sample. Hence, a robust cross-validation must be performed, essentially in the same

way as the classical cross-validation, except that we propose to compute a trimmed

mean squared error (MSE) as a measure to evaluate the predictive performance. For

example, a 20%-trimmed mean squared error does not take into account the largest

20% of the squared errors when computing the MSE. Note that the choice for a

trimmed variance and covariance in the criterion of RCR is in principle independent

of the choice for the trimmed mean squared error in the cross-validation procedure.

In Section 6 we will illustrate the selection procedure for δ and h on a real data set.

5 Simulation study

In the current section, we will show the robust continuum regression estimator to be

resistant against outlying observations by means of a simulation study. It would also

be possible to prove the method’s robustness properties by theoretical arguments

such as the influence function. However, even the influence function of classical

continuum regression itself has not yet been established, except in the special cases

of δ = 0 [20] and δ = 0.5 [21]. In the current paper, we will limit ourselves to show

the robustness properties of the method by simulations.

We generated a data matrix X of size n× p according to a multivariate normal

distribution with mean 0 and covariance matrix C. Without loss of generality, C is
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taken as a diagonal matrix and we selected diagonal elements {1, 1/2, . . . , 1/p}. The

matrix W h is constructed in such a way that for T h = XW h the model constraints

(3b) are fulfilled, the values for ξ in the latent regression model (2) were generated

from a uniform random distribution in [−1, 1]. All these generated matrices are

fixed for a particular simulation setup, so we work with a fixed-designed regression.

We simulate from the regression model (2) by generating m different error terms ε.

The distribution of the error terms is chosen to be

a) a standard normal distribution N(0, 1),

b) a Student’s t distribution t2 with 2 degrees of freedom,

c) the outlier generating model 0.8 ·N(0, 1) + 0.2 ·N(15, 1).

The latter distribution will be denoted by “O”, and is a typical model for extreme

shift outliers. The student t2 distribution has heavier tails than a normal distribution

and can be considered as generating moderate size outliers. The normal distribution

is the uncontaminated model distribution.

To keep the influence of ε small, we multiply the generated values by 0.1. Since

y = T hξ + ε = XW hξ + ε, (10)

we know the true regression parameter β = W hξ in the original regression model

(1), and can make a comparison with the estimated regression parameters by the

mean squared error (MSE) defined as

MSE(β̂δ,h) =
1

m

m∑
i=1

(
β − β̂

(i)

δ,h

)T (
β − β̂

(i)

δ,h

)
. (11)
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Here β̂
(i)

δ,h is the estimated vector of regression coefficients in the i-th simulation for

classical or robust CR. The number of simulation replications was m = 300.

Table 2 shows the simulation results for a situation with more variables than

observations (n = 30, p = 300). We used a model with 3 latent variables, and thus

the results were computed for h = 3. In all simulations we used a trimming constant

α = 0.1 for computing the robust covariances and variances in the objective function

of robust CR based on projection pursuit. The algorithm RCR-PP was applied by

considering k = 1000 projection directions. In general, the resulting MSEs are

Table 2: Comparison of MSE for Continuum Power Regression (CPR) and Robust

Continuum Regression with a Projection Pursuit algorithm (RCR-PP) for simulated

data of dimensions 30 × 300 with a true latent structure of h = 3. The error term

was simulated from a N(0, 1), a t2 distribution, and an extreme outlier generating

distribution O.

δ 0.1 0.25 0.5 0.75 0.9

N(0, 1)
CPR 0.084 0.083 0.061 0.045 0.047

RCR-PP 0.128 0.123 0.118 0.133 0.152

t2

CPR 0.781 0.777 0.573 0.093 0.077

RCR-PP 0.139 0.147 0.121 0.074 0.056

O
CPR 55.544 55.304 46.134 11.223 2.890

RCR-PP 1.784 1.7620 1.633 1.284 1.470
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smaller for higher values of δ. The optimal choice of δ depends on the data, and in

this simulation scheme a higher value of δ is preferable. For normally distributed

errors, the loss in MSE of RCR-PP with respect to CPR is rather limited, except

for higher values of δ where there is a price to pay for the robustness of RCR-PP.

For the t2 distribution we clearly see the advantage of the robust method over

the classical. This becomes even more visible for the outlier contamination scheme.

Note that for all considered values of δ the robust procedure performs better, and

the difference in MSE is very pronounced for the smaller values of δ. Continuum

Power Regression becomes even completely unreliable for values of δ up to 0.5.

In a next simulation we were interested in a configuration where n > p. We chose

n = 60 observations and p = 30 variables of the X matrix. The resulting MSEs are

presented in Table 3. Also for these simulated data, the value of δ should be chosen

to be larger than 0.5. In general, the results support the same conclusions as before.

This suggests that the algorithms are suitable for both situations n > p and n < p.

6 Example

In order to illustrate the methodology proposed in the current article, we show the

results of robust continuum regression applied to an X-Ray analysis of hydromet-

allurgical solutions. The data have previously been described in [22]. In order

to obtain quantitative results within a reasonable time span, PLS calibration and

quantification were successfully applied. PLS is not frequently applied to X-Ray
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Table 3: As Table 2, but now for simulated data of dimensions 60× 30 .

δ 0.1 0.25 0.5 0.75 0.9

N(0, 1)
CPR 0.145 0.130 0.039 0.034 0.034

RCR-PP 0.048 0.048 0.044 0.043 0.044

t2

CPR 2.214 1.934 0.472 0.076 0.067

RCR-PP 0.113 0.098 0.077 0.070 0.069

O
CPR 147.380 138.955 74.6269 4.060 2.414

RCR-PP 4.723 3.591 1.953 1.522 2.121

spectrometry because classical data handling, which consists of a spectral analysis

(i.e. net peak area estimation) and subsequent application of a calibration model

based on the physical properties of the (X-ray) method, yields more precise results.

However, in this case classical analysis was considered to be overly time-consuming.

We use the data matrix consisting of 22 samples as proposed by Lemberge et

al [22]. Concentrations of copper, nickel and arsenic had to be predicted. In the

current paper, we take as an example the calibration for arsenic, as the process for

the two remaining elements is analogous.

The data matrix has not been analyzed with respect to the presence of possible

outliers. However, it can be expected that two “outliers” in the statistical sense

will be present in the data, as the last two samples had on purpose been chosen

to lie slightly outside the calibration range. As outliers do not have a pernicous
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effect on calibration by RCR, it is not necessary to run an entirely robust outlier

detection technique before doing the RCR calibration. Howbeit, a computationally

fast outlier detection technique for classical Partial Least Squares (corresponding

to the central value δ = 0.5) gives an idea which value for the trimming constant

α should be chosen in calibration. As detection technique we use the Squared

Influence Diagnostic plot [21], which is based on the influence function of PLS for

each observation. In Figure 2 the SID is shown for all observations in the data set.

[Figure 2 about here]

It is observed that indeed the last two samples can be considered outlying. More-

over, one “true” outlier is also present in the data (observation 9). To give enough

safeguard against these outliers, the parameter α for computing the trimmed vari-

ances and covariances in the objective function was set equal to 0.1.

For selecting the optimal values of δ and h we proceeded as outlined in Section

4. The data will be split up in half, the first half being taken as the calibration set,

whereas the second half will be taken as the validation set. In the classical PLS

calibration, the optimal model dimensionality was estimated by means of full cross

validation and the optimal number of components was found at 4. In the robust

case, a 20% trimmed cross-validation was carried out for h ranging from 1 to 6 and

δ ranging from 0.1 up to 0.9. The (trimmed) root mean squared errors of cross

validation are shown in Figure 3.

[Figure 3 about here]
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Based on this cross-validation, we conclude that the optimal model complexity

is found at 5 latent variables and the optimal δ in this case equals 0.11.

In order to compare both approaches, we computed the PLS and RCR vectors

of regression coefficients at their respective optimal model complexities and hence

computed the predicted values for observations in the validation set (for the data

considered here, computation of the RCR regression coefficients took about 7 s). The

obtained root trimmed mean squared errors of prediction equalled 0.514 for PLS and

0.415 for RCR (computed with the PP-algorithm with k = 104), respectively, which

amounts to a relative gain of about 25% when using the robust method. The dif-

ference between the squared prediction errors turns out to be significant (using a

sign-test, being more robust than a standard t-test). Note that the two pseudo out-

liers will not be well predicted by the robust method, and are trimmed away when

computing the trimmed MSE. The robust method is meant to fit the majority of

the data well, and not the outliers. The standard PLS predictions tries to predict

all observations, and will give better predictions for the two pseudo outliers, but not

for the main part of the samples.

7 Conclusions

In the current paper we proposed a framework for robust continuum regression. Ap-

plication of robust continuum regression to contaminated data sets should combine
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the benefits of a robust calibration technique to the versatility of continuum regres-

sion. Continuum regressions allows for a better fit and more predictive power by

finding the optimal point in a continuum range of models from OLS over PLS to

PCR. Robustness and efficiency of the method have been corroborated both by a

simulation study and by an example.

We provided an algorithm based on projection pursuit, which has been shown to

be efficient in the computational sense. Even for a large number of directions to

be scanned, e.g. 104, the estimator can still be computed within a reasonable time

span. In any practical application, however, the time consuming step is the ro-

bust cross-validation phase. Computation times for cross-validation depend of the

number of iterations that is considered sufficient, as well as of the intervals of the

continuum parameter at which one wants to evaluate the estimator and of course

also of the size of the data. For spectrometric data, even moderate settings of both

tunable parameters may require computation times of about an hour.

Simulations have shown that for normally distributed data, the MSE for the robust

methods are fairly close to those obtained with the classical estimator, indicat-

ing that the RCR proposed here has a reasonable statistical efficiency. Analogous

simulations for non-normal data, including data containing outliers, yielded a vast

decrease in Mean Squared Error for the robust approach compared to its classical

techniques, leading to the conclusion that the methodology proposed here is indeed

robust.

RCR is proposed as a continuum regression framework of which the estimator
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corresponding to δ = 0.5 is a new robust partial least squares estimator. Howbeit,

the goal of the current paper was not to design a new robust PLS estimator, albeit

the latter is an implicit consequence. One can expect that a technique which has

specifically been designed as a robust PLS technique, should yield better results

than RCR. This disadvantage is compensated for by the fact that RCR is more

versatile and allows to vary δ. In any practical analysis where the optimal δ does

not equal 0.5, such as in the practical example, a lower RMSEP can be obtained by

using RCR at the optimal delta value than by applying any PLS estimator.

Hitherto, we proposed a robust continuum regression estimator for univariate y. In

some applications it may be interesting to have at hand a multivariate version of

the estimator. This is beyond the scope of this paper, but we believe that the main

ideas of this paper can be generalized to this multivariate setting.
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Figure 1: CR-PP computation times vs. increasing values of k
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Figure 2: Squared Influence Diagnostic (SID) for all 22 samples of the data set
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Figure 3: 20% trimmed root mean squared errors of cross-validation for different

values of h and δ for RCR with α = 0.1
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