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Factor analysis and principal component analysis result in com-
puting a new co-ordinate system, which is usually rotated to ob-
tain a better interpretation of the results. In the present paper, the
idea of rotation to simple structure is extended to two dimensions.
While the classical definition of simple structure is aimed at rotat-
ing (one-dimensional) factors, the extension to a simple structure for
two dimensions is based on the rotation of planes. The resulting
planes (principal planes) reveal a better view of the data than planes
spanned by factors from classical rotation and hence allow a more
reliable interpretation. The usefulness of the method as well as the
effectiveness of a proposed algorithm are demonstrated by simulation
experiments and an example.
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1. Introduction

The examination of high-dimensional data is getting a more and more
important task in applied multivariate analysis. There are different possi-
bilities for the investigation of large data sets. One way is to reduce the
dimension (following any useful criterion). Another way is to search for low-
dimensional projections of the full-dimensional data, as done by projection
pursuit (see e.g. Huber, 1985; Friedman, 1987). In both cases the results
should provide the most revealing view of the data.

For data sets including not necessarily a cluster structure (e.g. data sets
composed of economical, ecological, social, environmental, health data), a
method is required which shows connections between the variables and the
relations to the objects in the best way. The results have to permit an
extensive interpretation of the data. For this reason the data should be
shown graphically in planes since two-dimensional representations are easy
to survey. The extracted planes should contain a maximum of informa-
tion. Baaske (1988) named such planes principal planes, and he tried to
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find triplets of variables spanning a plane which should represent the other
variables as good as possible.

The present paper gives another approach for obtaining principal planes.
At the basis of a decomposition of the (standardized) data matrix by factor
analysis or principal component analysis, the matrix of loadings is rotated to
a simple structure for planes. This is a generalization to higher dimensions
of the classical simple structure introduced by Thurstone (1944). One could
extend these thoughts also to higher dimensions; we would then consider
principal spaces.

Classical rotation methods extract (one-dimensional) factors which should
characterize all variables in a good fashion, and at the same time different
factors should include different variables. This provides the factors to be
interpreted as non observable quantities, where each factor characterizes
other properties. The results are mostly presented by plots where each
factor is drawn against another one. Unfortunately, these planes are not
constructed to be most meaningful, since by ideal simple structure the vari-
ables are close to the axes. The contents of information of a resulting plane
could be increased by directly extracting planes instead of vectors (factors).

For rotation to principal planes, two-dimensional factors (pairs of factors
spanning a plane) with the same properties as formulated above are to be
found. All variables should be well presented by the principal planes, and
each principal plane should characterize other variables. This construction
enables a configuration, where the variables are close to the principal plane
(spanned by two factors), and not just close to the axes. As a consequence,
in general more variables are well presented by the resulting plane, and
therefore the interpretation of the results can be more extensive and should
be more reliable.

This paper is organized as follows: In section 2 basic considerations
about simple structure for planes are given. Moreover, the classical varimax-
criterion (Kaiser, 1958), in the following abbreviated by VMAX, is extended
to a varimax-criterion for planes (VMAX2). Section 3 is concerned with an
algorithm for VMAX2. The rotation is based on an iterative procedure.
The criterion is improved step-by-step, until no essential change of the so-
lution is visible. Since no explicit solution of the optimization criterion
exists, an approximation has to be found in each step of the iteration. The
performance of the algorithm is demonstrated by simulation experiments in
section 4. Section 5 shows the application of the procedure to a real data
set.
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2. Method

Basis for rotation to principal planes is the unrotated matrix of load-
ings obtained by factor analysis or principal component analysis. Let Λ
denote the given (p × k) orthogonal pattern, and let f = (f1, . . . , fk)>

be the standardized factors arising by linear transformation of the origi-
nal standardized variables y = (y1, . . . , yp)> with the coefficients Λ, i.e.
y = Λf + e. In more detail, the (i, j)-th element of Λ, λij, represents the
connection between variable yi and factor fj, and this relation is used for
obtaining classical simple structure: High loadings for a variable on one fac-
tor should occur, while at the same time the loadings on the other factors
should be low. For the well known and frequently used varimax-criterion
(Kaiser, 1958), the simple structure is realized by maximizing the sum over
the variances of the squared (standardized) factor loadings for each factor,
i.e.
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˜λij is an element of the rotated matrix of loadings, and κ2
i =

∑k
j=1 λ2

ij
(i = 1, . . . , p) is called i-th communality. It describes the proportion of
variance of the i-th standardized variable explained by all k factors. The
communalities are used for standardization to avoid large influence of vari-
ables with high communalities.

Simple structure for planes also uses the relationship between variables
and planes, expressed by the multiple correlation. Explicitly, for a vari-
able yi (i = 1, . . . , p) and a plane spanned by two different factors fa

and fb (a, b = 1, . . . , k; a 6= b), the multiple correlation between yi and
f = (fa, fb)> is defined by

ρyi;f = (ρ>fyi
ρ−1

ffρfyi
)1/2 (2)

(see e.g. Mardia et al., 1979) where ρfyi
is a (2× 1)-matrix with the corre-

lations between factors and the variable at hand, and ρff is the correlation
matrix of the factors fa and fb. If the factors are supposed to be orthogonal,
ρff (and therefore ρ−1

ff ) is the identity. The correlations between yi and
the factors in the orthogonal case are exactly the loadings, so the above
equation reduces to

ρyi;f =
√

λ2
ia + λ2

ib . (3)

To simplify the notation, the multiple correlation between yi and f =
(fa, fb)> is denoted by ρi;a,b.
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A next point for developing a rotation criterion for planes is to define
more precisely how the planes are constructed. The aim is to obtain planes
spanned by different and disjoint pairs of factors. If the number of factors, k,
is even, q = k/2 pairs of factors are forming the planes. For an odd number
k, one factor is omitted and the results are q = (k − 1)/2 planes. Each set
of pairs can be defined by simply ordering the k factors in a particular way
(calling the first two factors the first pair, the second two the second pair,
etc.). Hence, there are k! such sets of pairs. However, among these k! sets of
pairs many are essentially the same: First of all, all pairs appear twice (as
(a, b) and (b, a)), hence, to correct for this, the number k! has to be divided
by 2 for each pair, hence by 2q for the q pairs. Furthermore, sets of q pairs
that only differ with respect to the order in which the pairs are given are
equal, hence the result has to be divided by q!, the number of permutations
in which the pairs can occur. This gives a total number of combinations of
different planes with disjoint factors of

E =
k!

2qq!
. (4)

Let sl (l = 1, . . . , E) denote the indices of the factors for one particular
combination of planes, and let S = {sl | l = 1, . . . , E} be the set of these
combinations. E.g. for k = 6 factors, one element of S might be the set
{(1, 2), (3, 4), (5, 6)}.

A rotation criterion for simple structure for planes has to find the opti-
mum over all E combinations of planes, i.e. the best result over all factor
combinations s ∈ S. The simplicity of the structure is defined at the basis
of the relation between variables and planes, given by (2) or, for orthogonal
factors, by (3). Similar to the classical case, this value should be high for a
variable at one plane and at the same time low at the other planes.

With this knowledge the ideas of VMAX (1) can be easily extended
to a varimax-criterion for planes. The simple structure for planes can be
realized by considering the variance of the squared “loadings on the planes”
which are defined by (2). If the planes are spanned by the factors {fa, fb}
({(a, b)} ∈ s), this variance is
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or, since the factors are supposed to be orthogonal,
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where ρ̃2
i;a,b = ˜λ2

ia + ˜λ2
ib. Equation (6) describes the variance of the squared

multiple correlations (SMC) of the variables yi with the plane {fa, fb}. In
analogy to VMAX, the variances given by (6) have to be summarized over
all planes of a combination s, and the loadings are to be divided by the
corresponding communalities. The resulting expression has to be maximized
by an orthogonal transformation. Finally, the maximum over all different
combinations s ∈ S has to be found. Expressed by a formula, the varimax-
criterion for planes is defined by

V MAX2 = max
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(7)
The results are principal planes spanned by the factors {fa, fb} ({(a, b)} ∈
s). Note that criterion (7) can easily be modified to obtain a two-dimensional
extension of the quartimax-criterion (Carroll, 1953), the quartimax-criterion
for planes:

QMAX2 = max
s∈S







∑

{(a,b)}∈s

p
∑

i=1

( ρ̃i;a,b

κi

)4

= max







. (8)

3. Algorithm

A numerical solution of the varimax-criterion for planes can be found
by an iterative process. In each iteration two different planes spanned by
the factors {fa, fb} and {fc, fd} ({(a, b), (c, d)} ∈ s, a 6= c), respectively, are
considered. In this 4-dimensional space the varimax-criterion for the two
planes is defined by

V MAX2a,b;c,d = p
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Since an orthogonal rotation in 4 dimensions would be rather complicated,
the rotation is performed in 4 steps in the planes {fa, fc}, {fb, fd}, {fa, fd}
and {fb, fc}. Steps 1-4 are repeated until (9) cannot be further increased.
If this is done, the four steps are applied to another two planes of the com-
bination s, and so on. The entire process is started again until convergence,
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this means until the varimax-criterion for planes (7) cannot be further im-
proved. In order to avoid that the algorithm converges to a local maximum,
several orthogonal random starts of the whole procedure have to be done
(see also Gebhardt, 1968; ten Berge, 1984). More information about the
practical performance of this procedure is given in the next section.

Let us consider the optimization in one particular plane, say, in the plane
spanned by the factors {fa, fc}, in more detail. The rotated loadings are
computed by the orthogonal transformation

˜λia = λia cos ϑ + λic sin ϑ (10)
˜λic = −λia sin ϑ + λic cos ϑ (11)
˜λij = λij for j 6= a, c (12)

and i = 1, . . . , p. The rotation angle in this plane is ϑ. Insertion of the
rotated loadings into (9) gives
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Two indices are underlined in the above formula to indicate, in which plane
the rotation is performed. For maximizing (13), the first derivative with
respect to ϑ is calculated and the result is set equal to zero. Since this
derivative has no explicit solution for the parameter ϑ, an approximation
can be found for example by the regula-falsi method (see e.g. Golub and
Ortega, 1993) described below.

Equation (13) may be rewritten in the form

f(ϑ) = c1 sin(4ϑ) + c2 cos(4ϑ) + c3 sin(2ϑ) + c4 cos(2ϑ) + c5 (14)

where c1 to c5 are constants depending on the loadings. In general, the
periodicity of the function f is π. This means that for finding the maximum
one is interested in a rotation of the factors within the interval (−π

2 , π
2 ). The

maximum can be found approximately by performing the following steps:

Step 1: Select P fixed regularly distributed values ϑ1, . . . , ϑP within the inter-
val [−π

2 , π
2 ] and compute the function values f(ϑ1), . . . , f(ϑP ).
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Step 2: Search for the maximum f(ϑm) of the P function values and take the
neighbors of ϑm, which are ϑm−1 and ϑm+1. For m = 1 the neighbors
are −π

2 and ϑ2, for m = P take ϑP−1 and π
2 .

Step 3: Compute the values f ′(ϑm−1) and f ′(ϑm+1), which are the starting val-
ues for the regula falsi method. Since f is continuous, sgnf ′(ϑm−1) 6=
sgnf ′(ϑm+1) if P is large enough.

Step 4: Compute the zero point ϑz of the connection line between f ′(ϑm−1)
and f ′(ϑm+1) by

ϑz = ϑm−1 − f ′(ϑm−1)
ϑm+1 − ϑm−1

f ′(ϑm+1)− f ′(ϑm−1)
. (15)

Step 5: If f ′(ϑz) = 0 (or ≈ 0), a real zero of f ′ within the interval (−π
2 , π

2 ) has
been found. In the other case sgnf ′(ϑz) 6= sgnf ′(ϑm−1) or sgnf ′(ϑz) 6=
sgnf ′(ϑm+1), and the procedure can be started with the corresponding
new interval from step 4 .

Figure 1 illustrates the proposed procedure. For P = 10 fixed points
(which would be too small in practice) the function values are computed.
After performing the regula falsi method, the first approximation of the
maximum of f at ϑz is obtained. The second approximation is already very
close to the real maximum.

Increasing P implies a longer computation time for one iteration of the
regula-falsi method. On the other hand, the number of iterations in general
decreases since the maximum f(ϑm) for larger P (step 2) will in general
be closer to the final maximum. It turned out in practice that a choice of
P = 50 is a good compromise.

A computer program with the proposed algorithm in the language GAUSS
can be obtained from the author.

Figure 1 is inserted about here.

4. Simulation

The proposed rotation method is tested in the following by simulation
experiments. A matrix of loadings with p = 100 variables and k = 4 factors
is generated randomly. The first 50 variables have two nonzero loadings
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at the first two factors, the last 50 variables have two nonzero loadings at
the last two factors, i.e. the target pattern has complexity 2. The nonzero
loadings are uniformly distributed in the interval [−1, 1]. For each variable,
the loadings are standardized by their communality.

The simulated pattern is scrambled in each of 50 replications by ran-
dom orthogonal rotations, and the rotation methods quartimax and vari-
max (classically and for planes) are applied. For each analysis the iterative
process was considered to have converged if the relative difference of the
objective function of two consecutive cycles was below 10−6. The conver-
gence was reached in each of the following simulations already after a few
iterations.

The resulting rotated loadings are compared with the original ones by
permuting and reflecting the columns to obtain optimal congruence with the
truly simple pattern. For each row of the loading matrices, the Euclidean
norm of the difference to the corresponding row of the truly simple pattern
was computed. The mean of these values has been taken as a measure of
goodness of recovering the original pattern. Expressed by a formula, this
measure which is called congruence index is defined by
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(16)

where λij is the (i, j)-th element of the target pattern, ail is the (i, l)-th
element of the randomly rotated pattern, and tlj is the (l, j)-th element of
the best transformation matrix obtained by each rotation method at hand.

The result of this study is shown in Figure 2. The horizontal axis shows
the number of replications of the simulation, the vertical axis represents the
congruence index (16) as the measure of deviation from the original pattern.
The results of QMAX are labeled by ◦, those of QMAX2 by +, VMAX by
4, and VMAX2 by ×.

Since no noise has been added to the target pattern, and since the pat-
tern is ideally plane-wise clustered, a congruence index of 0 would indicate
the best solution (global minimum). Figure 2 shows that the results for the
classical rotation methods QMAX and VMAX do not change by orthogo-
nally rotating the target. Moreover, these methods lead to the same results
(up to the given precision of the optimization procedure of the algorithm).
QMAX2 and VMAX2 are strongly depending on orthogonal random starts.
About half of the solutions of the rotation methods for planes are better than
the classical methods, some are much better. It is interesting that VMAX2
and QMAX2 give about the same result if the solution comes closer to the
global optimum; otherwise VMAX2 is slightly better than QMAX2.
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Figure 2 is inserted about here.

The second simulation experiment uses the same target pattern as be-
fore. This pattern is contaminated in each of 50 simulations with random
noise, the elements of which are distributed according to N(0, 1/10). The
simulated patterns are scrambled by random orthogonal rotations and the
same rotation methods as in the previous experiment are used for pattern
recovery. Since QMAX2 and VMAX2 are sensitive to local optima, 10
randomized starting positions are chosen by orthogonal random rotations
of each simulated pattern, and the best solution is taken as the best ap-
proximation of the global optimum. The result of this study is presented
in Figure 3 where the number of replications of the simulation is drawn
against the congruence index (16). A big difference between the classical
methods and rotation methods for planes is visible. Just for 2 out of 50
simulations the classical methods lead to better results. QMAX gives in
general a lower value of the congruence index than VMAX. Like in the pre-
vious experiment, the results of QMAX2 and VMAX2 are very similar. It
is interesting to compute the average of the congruence indices over all 50
simulations. The value for QMAX is 0.64, VMAX gives 0.66, QMAX2 and
VMAX2 are much lower with a value of 0.24.

Figure 3 is inserted about here.

A third simulation experiment is also based on a matrix of loadings of
complexity two (i.e. two nonzero loadings on at most two factors), but the
rows of this target pattern are not ideally plane-wise clustered. In more
detail, the target pattern is of the same size as before (p = 100 variables
and k = 4 factors), the first 40 variables have two nonzero loadings at the
first two factors, the next 8 variables have two nonzero loadings at factors
1 and 3, the next 7 variables at factors 1 and 4, the next 6 variables at
factors 2 and 3, and the remaining 39 variables have two nonzero loadings
at the last two factors. The nonzero loadings are constructed in the same
way as in the first simulation experiment. The pattern is contaminated
in each of 50 simulations with randomly distributed noise (according to
N(0, 1/10)), and the resulting loadings are scrambled by random orthogonal
rotations. For QMAX2 and VMAX2 the best solutions out of 20 randomized
starting positions are taken. (The results of QMAX and VMAX are varying
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only marginally for different orthogonal random starts.) Figure 4 presents
the resulting congruence index (vertical axis) for each simulated pattern
(horizontal axis). Although the solutions of the classical methods and the
methods for rotation to principal planes are much closer now, the results
of QMAX2 and VMAX2 are clearly better. The congruence index is lower
than 0.2 for about 75% of the results of QMAX2 and VMAX2, but just
for 15% of VMAX and not even for 10% of QMAX. Like in the previous
experiments, the results for QMAX2 and VMAX2 are very similar. The
average congruence indices are: 0.30 for QMAX, 0.28 for VMAX, and 0.19
for both QMAX2 and VMAX2. When taking the best solutions out of 10
instead of 20 orthogonal random starts, the average congruence increases to
0.23 for QMAX2 and VMAX2.

Figure 4 is inserted about here.

The simulation was done on a Pentium PC with 120 MHz. Considering
the first simulation experiment, the mean computation time over all 50 repli-
cations for QMAX, QMAX2, VMAX and VMAX2 is reported in Table 1.
The values for QMAX2 and VMAX2 correspond to the time needed for one
out of E different plane combinations (see (4)). Table 1 also summarizes the
mean computation time for the rotation of 6, 8, 10 and 12 factors. VMAX2
needs about twice as much computation time as QMAX2, and there is a
big difference between the time for classical rotation and rotation to planes
(almost factor 100 for VMAX2). Since the values for QMAX2 and VMAX2
have to be multiplied by the number E of different plane combinations, the
proposed algorithm becomes impractical for a larger number of factors.

Table 1 is inserted about here.

The previous simulation experiments have shown how well QMAX2 and
VMAX2 perform with matrices of loadings with complexity two. However,
what would happen when rotating matrices of loadings with complexity
one? As an example we consider the pattern shown in the left part of Table
2 (p = 8 and k = 4). The middle part of Table 2 shows the result for
both QMAX and VMAX rotation. The true pattern is perfectly recovered
by these methods. Finally, the right part of Table 2 shows the general
result for QMAX2 and VMAX2, where the first two factors span the first
principal plane and the last two factors the second principal plane. a, b, c

10



and d are real numbers within the interval -1 and 1 with the restrictions
a2 + b2 = c2 + d2 = 1. This means that an infinite number of solutions
for QMAX2 and VMAX2 is possible, each obtained by orthogonal rotation
of the principal planes. The reason for this phenomenon can be found by
considering the rotation algorithm (section 3). The pairwise rotations are
only performed for pairs of factors of different planes; rotations within a
principal plane are not necessary because the resulting plane will not give
any new information.

Table 2 is inserted about here.

5. Example

In this section a data set is considered which origins from a cooperation
between the research institutes Studia (Schlierbach, Austria) and Albtum
(Weihenstephan, Germany). More than 800 variables from different fields
were measured in the 96 Bavarian districts and cities, mainly in the year
1987. Detailed information can be found in a technical report (Studia and
Albtum, 1993).

For reason of clarity nine variables are selected: rate of unemployment
(1), median salary (2), percentage of the population in the age 6-15 years (3),
percentage of the population older that 60 years (4), percentage of divorced
persons (5), percentage of commuters (6), average number of persons per
household (7), percentage of larceny delicts (8), and percentage of stomach
cancer as cause of death (9).

The choice of four factors gives a proportion of explained variation of
about 93%. Principal common factor analysis without rotation of the factors
results in the loadings presented in the left part of Table 3. The loadings
after classical varimax rotation are shown in the right part of Table 3.

Table 3 is inserted about here.

The unrotated matrix of loadings is basis for varimax rotation to prin-
cipal planes. The best result (maximum of the objective function) of the
loadings for 10 orthogonal random starts is shown in the left part of Table
4. The first principal plane (PPL1) is spanned by the factors F1 and F2,
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the second principal plane (PPL2) by F3 and F4. The right part of Table
4 summarizes the contribution of each variable to the VMAX2 criterion
and the sum over all single contributions for both, the resulting principal
planes from VMAX2 rotation and the planes spanned by F1-F3 and F2-F4
resulting from VMAX rotation. The latter factor combinations give the
maximum sum of the single contributions, and hence these planes allow the
best two-dimensional representation of the VMAX loadings.

The contribution of a variable to the VMAX2 criterion is high if this
variable is well presented by only one plane. Variable 1 hence has high
contribution to PPL2 but low (negative) contribution to PPL1 where the
loadings are close to zero. Variables 2 and 6 are not well presented by
the principal planes. All other variables (except variable 4) have higher
contributions with VMAX2 rotation than with VMAX rotation. Also the
sum over the single contributions is higher for VMAX2 which means that
VMAX2 rotation separates the variables into planes in a better way.

Table 4 is inserted about here.

Figure 5 shows the resulting planes from VMAX and VMAX2 rotation.
Figure 5a and 5b represent the planes spanned by F1-F3 and F2-F4 from
VMAX, respectively (see Table 3), and Figure 5c and 5d show PPL1 and
PPL2 from VMAX2, respectively (see Table 4). The first planes from
VMAX and VMAX2 (Figure 5a and 5c) show some similarity, whereas the
second planes (Figure 5b and 5d) reveal big differences. Variables 1, 2, 4,
6 and 9 are well presented by PPL2 (large distance to the center), but not
well presented by PPL1 (close to the center). Similarly, variables 3, 5, 7 and
8 are very well presented by PPL1, but at the same time they are close to
the center in PPL2. The variables in the second plane from VMAX rotation
are mainly arranged along the direction of factor 2, whereas in PPL2 the
variables are spread over the whole plane. PPL2 hence makes the connec-
tions between variables 1, 2, 4, 6 and 9 visible and allows interpretations
for these relationships. In this example, however, one still has to be careful
with interpretations, since connections can also be caused by other variables
which have not been analyzed. Therefore it is advisable to take the whole
data set for a detailed investigation.

Figure 5 is inserted about here.
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6. Summary

The idea of simple structure for planes is an extension of the classical
simple structure. In the classical case the rotated factors should be as
separated as possible, i.e. each row of the rotated loadings matrix should
contain only a few high loadings, the remaining loadings should be low.
Simple structure for planes is constructed in that way to obtain planes which
are as separated as possible: For each variable there should be only a few
high “loadings on planes”, which are expressed by the multiple correlation
(2), otherwise low values are desired. The advantage of this extension is
that the resulting principal planes are aimed to be disjoint. Hence, by just
presenting the principal planes, most information of the matrix of loadings
is given. Since graphical presentations of the loadings by planes are easy to
survey, especially in connection with factor scores like in a biplot (Gabriel,
1971), this is a desired property. For classical rotation methods, usually all
pairs of factors have to be shown for a detailed (2-dimensional) presentation
of the loadings.

Another property which results from the construction of two-dimensional
simple structure is that for each principal plane a maximum number of
variables is not near the origin. Hence, these variables are well presented
by the plane and the interpretation of relationships between these variables
are more reliable.

Analytic solutions of the rotation methods QMAX2 and VMAX2 can
be found by the proposed algorithm. In each step the objective function
increases monotonically. However, the algorithm often leads to local opti-
mality, and the global optimum has to be approximated by applying the
algorithm with several orthogonal random starts. The simulation examples
have shown that 10 to 20 orthogonal random starts are sufficient for re-
covering complicated target patterns. However, for applications it is more
advisable not to fix the number of randomizations but to continue on search-
ing so long as additional tries have a good chance of improving the solutions
already in store.

The proposed algorithm becomes impractical for a larger number of
factors. Since the mean computation times given in Table 1 have to be
multiplied by the number of different plane combinations, VMAX2 rotation
for 10 factors would need about 100.000 seconds for one orthogonal random
start at the computer used for this study. However, it turned out that
in most cases different plane combinations did not result in new solutions.
Further investigation has to be done in examining how many combinations
are sufficient for finding the best result.

In section 2 it was suggested that for an odd number of factors one factor

13



should be omitted for principal plane rotation. Since the number of factors
to be retained in factor analysis is often a hard decision, it could be more
advisable to retain always an even number of factors.

The simulation has shown that QMAX2 and VMAX2 often give the same
result. In most applications one would prefer VMAX2 because it turned out
that QMAX2 leads to a main first plane, as the classical quartimax-criterion
has the tendency to converge over a main first vector (Kaiser, 1956, 1958).

If the complexity of a pattern is one (or close to one), the rotated pat-
tern obtained by QMAX2 and VMAX2 can be transformed to the pattern
obtained by QMAX and VMAX by an orthogonal rotation (see Table 2).
The solution from QMAX2 and VMAX2 can be seen as an alternative repre-
sentation of the original pattern. Hence, in that case QMAX2 and VMAX2
are not competitors of the classical rotation criteria.

It is possible to extend the ideas and formulas of simple structure for
planes to simple structure for higher dimensions. The results which we call
principal spaces have the same properties as principal planes.
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Figure 1
Regula-falsi algorithm for maximizing the VMAX2 criterion in one plane.
f is the function defined by the criterion, and f ′ is the derivative of f .

Figure 2
Simulation experiment with an ideally plane-wise clustered target pattern
of complexity two. The horizontal axis shows the number of replications

(orthogonal random starts), and the vertical axis represents the congruence
index (16) as a measure of deviation from the original pattern. Results are

shown for QMAX (◦), QMAX2(+), VMAX (4) and VMAX2 (×).

Figure 3
Simulation with the same target pattern as in Figure 2 with additional

random noise. The horizontal axis shows the number of simulated
patterns, and the vertical axis represents the congruence index. Results
are shown for QMAX (◦), QMAX2(+), VMAX (4) and VMAX2 (×).
For QMAX2 and VMAX2 the best results out of 10 orthogonal random

starts are shown.

Figure 4
Simulation with a target pattern of complexity two which is not ideally
plane-wise clustered. The horizontal axis shows the number of simulated
patterns (target pattern plus normally distributed noise), and the vertical

axis represents the deviation. Results are shown for QMAX (◦),
QMAX2(+), VMAX (4) and VMAX2 (×). For QMAX2 and VMAX2

the best results out of 20 orthogonal random starts are shown.



Figure 5
Factor analysis results of the Bavarian data set: (a) plane F1-F3 from

VMAX, (b) plane F2-F4 from VMAX, (c) plane F1-F2 from VMAX2 (first
principal plane), (d) plane F3-F4 from VMAX2 (second principal plane).



Figure 1
Regula-falsi algorithm for maximizing the VMAX2 criterion in one plane.
f is the function defined by the criterion, and f ′ is the derivative of f .
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Figure 2
Simulation experiment with an ideally plane-wise clustered target pattern
of complexity two. The horizontal axis shows the number of replications

(orthogonal random starts), and the vertical axis represents the congruence
index (16) as a measure of deviation from the original pattern. Results are

shown for QMAX (◦), QMAX2(+), VMAX (4) and VMAX2 (×).
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Figure 3
Simulation with the same target pattern as in Figure 2 with additional

random noise. The horizontal axis shows the number of simulated
patterns, and the vertical axis represents the congruence index. Results
are shown for QMAX (◦), QMAX2(+), VMAX (4) and VMAX2 (×).
For QMAX2 and VMAX2 the best results out of 10 orthogonal random

starts are shown.
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Figure 4
Simulation with a target pattern of complexity two which is not ideally
plane-wise clustered. The horizontal axis shows the number of simulated
patterns (target pattern plus normally distributed noise), and the vertical

axis represents the deviation. Results are shown for QMAX (◦),
QMAX2(+), VMAX (4) and VMAX2 (×). For QMAX2 and VMAX2

the best results out of 20 orthogonal random starts are shown.
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Figure 5
Factor analysis results of the Bavarian data set: (a) plane F1-F3 from

VMAX, (b) plane F2-F4 from VMAX, (c) plane F1-F2 from VMAX2 (first
principal plane), (d) plane F3-F4 from VMAX2 (second principal plane).



Table 1
Mean computation time for one out of E combinations of planes (in

seconds), for 2 planes (4 factors) to 6 planes (12 factors) at the basis of 50
replications of a simulation.

Rotation Number of Factors
Method 4 6 8 10 12
QMAX 0.16 0.44 0.94 2.72 6.81
QMAX2 2.39 19.23 34.88 46.67 96.70
VMAX 0.11 0.33 0.82 1.65 2.47
VMAX2 4.70 34.44 76.84 105.66 199.49



Table 2
Example of a matrix of loadings with complexity one: True pattern,

QMAX or VMAX rotation, and QMAX2 or VMAX2 rotation
(a2 + b2 = c2 + d2 = 1).

True Pattern QMAX or VMAX QMAX2 or VMAX2
F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4

V1 1 0 0 0 1 0 0 0 a b 0 0
V2 1 0 0 0 1 0 0 0 a b 0 0
V3 0 1 0 0 0 1 0 0 b a 0 0
V4 0 1 0 0 0 1 0 0 b a 0 0
V5 0 0 1 0 0 0 1 0 0 0 c d
V6 0 0 1 0 0 0 1 0 0 0 c d
V7 0 0 0 1 0 0 0 1 0 0 d c
V8 0 0 0 1 0 0 0 1 0 0 d c



Table 3
Unrotated loadings and loadings after varimax rotation of the Bavarian

data set.

No Rotation VMAX
Variable F1 F2 F3 F4 F1 F2 F3 F4

Unemployment rate 0.11 0.77 0.21 -0.02 -0.27 0.76 -0.08 0.01
Salary 0.60 0.62 -0.09 0.04 0.32 0.79 -0.07 0.12
Population 6-15 (%) 0.95 0.05 -0.03 0.19 0.73 0.47 0.34 0.29
Population >60 (%) -0.69 0.44 -0.48 0.00 -0.41 -0.02 -0.85 -0.06
Divorced (%) -0.96 -0.02 0.12 0.00 -0.80 -0.44 -0.29 -0.09
Commuter (%) 0.72 -0.60 0.04 -0.12 0.73 -0.16 0.57 -0.07
Persons/Household 0.98 -0.09 -0.10 0.15 0.83 0.35 0.35 0.25
Larceny (%) -0.82 -0.07 0.39 0.21 -0.84 -0.39 0.01 0.13
Stomach cancer (%) 0.62 0.39 0.38 -0.14 0.16 0.71 0.42 -0.06



Table 4
Loadings after varimax rotation for planes (VMAX2) of the Bavarian data
set (F1 to F4). Contribution of each variable to the VMAX2 criterion for
the principal planes F1-F2 and F3-F4 resulting from VMAX2 rotation and

the planes F1-F3, F2-F4 from VMAX rotation, and sum over all single
contributions.

VMAX2 Contr. VMAX2 Contr. VMAX
Variable F1 F2 F3 F4 PPL1 PPL2 F1-F3 F2-F4

Unemployment rate 0.00 0.03 0.81 0.06 -3.00 7.37 -3.34 5.61
Salary 0.44 0.41 0.62 0.09 -0.99 0.89 -3.29 5.32
Population 6-15 (%) 0.55 0.74 0.15 -0.25 4.40 -1.53 0.71 -0.38
Population >60 (%) -0.24 -0.41 0.16 0.81 -2.42 3.41 5.44 -1.29
Divorced (%) -0.71 -0.60 -0.11 0.24 4.68 -1.56 1.99 -0.85
Commuter (%) 0.53 0.36 -0.44 -0.54 -1.08 1.00 4.89 -1.28
Persons/Household 0.62 0.73 0.01 -0.27 4.76 -1.56 2.54 -0.99
Larceny (%) -0.86 -0.37 -0.07 -0.01 5.91 -1.61 2.35 -0.95
Stomach cancer (%) 0.34 0.25 0.59 -0.43 -2.43 3.44 -2.76 3.35

9.84 9.84 8.54 8.54



Table 1
Mean computation time for one out of E combinations of planes (in

seconds), for 2 planes (4 factors) to 6 planes (12 factors) at the basis of 50
replications of a simulation.

Table 2
Example of a matrix of loadings with complexity one: True pattern,

QMAX or VMAX rotation, and QMAX2 or VMAX2 rotation
(a2 + b2 = c2 + d2 = 1).

Table 3
Unrotated loadings and loadings after varimax rotation of the Bavarian

data.

Table 4
Loadings after varimax rotation for planes (VMAX2) of the Bavarian data
set (F1 to F4). Contribution of each variable to the VMAX2 criterion for
the principal planes F1-F2 and F3-F4 resulting from VMAX2 rotation and

the planes F1-F3, F2-F4 from VMAX rotation, and sum over all single
contributions.
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Abstract

Factor analysis and principal component analysis result in com-
puting a new co-ordinate system, which is usually rotated to ob-
tain a better interpretation of the results. In the present paper, the
idea of rotation to simple structure is extended to two dimensions.
While the classical definition of simple structure is aimed at rotat-
ing (one-dimensional) factors, the extension to a simple structure for
two dimensions is based on the rotation of planes. The resulting
planes (principal planes) reveal a better view of the data than planes
spanned by factors from classical rotation and hence allow a more
reliable interpretation. The usefulness of the method as well as the
effectiveness of a proposed algorithm are demonstrated by simulation
experiments and an example.

Key words: principal component analysis, factor analysis, orthogonal
rotation, simple structure.


