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Algorithms for Projection-Pursuit Robust Principal
Component Analysis

Abstract

The results of a standard Principal Component Analysis (PCA) can be affected
by the presence of outliers. Hence robust alternatives to PCA are needed. One
of the most appealing robust methods for principal component analysis uses the
Projection-Pursuit principle. Here, one projects the data on a lower-dimensional
space such that a robust measure of variance of the projected data will be maxi-
mized. The Projection-Pursuit based method for principal component analysis has
recently been introduced in the field of chemometrics, where the number of variables
is typically large. In this paper, it is shown that the currently available algorithm
for robust Projection-Pursuit PCA performs poor in presence of many variables. A
new algorithm is proposed that is more suitable for the analysis of chemical data.
Its performance is studied by means of simulation experiments and illustrated on
some real data sets.

Keywords: Multivariate Statistics, Optimization, Numerical Precision, Outliers,
Robustness, Scale Estimators.

1 Introduction

Projection-Pursuit (PP) methods aim at finding structures in multivariate data by pro-

jecting them on a lower-dimensional subspace [1]. PP methods are well suited for the

analysis of data sets with a large number of variables, often encountered in chemometrics,

since they involve a dimension reduction step. The lower-dimensional subspace, often of

dimension one, is selected by maximizing a certain Projection Index. Principal Component

Analysis (PCA) is an example of the PP approach. If we have n observations x1, . . . , xn,

all of them column vectors of dimension p, then the first principal component is obtained

by finding the unit vector a which maximizes the variance of the data projected on it:

a1 = argmax
‖a‖=1

S2(atx1, . . . , a
txn), (1)

where S2 stands for the variance. By projecting the data on the direction a1, we obtain

univariate data at
1x1, . . . , a

t
1xn, in accordance with the Projection-Pursuit idea. Taking

the variance as a projection index leads, as well known, to standard PCA. However, the

outcome of standard PCA is very sensitive to atypical observations, e.g. gross errors or

sources of new variation. Hence there is a need for robust principal components, yielding
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reliable results in presence of outliers, and describing well the structure of the majority

of the data.

One of the most appealing procedures for robust PCA was proposed by Li and Chen

[2], and is based on the PP principle. The idea is very simple: instead of taking the

variance as a projection index in (1), a robust measure of variance is taken. It was shown

in [2] and [3] that these estimators are consistent and asymptotically normal, and recently

[4] proved its robustness by computing influence functions and breakdown points. This

approach to robust PCA was introduced in the chemometrics literature by [5] and [6],

and was shown to be appropriate for use in chemometrical data analysis. Recently, it was

included in TOMCAT, a MATLAB toolbox for multivariate calibration techniques [7]. A

recent review on robust statistics in data analysis is given in [8].

The topic of this paper is the actual computation of the principal components, i.e.

solving the maximization problem in (1). When the projection index is the usual standard

deviation, then it is known that a1 is the eigenvector of the sample covariance matrix of

the data corresponding to the largest eigenvalue (see e.g. [9]). But for other choices of

S, solving (1) is not easy, and one needs to rely on approximative algorithms. A first

algorithm was introduced by Li and Chen [2] which, however, was complicated, time

consuming, and not made publicly available. In [10] simulated annealing was used, again

yielding a slow algorithm that is not publicly available. On the other hand, [11] introduced

an algorithm which is very simple, fast to compute and easy to implement. We call it the

CR algorithm and consider it as the basis algorithm. Equivalent, but numerically more

stable versions were implemented by [5] and [4], see also the discussion in [12]. In this

paper we will work with the CR algorithm as described in [4], but [5] and [12] share the

same properties, and give exactly the same outcomes, upon rounding error. It was never

noticed, however, that the CR algorithm may implode in presence of many variables,

making it less suitable for the typical high-dimensional chemometrical applications. This

implosion results in a severe downward bias of the scale estimators. This paper will

propose a new algorithm not suffering from this problem, being much more precise, while

still being computationally efficient. We call this new algorithm the GRID algorithm.

Other proposals, besides the PP approach, have been made for robust PCA, as in [13],

[14], or [15]. We would like to emphasize that this paper is not on a comparison between

different types of estimators for robust PCA, since such a comparison was already made

in the aforementioned papers. This paper is on a comparison between different algorithms

for computing the PP based estimator defined by (1). We recall that the PP approach

has a clear definition, is intuitively appealing, and has good statistical and robustness

properties. It can be applied if the data set has more variables than observations, a case
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of special interest in chemometrics. A particular feature is that the PP based approach

for PCA allows sequential estimation of the principal components. If we have already

computed the (k − 1)th principal component, then the direction of the kth component,

with 1 < k ≤ p, is defined as the unit vector maximizing the index S2 of the data projected

on it, under the condition of being orthogonal to all previously obtained components:

ak = argmax
‖a‖=1,a⊥a1,...,a⊥ak−1

S2(atx1, . . . , a
txn). (2)

Hence, one is not obliged to compute all p different principal components, but could stop

after, for example, k = 2 steps, implying a significant reduction in computation time if p

is large.

In Section 2 of this paper we briefly review the CR algorithm and in Section 3 we

prove that it suffers from implosion in presence of many variables. Section 4 outlines the

new GRID algorithm for finding the optimum values in (1) or (2). Section 5 compares the

different algorithms through some numerical experiments. It turns out that the GRID

algorithm finds, throughout practically all experiments, the highest values for the max-

imum in (1), at a reasonable computational price. We also compare the performance of

the algorithms on some real data examples.

2 Description of the Croux-Ruiz (CR) Algorithm

The input of all algorithms we will discuss is a data matrix X with n rows (observations)

and p columns (variables), having the observations xi = (xi1, . . . , xip)
t in its rows. Let us

first state that if there are more variables than observations, hence p > n, the first step

of any algorithm we discuss is to perform a singular value decomposition, and continue

working with the scores on all components in an n dimensional space. This is a standard

preprocessing step, yielding no loss of information since we keep the full rank of the data

matrix, e.g. [6]. Hence, we may assume without loss of generality that p ≤ n when

describing the algorithms.

An algorithm will give us a sequence of approximations for the unit vectors defined

by (1) and (2), but also a sequence of maximal values for the (robust) variances, which

we denote by

λk = S2(at
kx1, . . . , a

t
kxn), (3)

for 1 ≤ k ≤ p. If we take for S2 the sample variance, then the values of λk are the

eigenvalues of the sample covariance matrix, sorted from the largest to the smallest. For

a robust PCA, we will consider robust versions of S2, but we will continue to call the λk,
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as defined by (3), “eigenvalues”. Similar as in [4], [5], and [6], we focus on two particular

choices: the Median Absolute Deviation (MAD),

MAD(z1, . . . , zn) = 1.48 med
j
|zj −med

i
zi|, (4)

and the first quartile of the pairwise differences between all data points

Q(z1, . . . , zn) = 2.22{|zi − zj|; 1 ≤ i < j ≤ n}((n
2)/4), (5)

where {z1, . . . , zn} is any given univariate data set (see [16]). Taking the squared MAD

or Q, yields then a robust variance estimator. The reason why the MAD or the Q

estimators are taken is that they attain, as a scale estimator, the maximal breakdown

point of 50%. The breakdown point is the most popular measure of robustness of an

estimator. It measures the smallest fraction of outliers in the data that is needed to drive

the scale estimators to their extreme values, i.e. zero for breakdown to zero, and infinity

for explosion breakdown.

Before starting the algorithm, we center the data by subtracting the centers of the vari-

ables from the columns of the data matrix. Since the arithmetic mean is not robust,

the centering is done with the L1-median [17] or the coordinate-wise median, denoted by

µ̂(X). Note that a fast and stable algorithm for computing an L1 algorithm is described

in [18]. We obtain then the centered data x1
i = xi − µ̂(X). Suppose that in step k − 1,

the algorithm returned the vector âk−1, an approximation for the solution to (2). Then

we project the observations on the space spanned by the first k− 1 optimal directions, by

computing

xk
i = xk−1

i − (
ât

k−1x
k−1
i

)
âk−1, (6)

for 1 ≤ i ≤ n and k > 1. When searching for the kth optimal direction, the CR algorithm

is not optimizing over the whole space of all possible unit vectors, but only considers n

trial directions in the set

An,k =

{
xk

1

‖xk
1‖

, . . . ,
xk

n

‖xk
n‖

}
. (7)

(Elements in An,k corresponding to a zero denominator are set equal to zero.) The kth

eigenvalue is then approximated by

λ̂k = max
a∈An,k

S2(atxk
1, . . . , a

txk
n), (8)

and âk is the argument where the maximum in the above equation is attained.

For more details on the algorithm we refer to [4]. This basic and simple algorithm

works well for a large sample size relative to the number of variables, because the set
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of trial directions that the algorithm considers are pointing in the directions where the

data are. This algorithm has been successfully used in different applications (e.g. [19],

[20], [21], [6], [22]). However, due to its construction, the CR algorithm may implode in

situations with a low sample size relative to the number of variables.

3 Implosion of the CR algorithm

In this section we will show that the CR algorithm suffers from severe downward bias. In

fact, from a certain order k on, all estimated eigenvalues will be zero, independently of the

data. We will formally prove that if k > n/2, then λ̂k = 0 when using the CR algorithm.

This is not only happening when taking for S the MAD or the Q, but for any robust scale

measure with a high breakdown point. This implosion of the eigenvalues occurs for all

data sets, whether there are outliers present or not, whatever the latent structure in the

data is. This is an undesirable artefact of the CR algorithm.

For stating the next proposition, we need a condition on the scale estimator S. A

scale estimator S has the m-exact fit property if S(Z) = 0 for any sample Z containing at

least m zeros.

Proposition 1 If a scale estimator S has the m-exact fit property, then the CR algorithm

yields at any given data set

λ̂k = 0 for k = m + 1, . . . , p.

Proof: Denote Xk = {xk
1, . . . , x

k
n}, where the notation of Section 2 is used. We will first

show by induction that

(A) Xk contains at least (k − 1) zero vectors 0.

For k = 1, the property obviously holds, and suppose now that (A) holds for k − 2. It

follows from equation (6), that if xk−1
i = 0, then also xk

i = 0, yielding already k − 2

zeros. Denote now i′ the index corresponding to the maximum over the set An,k−1 in (8),

so âk−1 = xk−1
i′ /‖xk−1

i′ ‖. But then it follows directly from (6) that xk
i′ = 0. This yields

the (k − 1)th zero, and confirms (A).

From (8) it follows that, in the kth step of the CR algorithm, S is computed on a

sample containing k − 1 zeros, and this for every value of a. Hence, we conclude that if

S has the m-exact fit property with m ≥ k − 1, then λ̂k = 0. ¤

From the definitions (4) and (5) of the MAD and the Q scale estimators, it is easy

to check that they have the property that they are equal to zero as soon as n/2 of the
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observations are equal to each other. Hence Proposition 1 applies for MAD and Q with

m = n/2. In fact, any other robust scale estimator will suffer from the artefact of the

CR algorithm. Indeed, a scale estimator is robust, among others, if its value cannot

become arbitrary large in presence of a certain number of outliers. This is formalized by

its explosion breakdown point (cfr. [23], [16]), which at a given sample Z = {z1, . . . , zn}
is defined as

ε∗(S, Z) = min{m
n

; sup
Z′

S(Z ′) =∞} (9)

where Z ′ is a contaminated sample obtained by replacing any m observations of Z by

arbitrary values. This next proposition makes a link between the explosion breakdown

point of a scale estimator and the exact fit property of a scale estimator. The relation

between the exact fit property and the breakdown point of an estimator was established

for regression estimators by [24], but not yet for scale estimators. Recall that a scale

estimator is said to be scale equivariant if S(az1, . . . , azn) = |a|S(z1, . . . , zn), for any

scalar a and any sample z1, . . . , zn. Scale equivariance is a basic property that all sensible

scale estimators share.

Proposition 2 If a scale equivariant scale estimator S has breakdown point ε∗(S,Z) >

(m− n)/n, then it has the m-exact fit property.

Proof: Suppose that S does not have the m-exact fit property. Then there exists a sample

of the form Z = {0, . . . , 0, z1, . . . , zn−m} such that S(Z) > 0. Now replace the last n−m

observations, simply by multiplying them by a factor λ. Denote the contaminated sample

Z ′
λ. Then, due to the scale equivariance, S(Z ′

λ) = λS(Z). Since S(Z) > 0, we can let the

scale at the contaminated Z ′
λ tend to infinity, simply by letting λ tend to infinity, causing

explosion breakdown. Due to the given lower bound on the explosion breakdown point of

S, this cannot occur. Hence there is a contradiction, and the m-exact fit property should

hold. ¤

Any robust scale estimator S having the maximal value for the breakdown point, being

50% (e.g. [25]), will according to the above proposition have the m-exact fit property,

with m ≈ n/2. Hence the CR algorithm will also implode for other choices of S having a

high breakdown point, and not only for the MAD or Q estimator.

We also stress that the RAPCA algorithm proposed by [5] suffers from exactly the

same implosion problem. The reason is that the CR and the RAPCA algorithm are

mathematically equivalent, and they differ only upon rounding error. The data deflation

step is done differently in [5], but it is immediate to see that property (A) in the proof

of proposition 1 also holds for the RAPCA algorithm. Note that the CR algorithm as
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Figure 1: Scree plot of an artifical data set. For the CR algorithm the eigenvalues are

strongly biased, and implode after k = 30. For the new GRID algorithm no implosion is

observed.

described in Section 2 will be faster to compute than the RAPCA algorithm, as was

noticed by [6].

In Figure 1 we illustrate the implosion behavior of the CR algorithm. We generate a

data set of size n = 60 in a space of dimension p = 50, similar to the simulation scheme

detailed in Section 4, and containing 10 outliers. Figure 1 plots the obtained λ̂k as a

function of k, where the MAD was used as a scale estimator. Such a plot is called a Scree

Plot. We see that all eigenvalues of order larger than k = 30 are exactly equal to zero.

Of course, one could argue that in practice one is often not interested in the principal

components of these higher orders. But we also see that the lower order eigenvalues,

although not exactly equal to zero, are subject to severe downward bias to zero. Figure

1 also shows the scree plot when applying the GRID algorithm, which we will explain in

the next Section. It is seen that this algorithm is much less vulnerable to downward bias,

and finds optimal directions explaining more variability, as shown by their higher values

of λ̂k.

The downward bias of the CR algorithm will also affect the performance of the outliers

detection rule associated with the robust PCA. As robust outlier diagnostics we use a

robust version of the Mahalanobis Distances

RDi =

√
(x1

i )
tΣ̂

−1
x1

i , (10)

with x1
i = xi − µ̂(X) the centered observations and µ̂(X) the L1-median. As robust
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covariance matrix we take

Σ̂ =
kmax∑

k=1

λ̂k âkâ
t
k,

with kmax the number of retained components, i.e. the ones not corresponding to zero (or

very small) eigenvalues. Properties of this robust covariance matrix estimator have been

discussed in [4], and plugging the above expression in (10) yields the Robust Distances

RDi =

√√√√
kmax∑

k=1

(
ât

kx
1
i

)2

λ̂k

(11)

for 1 ≤ i ≤ n. If the robust distance exceeds the critical value χkmax,0.975, the observation

is flagged as an outlier, see also [5]. For the data set used to construct Figure 1, it

follows from inspection of the scree plot that kmax = 30 for the CR algorithm, while

kmax = 50, the maximal value, when using the new GRID algorithm. Recall that this

data set contains 10 gross errors, having indices 51 up to 60. Figure 2 plots the robust

distances of the observations versus their index, once for the CR algorithm (left panel),

and once for the GRID algorithm (right panel). The left panel of Figure 2 shows that the

10 gross-errors are correctly flagged as outliers, but there are also many good observations

having a large robust distance, some of them even a larger RDi than the true outliers.

Hence the CR algorithm suffers from the so-called swamping effect, meaning that good

observations are incorrectly flagged as outliers. This is due to the downward bias of the

estimated eigenvalues when using the CR algorithm, making the values in (11) too large.

On the other hand, the GRID algorithm clearly succeeds to pinpoint the 10 outliers, and

separates well the outliers from the normal observations.

4 The GRID algorithm (GRID)

In this Section we propose the GRID algorithm. It is searching the space of all possible

directions more thoroughly. A preliminary version of this algorithm was briefly discussed

in [26], where it was applied to the robust continuum regression problem of [12]. As for

the CR algorithm, we will first apply a pre-processing step by working with the scores

of the singular value decomposition (if p > n). In this section, we use the short hand

notation S(a) = S(xt
1a, . . . , xt

na), and our aim is to find the a maximizing S(a), under

the constraint that ‖a‖ = 1. We will first explain in detail the algorithm for finding the

first optimal direction a1 in (1).

The basic idea behind the GRID algorithm is that the optimization problem is trivial

if p = 2. Indeed, if p = 2, then the problem reduces to maximizing the function θ →
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Figure 2: Robust distances versus their indices for the artificial data set of Figure 1.

Distances are once computed with the CR algorithm (left panel), and once with the

GRID algorithm (right panel).

S((cos(θ), sin(θ))t over the interval [−π/2, π/2[. This can be done with an easy grid search,

i.e. we divide the interval in (Ng − 1) equal parts, and evaluate the function at the grid

points (−1
2

+ j
Ng

)π, for j = 0, . . . , Ng − 1. For Ng large enough, we will get close enough

to the solution. Note that a grid search is not asking for differentiability of the function

to maximize, and can distinguish a global maximum from a local one.

In the general case, p > 2, the idea is to perform an iterative scheme of optimizations

in two-dimensional planes. Before starting, we relabel the indices of the columns of the

data matrix X in decreasing order of the value of Sj = S(x1j, . . . , xnj), for j = 1, . . . , p.

Hence, we may assume that S(e1) ≥ S(e2) ≥ . . . ≥ S(ep), where e1, . . . , ep are the

canonical basis vectors.

1. Start with â = e1.

2. For i = 1, . . . , Nc, execute the following cycle.
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For j = 1, . . . , p

(a) Maximize the objective function in the plane spanned by ej and â, by a

grid search of the function θ → S(cos θ â + sin θ ej), where the angle θ is

restricted to the interval [−π/(2i); π/(2i)[. Denote θ0 the angle where the

maximum is attained over all grid points.

(b) Update â← cos θ0 â + sin θ0 ej

So the first direction â we are looking at is the one corresponding with the variable having

the largest dispersion. During one cycle, a sequence of grid searches over p− 1 planes is

carried out; the jth grid search will update the jth coordinate of â. When the second

cycle starts, it is assumed that the direction â is already pointing in the good direction,

but still needs local improvement. Hence, the grid search will not search over the whole

plane, but only over the halfplane determined by the angles [−π/4, π/4[. After every

cycle, the search is limited to a more narrow interval of angles, but keeping the number

of grid points Ng constant for every search. As such, the first few cycles will allow to find

the region of the search space where the maximum should be, and the subsequent cycles

aim at further increasing the precision of the solution.

The subsequent optimal directions are found in a similar way. Once an ak−1 is obtained

(for k ≥ 2), a Householder transformation is applied to the data, corresponding to a

rotation of the data in such a way that ak−1 is transformed into the (k − 1)th canonical

vector. Then the grid algorithm is applied again, but now only using the last (p− k + 1)

coordinates of the data vectors. As such, a sequence of eigenvalues is obtained and, after

inverting the Householder transformations, also a sequence of optimal directions. We refer

to [5] for full details on this, and emphasize that due to the easy form of the Householder

transformation and its inverse, the additional computational load is marginal.

If p > n, then the variables are exactly the scores on the principal components, and the

algorithm is equivariant under orthogonal transformations. Furthermore, the algorithm

is completely deterministic, and easy to implement. Default choices are Ng = 10 and

Nc = 10, giving good results, also for noisy data sets containing many outliers. These

default choices are used throughout the paper.

5 Numerical Experiments

Simulation Experiment

To compare the different algorithms, we perform a simulation study. As a first measure
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of accuracy of the algorithm we take the value of λ̂1, the maximum of the objective function

in (1). Since the aim of the algorithm is to attain the highest value in (1), better algorithms

provide higher values for λ̂1. Also, the higher this value, the more informative, in terms

of higher variability, the obtained principal component is. Note that the highest possible

value, λ1 is in general not known, neither is a1. (An exception is the case where the scale

measure S equals the standard deviation, then λ1 and a1 are exactly computable from

an eigenvalue analysis of the sample covariance matrix). More generally, the precision of

the algorithm for finding the first k optimal directions will be measured by

Ik =
k∑

j=1

λ̂j, (12)

being the total variability accounted for by the first k principal components. The efficiency

of the CR algorithm with respect to the GRID algorithm is then measured by

EFFk(CR;GRID) =
ICR
k

IGRID
k

. (13)

It will turn out that throughout all numerical experiments we carried out, the above

efficiency was nearly always below 100%.

Two situations are of special interest, namely the case n > p and the case n ≤ p, where

after data compression the latter case corresponds to n = p. We take p = 50 throughout

this experiment, and set the sample size n = 50 and n = 1000, respectively. Note that the

smaller sample size is the most important in chemometrical applications. Data are then

generated according to N(0, diag(λ1, . . . , λp)) with λj = 1/j2, yielding a fast decaying

scree plot. Since the algorithms are aimed at data containing outliers, further simulations

are done for contaminated data: 80% of the observations of a simulated data set come

from the same distribution as before, and the remaining 20% of observations are generated

due to N(0, 10 · diag(λp, . . . , λ1)). Hence the outlier generating distribution has exactly

the inverse order of principal components.

We generate 1000 different samples, and compute then the efficiency in (13), for k = 1.

Boxplots of these 1000 replicates are given in Figure 3, once for n = 50, and once for

n = 1000, for the data with and without contamination. As scale measure, the MAD was

taken here. It is seen from Figure 3 that the efficiencies remain below 100% in nearly

all cases, showing the superiority of the GRID algorithm over the CR algorithm. The

difference becomes more pronounced for the lower sample size, where the median efficiency

is about 85%. In presence of outliers, the relative performance of the GRID algorithm

further improves, with a median efficiency of about 76% for n = 50. Note that there are

12



n=50, clean n=50, contam. n=1000, clean n=1000, contam.

0.
4

0.
6

0.
8

1.
0

1.
2

E
ffi

ci
en

cy

Figure 3: Boxplots of the efficiencies of the CR algorithm with respect to the GRID

algorithm, for 1000 simulated samples of size n = 50 and n = 1000, once without outliers

(“clean”) and once with outliers (“contaminated”).

samples where the efficiency gain by the GRID algorithm is very considerable; for example,

for the contaminated case with n = 50, efficiencies of only 40% are observed in the

boxplots. We conclude from Figure 3 that the GRID algorithm indeed yields much more

accurate approximations for the case n ≤ p. On the other hand, for n = 1000 > p = 50,

the CR algorithm performs reasonably well, and is not loosing much w.r.t. the GRID

algorithm.

Table 1 presents results for the same simulation setup, but with values for the sample

size n ranging from 25 to 500, and for both robust scale measures MAD (4), and once

for Q (5). Average efficiency measures are reported for k = 1 and k = 5. The standard

errors around these reported averages were always less than 1.4%.

The results in Table 1 confirm the findings from the boxplots in Figure 3. The GRID

algorithm is much more accurate than the CR algorithm, in particular for the smaller

sample sizes. This efficiency gain is even more important for contaminated data, con-

taining outliers. Moreover, the efficiencies EFF5 over the first 5 principal components

are consistently lower than the values EFF1, indicating that the inaccuracy of the CR

algorithm is cumulating over the additional components. It can also be seen that the

efficiency gain when using MAD is more pronounced than for Q. This can be explained

by the fact that for the scale estimator Q the objective function (3) to be maximized will
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Table 1: Average efficiencies of the CR- with respect to the GRID algorithm, for p = 50,

several values of n, for the MAD and Q, and for clean and contaminated simulated data.

clean data contaminated data

MAD Q MAD Q

EFF1 EFF5 EFF1 EFF5 EFF1 EFF5 EFF1 EFF5

n = 25 71.3 62.0 77.0 68.7 61.0 40.9 66.8 48.1

n = 50 85.8 73.5 92.4 82.9 76.2 50.2 85.1 62.0

n = 100 89.7 80.8 94.7 90.8 82.2 55.9 88.0 68.3

n = 200 94.2 86.6 96.0 94.0 86.1 60.1 89.2 70.3

n = 500 96.4 91.8 97.2 95.9 87.7 61.3 89.2 70.3

be much smoother than for MAD. Thus, a more precise algorithm like GRID will be able

to identify local jumps close to the optimum whereas CR fails to find these peaks.

The computational effort of the GRID algorithm will be higher than that for the CR

algorithm. In fact, the GRID algorithm requires p × Ng × Nc evaluations of the scale

measure, while the CR algorithm needs only n evaluations (for finding a single optimal

direction). Hence, to make the comparison more fair, we generated additional directions

to the considered search directions of (7) for the CR algorithm such that the computation

time becomes comparable (i.e. the number of evaluations of S is the same). Interestingly,

the results of Table 1 remained almost identical. The only exception is the value of EFF5

for n = 25 and contaminated data, which increased from 40.9 to 51.2 when using the MAD,

and from 48.1 to 54.6 for the Q. Hence, unless the sample size is very small, generating

addition random directions is of little use. The reason is that the trial directions of (7)

are good candidate directions which cannot easily be improved by simply adding some

random directions to (7).

While the above simulation experiment indicates the superior performance of the

GRID with respect to the CR algorithm, the efficiencies do not show how close the results

are to the true optimum of (3). Unfortunately, there is only one setting were this could

be verified, namely when the scale measure is the classical standard deviation. In this

case, the maximal value of the objective function is given by the largest eigenvalue of the

sample covariance matrix of the data. Thus, we repeated the same simulation exercise

as above, comparing the GRID algorithm with the exact solution, and obtained that the

computational efficiency of GRID with respect to the exact solution is almost 100% (re-

sults available upon request). When the standard deviation serves as projection index,

the GRID algorithm retrieves the exact solution upon rounding error.
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Figure 4: Plot of the cumulated eigenvalues for the ‘Gas data’, as estimated by the

algorithms GRID and CR, once using MAD and once for Q as projection index.

Real Data Examples

We compare the performance of the two algorithms also on two real data sets. The first

data set reports the NIR (near-infrared) spectra of n = 60 gasoline samples, measured

in 2nm intervals from 900nm to 1700nm (p = 401). It will be called the ‘Gas data’

being described in [27]. This is an example where the number of variables p is larger

than the number of observations n. The second data set, called ‘Car data’, is available in

S-Plus ([28]), and illustrates a situation where the number of observations is larger than

the number of variables. In this example, p = 11 variables are evaluated from n = 111

different cars.

For both examples we considered the MAD and Q as robust scale measures. The

results are presented by plotting the cumulated eigenvalues defined by (8) with respect to

k, the number of principal components retained. Recall that (8) measures the variability

explained by the first k components. Figure 4 presents the results for the Gas data.

The plot suggest that after 6 to 8 components the extra gain in explained variability

by adding more components becomes much smaller, suggesting that k about 8 is a good

choice. The same trend as seen from the simulations studies is also visible here. The GRID

algorithm yields much higher explained variabilities than the CR algorithm, resulting in

more informative principal components.

Figure 5 shows the cumulative eigenvalues for the Car data set, and similar conclusions
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Figure 5: Plot of the cumulated eigenvalues for the ‘Car data’, as estimated by the

algorithms GRID and CR, once using MAD and once for Q as projection index.

can be made. Especially for the first few components the GRID algorithm shows much

higher contributions to the explained variability than the CR algorithm. This is true for

both scale measures, with the gain of the GRID algorithm being largest when the MAD

is used.

6 Summary and Conclusions

Principal component analysis based on projection-pursuit (PP) is very attractive in many

respects. By using different scale measures as Projection Index, different types of PCA

are obtained. In particular, taking a robust scale measure like MAD or Q, yields a

robustification of standard PCA. Moreover, it is possible to stop the computation of the

principal components at any desired number of components, which is not the case for

PCA based on a robust covariance matrix. Especially for high-dimensional data this

is an important feature, since the computational effort can be reduced considerably by

computing only the first few robust principal components.

We presented a new algorithm, called GRID, for computing the robust principal com-

ponents and showed that it outperforms the currently available CR algorithm. In practi-

cally all simulation situations and examples it turned out that the GRID algorithm leads

to higher amounts of explained variability. The differences between the algorithms is sub-
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stantial for small sample sizes with n < p, being the most pertinent case in chemometrical

applications. For a large sample size n with respect to the dimension p, the CR algorithm

still performs quite well, as can be seen from the simulation results in Section 5. Note that

the CR algorithm as proposed by [11] was not aimed at high dimensional applications.

For n >> p we still recommend this algorithm as a fast and reasonably accurate way to

find the robust principal components, but for p > n it should not be used. In particular,

we showed in Section 3 that the CR algorithm suffers from implosion breakdown in the

latter case.

Note that the GRID algorithm works for any scale estimator, and no differentiability

conditions are needed. Hence it is an “omnibus” algorithm that can serve to maximize

any Projection Index. In this paper we focus on the widely used robust scale measures

MAD and Q, and demonstrated that for both scale measures the algorithm GRID gives

much better approximations to the eigenvalues than the CR algorithm. The choice of the

scale estimator to be used must be based on statistical grounds, as discussed in [4]. The

MAD is more robust, while the Q has a higher statistical efficiency.

In this paper we did not compare with other robust PCA approaches based on the

Projection-Pursuit principle, since several papers have already been devoted to this (see

Introduction). This paper is on a comparison of different algorithms for the same estima-

tor, and not on comparing robust PCA estimators of different natures. If the aim of the

principal component analysis method is to maximize explained variability, then the PP

based approach is the natural estimator to use.

Both the GRID and the CR algorithm have been implemented in the freely available

statistical software package R. They can be downloaded from (http://www.R-project.org)

as the library pcaPP, including as well further documentation for the user.

Acknowledgments

We would like to thank Heinrich Fritz from the Vienna University of Technology for

translating the algorithms into C++ and for preparing the R library. We also thank the

reviewers for their constructive comments.

17



References

[1] P.J. Huber, The Annals of Statistics, 13 (1985) 435-525.

[2] G. Li and Z. Chen, Journal of the American Statistical Association, 80 (1985) 759-

766.

[3] Cui, H., He, X., and Ng. K.W, Biometrika, 90 (2003) 953-966.

[4] C. Croux and A. Ruiz-Gazen, Journal of Multivariate Analysis, 95 (2005) 206-226.

[5] M. Hubert, P.J. Rousseeuw, and S. Verboven (2002), Chemometrics and Intelligent

Laboratory Systems, 60 (2002), 101-111.

[6] I. Stanimirova, B. Walczak, D.L. Massart, and V. Simenov, Chemometrics and In-

telligent Laboratory Systems, 71 (2004) 83-95.

[7] M. Daszykowski, S. Serneels, K. Kaczmarek, P. Van Espen, C. Croux, and B. Wal-

czak, Chemometrics and Intelligent Laboratory Systems, to appear.

[8] M. Daszykowski, K. Kaczmarek, Y. Vander Heyden and B. Walczak, Chemometrics

and Intelligent Laboratory Systems (In Press), available online 28 August 2006.

[9] R.A. Johnson and D.W. Wichern, Applied Multivariate Statistical Analysis, 4th

edition, Prentice Hall, New York, 1998.

[10] Y. Xie, J. Wang, Y. Liang, L. Sun, X. Song, and R. Yu, J. Chemometrics 7 (1993)

527-541.

[11] C. Croux and A. Ruiz-Gazen, in A. Prat (Ed.), Compstat: Proceedings in Compu-

tational Statistics, Physica-Verlag, Heidelberg, 1996, pp. 211-216.

[12] S. Serneels, P.Filzmoser, C. Croux, and P.J. Van Espen, Chemometrics and Intelligent

Laboratory Systems, 76 (2005), 197-204.

[13] C. Croux and G. Haesbroeck, Biometrika, 87 (2000) 603-618.

[14] R.A. Maronna, Technometrics, 47 (2005) 264-273.

[15] M. Hubert, P.J. Rousseeuw, and K. Vanden Branden, Technometrics, 47 (2005) 64-

79.

[16] P.J. Rousseeuw and C. Croux, Journal of the American Statistical Association, 88

(1993) 1273-1283.

18
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