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Abstract: In this paper we introduce a statistical method which can be used
in combination with principal component analysis or factor analysis. Certain
variables of a large data set which are of interest can be selected in order
to calculate loadings and scores of these variables. We describe how the re-
maining variables of the data set can be presented in the previously extracted
factor space. Furthermore, a possibility for the representation of the results is
shown which is helpful for the interpretation.

Zusammenfassung: In diesem Artikel stellen wir eine statistische Meth-
ode vor, die in Kombination mit Hauptkomponenten– oder Faktorenanalyse
angewandt werden kann. Bestimmte Variablen eines großen Datensatzes, die
von Interesse sind, können ausgeẅahlt werden, um Ladungen und Faktoren-
werte dieser Variablen zu berechnen. Wir beschreiben, wie die restlichen
Variablen dieses Datensatzes im vorher extrahierten Faktorraum dargestellt
werden k̈onnen. Weiters wird eine M̈oglichkeit zur Pr̈asentation von Ergeb-
nissen gezeigt, die für die Interpretation hilfreich ist.

Keywords: Principal component analysis, Factor analysis, Biplot, Projec-
tion.

1 Introduction

Sometimes we are interested in special variables of a possibly large data set. Suppose we
want to know the relations of these special variables between each other but also to the
other variables of the data set. If, in this case, we performed principal component analysis
(PCA) or factor analysis (FA) onto the whole data set, the solution would possibly not
allow a good interpretation for the variables of special interest, because the variation of
these variables is often too low in comparison to the total variation.

A solution for this task is to performPCA or FA only onto the variables of special
interest. Loadings and scores can be calculated at the basis of the correlation matrix of
these special variables. The results are new axes or factors which will describe the selected
variables rather good, since only the variation of these variables has been considered.

In order to find out the relations to the other variables of the data set, these remaining
variables can be projected onto the factors extracted before. This means that the loadings
of the remaining variables in the factor space arising from the selected variables have to
be determined (Section 2).



2

In Section 3 we consider the (usual) case that the results are presented in lower-
dimensional projections of the factor space (e.g. projections onto pairs of factors). If
relations between the variables are to be investigated, the interpretation of the results can
be facilitated, if only variables are projected which are close to the lower-dimensional
factor space, where a measure of closeness has to be defined.

In Section 4 we show an example with a large data set. We emphasize both the calcu-
lation with the introduced method and the interpretation of the results.

2 Calculation of the Loadings

Let us consider a data matrixX (n×p) with p variables and sample sizen. Without loss of
generality we assume that the firsts variables are of special interest. Therefore we select
the firsts variables and denote this sub-matrix byXs. The remainingp− s = r variables
are combined in the matrixXr. With the notationX = (XsXr) in the following we
denote the partition ofX into two sub-matrices.

Standardizing the variables to mean zero and unit variance defines the matricesY s

andY r. Since each variable is standardized separately, we haveY = (Y sY r), whereY
is the matrix resulting from standardizing the whole data matrixX.

The empirical correlation matrix of the selected variables is calculated byRs =
1

n−1Y
>
s Y s, the correlation matrix of the remaining variables isRr = 1

n−1Y
>
r Y r. The

empirical correlation matrix of the whole data set is

R =
1

n− 1
Y >Y =

(

Rs

Rsr

R>
sr

Rr

)

. (1)

Basis ofPCAor FA is the calculation of eigenvalues and eigenvectors of the correlation
matrix (or more generally of a dispersion matrix). Clearly, the eigenvalues and eigenvec-
tors of a correlation matrix in general are different from the eigenvalues and eigenvectors
of a sub-matrix of this correlation matrix (Rs is a sub-matrix ofR), compare Mardia et al.
(1979).

Let ̂Λ denote the estimated loadings when using the correlation matrixR of all vari-
ables, and̂Λs the estimated loadings forRs. Since the loadings are calculated from the
eigenvalues and eigenvectors of the dispersion matrix, we note with the above considera-
tions that̂Λs is no sub-matrix of̂Λ. In the usual case we also have the following: Since
Rs is a (s × s)-matrix with s < p, only ks ≤ k factors have to be extracted, wherek is
the number of extracted factors of the whole correlation matrixR. This means that̂Λs is
a (s× ks)-matrix wherêΛ is a (p× k)-matrix.

The factor analytical model fors selected variables is in the sample case

Y s = F sΛ>
s + Es , (2)

compare Harman (1967).F s is a (n × ks)-matrix of factor scores, andEs is the error
matrix. For the estimation of the loadingsΛs there are a lot of different methods like
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principal factor analysis, maximum likelihood method, canonical factor analysis, . . . (see
e.g. Basilevsky, 1994). The factor scores can be estimated for example by multiple re-
gression analysis in the way

̂F s = Y sR−1
s ΛsΦs (3)

(see e.g. Lawley and Maxwell, 1971).Φs is the empirical correlation matrix of the factor
scores.

In the introduction of this paper we mentioned that we want to project the remaining
variables onto the space spanned by the extracted factors. This means that we have to
consider the (sample) model

Y r = F sΛ>
r + Er . (4)

Y r andF s are known. The loadings for the remaining variables,Λr, have to be estimated.
This model may be seen as a regression model whereΛr are the unknown regression
coefficients. Minimization of the sum of the squared residuals gives

̂Λ
>
r = (F>

s F s)−1F>
s Y r =

1
n− 1

Φ−1
s F>

s Y r , (5)

and thus the estimation for the unknown parameters is

̂Λr =
1

n− 1
Y >

r F sΦ−1
s . (6)

By this estimation it is possible to project all variables into the space of the factors result-
ing from the selected variables.

If the estimation for the factor scores (3) is inserted into (6), we get

̂Λr =
1

n− 1
Y >

r Y sR−1
s ΛsΦsΦ−1

s = Y >
r Y s(Y >

s Y s)−1Λs . (7)

This means, once we have calculated the loadings of the selected variablesΛs, we just
need the (standardized) matrices of the selected and the remaining variables to calculate
the loadings of the remaining variables in the common factor space.

If the number of factorsks is larger than two, a representation of the result may be
obtained by projecting variables and/or scores onto the plane spanned by different pairs
of factors. The loadings of the variables in the plane are the corresponding columns of
the matrix of loadings calculated with the help of (7).

3 Projection

It is quite common to represent the results in planes spanned by all different pairs of
factors. The reason is that two-dimensional presentations are easy to survey although by
this projection to two dimensions we loose information. Especially in the case of data sets
where relations between the variables are to be investigated, care has to be taken with the
interpretation of results arising from lower-dimensional projections.
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If the number of extracted factors,ks, is larger than two and the results are shown in
planes, only the loadings of the variables at the corresponding factors spanning the plane
are considered. The distances and angles between the projected variables in general are
distorted, and this may result in misinterpretations.

In view of the interpretation of the result it makes sense to project only the variables
which are “close” to the plane spanned by the chosen factors. Closeness means in this
context that the loadings of the variables on the remaining factors are “small”. In this
case the distortion of the projection is low.

Now the weak formulations above have to be clarified. As a measure of closeness we
consider the squared multiple correlation (SMC) coefficient between each variable and
two factors.

Let yi (i ∈ {1, . . . , p}) be a (standardized) variable andf = (fa, fb)> two different
factors (a, b ∈ {1, . . . , ks}; a 6= b). Then theSMCbetweenyi andf is defined as

ρ2
yi,f = ρ>fyi

ρ−1
ffρfyi

(8)

(see e.g. Mardia et al., 1979).ρfyi
is the correlation matrix betweenf andyi, andρff is

the correlation matrix of the factorsfa andfb, which is the identity for orthogonal factors.

With this measure of closeness between variables and plane we can specify a certain
bound (e.g. 0.5). Variables with a lowerSMCcoefficient than this bound are not projected,
the other variables are presented in the result.

Especially for biplot representations (Gabriel, 1971) where relations between the vari-
ables and relations between variables and objects are shown, this procedure is advisable.

4 Example

We consider a data set with more than 800 variables from the fields economy, ecology,
society, health, environment, and others. The variables were measured in the 96 Bavarian
districts and cities, mainly in the year 1987.1 For detailed information concerning this
data set we cite a technical report of STUDIA and ALBTUM (1993).

This large and extensive data set stimulates a lot of questions, which are to be an-
swered by statistical methods. One field of interest is to find out the reasons for the
appearance of stomach cancer. Let us suppose that this disease is connected with the rate
of unemployment. We select all variables which are relatively high correlated (|r| ≥ 0.6)
with the variables (cause of death) stomach cancer (of female persons) and unemploy-
ment. The correlations can be seen from Table 1. A description of these variables will be
presented in Section 4.1.

For the further investigation we select all variables given in Table 1. With these vari-
ables we perform principal factor analysis selecting two factors. The resulting loadings

1We like to thank the Austrian research institute STUDIA inSchlierbachfor placing these data at our
disposal.
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Table 1:Stomach cancer (female)andrate of unemploymentwith relatively highly corre-
lated variables (|r| ≥ 0.6)

stomach cancer (female) r unemployment r

payment/salary 0.62payment/salary 0.61
married/divorced 0.60 pop % tn.college -0.66
assignmt2municip 0.61 farm 3-5 cows% 0.62
tax/inhabitant -0.60 assignmt2municip 0.63
stomach cancer m 0.77rent/sq.meter -0.65

are rotated with the quartimax method. So we obtain the rotated loadings and factor scores
of the selected variables. With the help of (7) we are able to calculate the loadings of the
remaining variables in the two-dimensional factor space which are the co-ordinates for
projection.

For interpretational purposes we only project variables with aSMCcoefficient of more
than0.5 with the plane spanned by the two factors. A biplot representation of this plane
with the most important variables is shown in Figure 1. The cosine between two vari-
able vectors approximates the correlation, the projection of the objects onto the variable
vectors approximate the data values (Gabriel, 1971).

4.1 Interpretation of Figure 1

The 96 Bavarian districts and cities are abbreviated with three letters (for cities, the third
sign is a point). The abbreviation of the variables is explained in the following.

In the east of the diagram we have regions, mainly districts close to cities, which
are characterized by success: a large portion in people with a technical college (pop %
tn.college), the difference of immigration and migration (immigrat-migrat) (mea-
sured in a period of five years) is positive, high rents (rent/sq.meter) (per square
meter), a large portion in people with secondary school (second.school%), university
(university%), and grammar school (grammar school%), high estate prices (estate
price), a large portion of employees (empl % employee) and employment in credit in-
stitutes and insurances (empl % cred+insu), high tax per inhabitant (tax/inhabitant).

In the opposite directions we have the poor regions with low education: a large portion
of people in apprenticeship (empl % apprentic), a large portion in persons with primary
school (primary school%), stomach cancer of female (stomach cancer f) and male
people (stomach cancer m), a large portion in workers (empl % worker), a large por-
tion in small farms (with 3 to 5 cows) (farm 3-5 cows%), high assignments to the munic-
ipalities (assignmt2municip), a high relation of payment per salary (payment/salary),
and a high rate in unemployed people (unemployment).
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Figure 1: Plane with the central variablesstomach cancerandunemployment
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In the south-west of our diagram we have the rural regions (rural region) and recre-
ation areas (recreation area) (both variables measured by inquiries), characterized by
a high relation of married to divorced people (married/divorced), a large portion of per-
sons in nursing (pers.in nursing%), a large portion of persons employed in the agricul-
ture (empl % agricult), many farms (farms) and agricultural areas (agricult.area),
a large portion of people employed in the building trade (empl % building), a large
portion in children (pop % <15), a high relation of persons per household (persons/
househld), a large portion in freehold flats (freehold flat%), a high relation of inhab-
itants per flat (inhabitants/flat). Further we have some variables describing growth:
growth rate in the producing trade (empl GR produce) and in the trade (empl GR trade),
a large portion of employed people in companies up to 9 (empl % 1-9 pers) and from
10 to 19 employees (empl % 10-19 per), a large portion of business owners (empl %
owner), and a large portion of commuters in the population (pop % commuter).

The opposite direction (north-east) contains variables typical for urban areas: grand
larceny (grand larceny), a high relation of payment per employed people (payment/
empl), a large portion in divorced persons (pop % divorced), high population density
(pop density), many accidents per kilometer in traffic (traffic accid/km), a large
portion of employed people in trade (empl % trade), a high crime rate (crime rate),
many one-person households (1-pers.household), a large portion in settlement area
(settlement area%), many traffic accidents with personal injury (per 1000 inhabitants)
(injured.traf/pop). Finally, we have some variables characterizing the rise in the ratio
of old people to the total population: a large portion in people older than 65 years (pop
% >65), a large portion in women (pop % female), a large number of flats per thousand
inhabitants (flats/1000 inhab), many welfarite persons (welfarite/pop), and a large
portion in widowed people (pop % widowed).

5 Summary

This method enables special views of a possibly large data set. The direction of the view
is given, more or less, by selected variables. The selection of variables may be done by an
interpretational point of view. It is also possible to select some variables of interest and,
as shown in the example, additionally highly correlated variables. Since only the selected
variables are analyzed byPCAor FA, the resulting subspace will describe these variables
rather good. With a projection of the remaining variables into this subspace the relations to
the variables of special interest can be shown. For interpretational purposes only variables
which are close to the subspace should be projected. As a measure of closeness theSMC
coefficient between variables and factors may be taken. A biplot representation of the
subspace spanned by the factors, or better, two-dimensional subspaces spanned by all
different pairs of factors, additionally shows the relations between variables and objects.
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