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Normal and lognormal data
distribution in geochemistry:
death of a myth. Consequences
for the statistical treatment of
geochemical and environmental

data

C. Reimann - P. Filzmoser

Abstract All variables of several large data sets
from regional geochemical and environmental sur-
veys were tested for a normal or lognormal data
distribution. As a general rule, almost all variables
(up to more than 50 analysed chemical elements
per data set) show neither a normal or a lognormal
data distribution. Even when different transfor-
mation methods are used more than 70 % of all
variables in every single data set do not approach a
normal distribution. Distributions are usually
skewed, have outliers and originate from more than
one process. When dealing with regional geochemi-
cal or environmental data normal and/or lognormal
distributions are an exception and not the rule.
This observation has serious consequences for the
further statistical treatment of geochemical and
environmental data. The most widely used statisti-
cal methods are all based on the assumption that
the studied data show a normal or lognormal dis-
tribution. Neglecting that geochemcial and environ-
mental data show neither a normal or lognormal
distribution will lead to biased or faulty results
when such techniques are used.
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Introduction

The first step in data analysis should always be to care-
fully study the distribution of the measured variables
graphically. A combination of different graphics, e.g. the
histogram, a density trace, the boxplot and a one-dimen-
sional scattergram, possibly combined with a CDF-di-
agram (CDF = cumulative distribution function), will give
an excellent one-dimensional insight into the data struc-
ture (Fig. 1). Why is the data distribution so important
that it must be known before doing anything else? Corre-
lation analysis, factor analysis, discriminant analysis and
many classical statistical tests, including most calcula-
tions of probability levels are based on the assumption of
a normal data distribution. In geochemistry and environ-
mental sciences this basic requirement is still widely neg-
lected although a number of papers and even books
address the problem (e.g. Philip and Watson 1987; Rock
and others 1987; Rock 1988). Ahrens (1953, 1954a, 1954b,
1957) proposed the lognormal type of distribution for
geochemical data. Although his ideas encountered imme-
diate criticism (e.g. Aubrey 1954, 1956; Chayes 1954;
Miller and Goldberg 1955; Vistelius 1960) the damage
was done. Most modern textbooks in geochemistry still
assert that geochemical data commonly approach a log-
normal distribution. A log-transformation (logl0 or In) is
thus most frequently used for data transformation when
working with geochemical data. But do the so trans-
formed data really approach a lognormal distribution?
This is almost never tested. If it is tested, it is usually
found that the data do not follow a lognormal distrib-
ution (e.g. McGrath and Loveland 1992). Neglecting this
fact in further data analysis has serious consequences.
What is so special about geochemical/environmental
data? Real world data are rarely as well-behaved as classi-
cal statistical tests assume. Geochemical and environmen-
tal data show first of all a spatial dependence. Spatially
dependent data are not, in general, normally distributed.
Furthermore these data are based on rather imprecise
measurements. There are many potential sources of error
involved in sampling, sample preparation and analysis.
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Fig. 1
Combination of
histogram, density
trace,
one-dimensional
scattergram and
boxplot and a
CDF-diagram to give
a fast graphical
impression of the
data distribution



Trace element analyses are often plagued by detection
limit problems, i.e. a substantial number of samples are
not characterised by a true measured value. In addition,
the precision of the measurements changes with element
concentration, values are less precise at very low and
very high concentrations. The existence of data outliers -
in most cases, the existence of some samples with unusu-
ally high concentrations - is a very common character-
istic of such data sets. They are thus strongly skewed.
Even worse, these outliers often originate from another
population than the main body of data. Any person
trained in statistics will be able to recognise at once that
the widely-used, classical statistical methods are likely to
fail under such conditions. Different methods would have
to be used, e.g. exploratory data analysis (e.g. Tukey
1977; Velleman and Hoaglin 1981), robust methods
(Huber 1981; Hampel and others 1986; Rieder 1994), or
non-parametric methods (e.g. Noether 1991; Gore and
others 1993). Robust and non-parametric methods
usually need considerable computing power. Even today
they are still not implemented in many standard statisti-
cal software packages. They are rarely taught in univer-
sity courses for earth and environmental scientists. On
the other hand graphical, exploratory data analysis is
sometimes even defamed as “simple”. This may be a rea-
son why this powerful tool is rarely used.

Here a number of large regional geochemical and envi-
ronmental data sets will be used to demonstrate that geo-
chemical and environmental data, as a rule, show neither
a normal nor a lognormal distribution. Statistical tech-
niques that should as a consequence be used when study-
ing geochemical and environmental data are suggested.

Materials and methods

The test data sets
From 1992-1998 the Geological Surveys of Finland (GTK)
and Norway (NGU) and Central Kola Expedition (CKE),
Russia, carried out a large, international multi-media,
multi-element geochemical mapping project, covering
188000 km? north of the Arctic Circle. The entire area
between 24° and 35.5°E up to the Barents Sea coast was
sampled during the summer of 1995. Results of the “Kola
Ecogeochemistry” project are documented on a web site
(http://www.ngu.no/Kola) and in a geochemical atlas
(Reimann and others 1998). The average sample density
was one site per 300 km?. Samples of terrestrial moss,
humus (the O-horizon), topsoil (0-5 cm), and the B- and
C-horizon of Podzol profiles were taken at more than 600
sites and subsequently analysed for up to more than 50
elements. In many sample materials, elements were analy-
sed with more than one technique or following more
than one extraction method (total, i.e. X-ray fluorescence
(XRF) and instrumental neutron activation analyses
(INAA) vs. partial e.g. aqua regia or ammonium acetate
extraction). Details on sampling, sample preparation,
analyses and quality control are given in Reimann and
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others (1998). This represents one of the largest single
datasets in geochemistry and environmental sciences in
terms of area covered, number of different sample mate-
rials and number of elements analysed. It is thus ideally
suited for this test.

Some might argue, that the sample density of the Kola
data set is unusually low and that this may explain why
the data show no normal or lognormal distribution. Thus
data from a high density (8 samples per km?) soil survey
of a much smaller area (ca. 100 km?) in Austria (the
“Walchen” dataset) are used here as well. This sample set
consists of 772 B-horizon soil samples (forest soils), orig-
inally collected for mineral exploration purposes. The
samples were sieved to <0.18 mm and analysed for more
than 30 elements, mostly using techniques giving total
element concentrations (XRF and INAA). The data are of
unusually high quality - results of quality control for this
dataset are documented in Reimann (1989a).

Some might argue that the sample size in the Kola and
Walchen data sets is not sufficient to truly approach a
normal distribution (in both cases is N <1000). Thus we
have used the data of the stream sediment survey of Aus-
tria (Thalmann and others 1989), a survey covering more
than 40000 km? at an average density of one site per

1.4 km? Here 29717 samples have been analysed for a
total of 35 elements, giving one of the biggest consistent
single data sets that exists in regional geochemistry.
Finally, as some might argue that the areas covered are
not big enough to give truly spatially independent analy-
ses, data from a project reporting element concentrations
in agricultural soils taken over the whole of northern
Europe (the Baltic Soil Survey - BSS; > 1500000 km?) are
used. Here large composite samples were taken from the
ploughing layer (Ap-horizon, 0-25 cm) and a lower,
depth defined layer (50-75 cm). The average sample den-
sity is one site per 2500 km?. The samples were air-dried,
sieved to <2 mm and analysed by a variety of methods,
giving total and partial element concentrations (only
XRF-results used here). This data set has not been offi-
cially reported yet.

Treatment of the data sets
As mentioned above, geochemical and environmental
data sets are often characterised by a high proportion of
samples returning values below detection levels for some
of the analysed elements. Such data are very difficult to
treat. If there is a high number of values below detection
(e.g. <25%) there is no chance that these data will
approach a normal or lognormal distribution. Such vari-
ables were thus not included in this test. In all other
cases, where only a low number of samples returned
values below detection, these were set to one half of the
detection limit to allow the use of these samples for
further statistical analyses.

Test for normality
A large number of tests for normal distribution exist.
The easiest method is just to plot a histogram of the dis-
tribution and check it for the typical bell shape. This
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method is often used in geochemical textbooks to
“prove” that geochemical data approach a lognormal dis-
tribution, probably, because it will quite often show the
“wanted” result. Another widely used graphical technique
for examining the shape of the distribution of univariate
data is the quantile-quantile Q-Q plot (Hazen 1914).
These graphical tools give a good first impression of the
data distribution. To demonstrate that the data deviate
significantly from normal distribution, however, a more
formal statistical test should be applied. There are differ-
ent possibilities for testing for univariate normality. The
most popular tests are the Kolmogorov-Smirnov test
(Smirnov 1948; Afifi and Azen 1979), the chi-square
goodness-of-fit test (Conover 1980), and the Shapiro-Wilk
test (Shapiro and Wilk 1965). All these tests compare an
independent identically-distributed sample from an
unknown univariate distribution with a reference sample
with a known distribution (in our case the normal dis-
tribution). The tests result in a p-value that can be taken
as a decision as to whether the null hypothesis can be
rejected. Usually, if p<0.05 the null hypothesis of normal
distribution is rejected. In general the Shapiro-Wilk test
is statistically preferable to the other two tests.

Test for multivariate normal distribution
Some multivariate methods and tests may not only
require that each variable entered follows a normal dis-
tribution but also that the data set displays in addition a
multivariate normal distribution. Everybody knows the
bell shape of the one-dimensional normal distribution.
The multivariate normal distribution can be envisaged as
a “real” 3D (or more dimensions) bell, where any
projection as a cut through the z-axis must again result
in a one-dimensional normal distribution. This can be
tested graphically by a multivariate generalisation of the
Q-Q plot (Easton and McCulloch 1990):
Suppose that x;,...,x, is a sample from p-dimensional
space. Denote by x the p-dimensional mean vector and
by S the sample variance-covariance matrix. Then

= (xi— %S (x; — X)

defines the (squared) Mahalanobis distance for each
observation i=I,...,n. Since % and S are centre and shape
of the data the Mahalanobis distance reflects for each
data point the “closeness” to the centre. If the data are
from a p-dimensional multivariate normal distribution,
then the random variables r? for i =1,...,n are approx-
imately }(f,-distributed. Thus, a plot of the order statistics
of the r?’s against the expected values of the order statis-
tics of the X?; distribution is a multivariate extension of
the univariate Q-Q plot. If the data indeed follow a multi-
variate normal distribution, the data points should be
arranged along the 45° line in the multivariate Q-Q plot.
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Results

As an example Tables 1 and 2 summarise the results for
two of the eight data sets tested. The C-horizon soil anal-
yses from the Kola project represent typical regional geo-
chemical data, while the results from terrestrial moss are
a typical data set for environmental geochemistry. The
tables show that there is a very large deviation between
mean and median and standard deviation and mad (me-
dian absolute deviation - a measure of dispersion, highly
robust to skew and outliers) for practically all variables —
a first indication that the data do not exhibit a normal
distribution. According to the statistical tests applied,
none of the original variables shows a normal distrib-
ution (p <0.05 for all variables). Different transformation
methods were tested to approach a normal distribution:
In, log, square-root, range and logit. The tables dem-
onstrate that as a general rule, these transformations do
not result in normal distributions. With regards to the
three different tests for a normal distribution, while dif-
ferences for single variables were observed, the general
result, however, is the same. For comparison, results of
the Shapiro-Wilk test, the Kolmogorov-Smirnov test and
the chi-square test are all three shown in Tables 1 and 2
for the log-transformed (In) data.

For the C-horizon, 20 out of 57 variables show p-values
>0.05 for the Shapiro-Wilk test after log-transformation
(In; Table 2). This is actually the highest proportion of
lognormally distributed variables for all data sets. A total
of 17 additional available variables were not even tested
for normal distribution because more than 25 % of all the
data were below the detection levels. In these cases normal
distribution cannot be approached. For the moss samples
the situation is even worse, after transformation only 5 out
of 31 elements approximate a normal distribution (Table 1).
The other six data sets display a similar behaviour. There is
not one data set in which a normal distribution can be
approached for more than 30 % of all reported variables.
The fact that geochemical/environmental data as a rule
obviously do not approach normal or lognormal distrib-
ution has serious consequences for the further statistical
treatment of geochemical/environmental data, con-
sequences that are all too often neglected by the majority
of scientists working in these fields. For example, given
these conditions the median will probably represent a
better estimate of location than the mean, although it
could be argued that the mean gives a better estimate of
the location even for skewed populations if the outliers
truly belong to this population. Do the high values in geo-
chemical and environmental data sets, however, belong to
the same population? In most cases probably not. In geo-
chemical data sets they may be indicative of unusual rock
types occurring in an area or even of an ore deposit. In
environmental data sets they will most likely be an indica-
tion of a pollution source. The distributions displayed as
examples in Fig. 1 show a very common characteristic of
geochemical data. In many cases the regional distribution
of elements is influenced by more than just one process/
source, resulting in multi-modal, skewed distributions.



Table 1
Moss, Kola data (Reimann and others 1998) - elements
analysed, analytical technique used (ICP-MS inductively
coupled plasma mass spectrometer, ICP-AES inductively
coupled plasma atomic emission spectrometer, CV-AAS cold
vapour atomic absorption spectrometer), detection limit (DL),
samples below detection in %, minimum, maximum, mean,
median, standard deviation, mad (medmed) (all data in mg/kg)
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and p-values for a Shapiro-Wilk test for normal distribution of the
untransformed (orig) data, and transformed (In, log, square root,
range and logit) data. For the log-transformed (In) data p-values for
three different tests are given: _S-W: Shapiro-Wilk test, _K-S: Kol-
mogorov-Smirnov test, and _chi% chi-square test. Not included: Be
(0.03 mg/kg, 89.3 % <DL), La (0.7 mg/kg, 85.5%), Sc (0.1 mg/kg,
90.8 %), Se (0.8 mg/kg, 99.7 %), and Y (0.1 mg/kg, 74.4 %)

Ele- Tech- DL % Min Max Mean Med- Sdev Mad Orig In_ In_ In_ Log  Sqrt Ran- Logit
ment nique <DL ian - K-S  chi? ge

Ag ICP-MS 0,01 1,5 <0.01 0,824 0,05 0,033 0,061 0,019 0 0 0 0 0 0 0 0

Al ICP-MS 0,2 0 33,9 4850 300 193 458 90 0 0 0 0 0 0 0 0

As ICP-MS 0,02 0 0,037 3,42 0,26 0,173 0,301 0,085 0 0 0 0 0 0 0 0

B ICP-MS 0,5 3,2 <0.5 21,6 2,17 1,76 1,737 1,097 0 0 0,05 0,302 0 0 0 0

Ba ICP-MS 0,05 0 6,71 175 21,40 19 12,046 6,227 0 0 0 0,002 0 0 0 0

Bi ICP-MS 0,004 4,3 <0.004 0,544 0,027 0,018 0,041 0,012 0 0 0 0 0 0 0 0

Ca ICP-AES 20 0 1680 9320 2740 2620 681 415 0 0 0 0 0 0 0 0

Cd ICP-MS 0,01 O 0,023 1,23 0,12 0,09 0,111 0,036 0 0 0 0 0 0 0 0

Co ICP-MS 0,03 0 0,11 13,2 0,92 0,40 1,478 0,304 O 0 0 0 0 0 0 0

Cr ICP-MS 0,2 1,8 <0.2 144 0,9 0,6 1,13 033 0 0 0 0 0 0 0 0

Cu ICP-MS 0,01 0 2,63 355 17,0 7,2 28,41 4,65 0 0 0 0 0 0 0 0

Fe ICP-AES 10 0 46,5 5140 386 212 545 128 0 0 0 0 0 0 0 0

Hg CV-AAS 0,01 0 0,023 0,155 0,06 0,05 0,02 0,016 0 0 0 0,023 0 0 0 0

K ICP-AES 200 0 2260 8590 4360 4220 895 756 0 0,217 0 0,007 0,214 0 0 0,207
Mg ICP-AES 10 0 518 2380 1132 1090 282 260 0 0,166 0,5 0,004 0,166 0 0 0,164
Mn ICP-AES 1 0 28,5 1170 444 433 204,3 213,55 0 0 0 0 0 0,004 0 0

Mo ICP-MS 0,01 0 0,016 1,08 0,11 0,08 0,096 0,037 0 0 0 0 0 0 0 0

Na ICP-AES 10 0,7 <10 918 107 72 98,4 539 0 0,028 0,02 0,003 0,028 0 0 0,028
Ni ICP-MS 0,3 0 0,96 396 19,5 54 40,76 543 0 0 0 0 0 0 0 0

P ICP-AES 15 0 511 3800 1260 1265 287 245 0 0 0 0 0 0,012 0 0,001
Pb ICP-MS 0,04 0 0,84 294 3,34 2,98 2,058 1,127 0 0,001 0,05 0,857 0,001 0 0 0,001
Rb ICP-MS 0,5 0 1,39 33,5 11,9 11,5 5,61 558 0 0 0 0 0 0,101 0 0

S ICP-AES 15 0 543 2090 888 863 154 119 0 0 0 0 0 0 0 0

Sb ICP-MS 0,01 0 0,011 0,623 0,052 0,041 0,045 0,018 0 0 0 0 0 0 0 0

Si ICP-AES 20 0 24,9 983 213 197 107,9 86,0 0 0,42 0,01 0,061 0,42 0 0 0,421
Sr ICP-MS 0,2 0 2,47 435 15,6 9,4 29,38 532 0 0 0 0 0 0 0 0

Th ICP-MS 0,004 1,3 <0.004 1,14 0,038 0,023 0,07 0,014 0 0 0 0 0 0 0 0

Tl ICP-MS 0,004 0,2 <0.004 0,35 0,032 0,023 0,032 0,016 0 0,187 0 0,059 0,187 0 0 0,189
U ICP-MS 0,004 5,4 <0.004 0,451 0,02 0,011 0,037 0,007 0 0 0 0 0 0 0 0

v ICP-MS 0,02 0 0,28 83,8 2,58 1,60 4,575 0,912 0 0 0 0 0 0 0 0

Zn ICP-AES 1 0 11,7 81,9 33,7 32,2 10,79 942 0 0,587 0,5 0,584 0,586 0 0 0,587

For example, the distribution of Na in the C-horizon of
the Kola data set shows a clear break in the distribution
due to the occurrence of alkaline rocks in the survey area
(Fig. 1 - CDF-diagram, for maps see Reimann and others
1998). The distribution of Ni in moss is strongly
influenced by the emissions of the Russian nickel industry
in the survey area (see Fig. 1 - CDF-diagram). In both
cases two distributions (at least) are superimposed on one
another and the use of the mean will clearly give a far too
high estimate of location for the underlying main body of
data, although it represents the average element concen-
tration in the survey area. The general decision that has
to be taken before mean or median are used is thus
whether or not secondary processes should be allowed to
have a major influence on the estimate of location. In
most cases it will be better to first ignore the secondary
process, because in a later step of data analysis these will
then be much easier to detect. This is probably the main
task in regional and environmental geochemistry. In this
case the median, as a robust estimator of location, is far
superior to the mean.

The standard deviation is based on the squared differ-
ences of each observation from the mean. Since the mean
is already a bad estimator of location the standard devia-
tion will give a unrealistic estimate of data spread. It is
very strongly influenced by high values from a second
population or by a few high data outliers. The median
absolute deviation (mad) is robust against a high number
of outliers. For the use of median and mad the data do
not need to follow any model. In most cases they will
thus give much more realistic values for location and
spread. Fig. 2 shows the relative deviation of mean and
standard deviation from median and mad for all eight
investigated data sets. Even a cursory glance will show
the big differences between the classical and widely used
estimators and the better, much less used median and
mad. A large difference between mean and median and
standard deviation and mad is again a clear indication
that the data do not show a normal distribution.

It may be argued that there are two easy solutions to the
above problem. One could calculate the mean and stand-
ard deviation for the log-transformed values to then
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transform these back. Using this approach one should get
much more realistic values for mean and standard devia-
tion even for skewed data. This approach is far from
ideal for several reasons (1) it is awkward, (2) the above
tests demonstrated that, for the majority of variables, a
log-transformation does not result in a normal distrib-
ution, and (3) there are better and easier methods (e.g.
using median and mad). Another solution could be to
first remove the outliers and then calculate mean and
standard deviation. However, the problem is then the def-
inition of outliers — which values should already be
removed and which still included for the calculations.
And why go to such lengths when easier and better meth-
ods exist?

Fig. 3 shows the same plot as Fig. 2. Here the data were
first log-transformed (In), mean and standard deviation
and median and mad were calculated and then trans-
formed back. Fig. 3 shows that there are still big differ-
ences between mean and median and standard deviation
and mad. Thus a log-transformation of the data, as sug-
gested in the vast majority of textbooks in geochemistry,
is no real solution for approaching a normal distribution
when working with geochemical or environmental data.
Their real characteristic is that they are skewed (Vistelius
1960!) and the frequent occurrence of outliers, originating
from another, superimposed population.

The vast majority of advanced statistical methods and
tests are based on the assumption of an underlying nor-
mal distribution of the data. How then should one con-
tinue with data analysis for geochemical or environmen-
tal samples? Exploratory data analysis (EDA - Tukey
1977) was especially developed to deal with such situ-
ations. It provides a large number of simple graphical
techniques for study of the data in detail prior to use of
any advanced statistical technique (e.g. Velleman and
Hoaglin 1981; Dutter and others 1992). Fig. 1 gives just
one example of some of these graphics. The CDF-di-
agrams could directly be used to detect more than one
population in a data set (see discussion above). For Th
the one-dimensional scattergram beneath the histogram
shows that the data were reported in 0.1-mg/kg-steps up
to 10 mg/kg and then, suddenly in 1-mg/kg-steps, leading
to fragmented data at the upper end of the distribution
(Fig. 1). The boxplot is another prominent example of
one of these graphics. It can be used in combination with
the histogram as in Fig. 1. In combination with intelli-
gently chosen data subgroups it is an even more powerful
tool for detection of the important information in a data
set (Reimann and Wurzer 1986; Reimann 1987, 1989b;
Reimann and others 1988) in a simple, graphical way
without any assumptions on data behaviour. EDA should
in general be the first step in the analysis of geochemical
and environmental data.

There are quite a number of further techniques that do
not make any assumptions about the data distribution.
These run in general under the name of nonparametric
methods (e.g. Afifi and Azen 1979; Conover 1980; Puri
and Sen 1985; Noether, G.E. 1991; Gore and others 1993).
Robust methods (Huber 1981; Hampel and others 1986)
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take care against data outliers. These methods should be
the first choice when dealing with geochemical and envi-
ronmental data.

Other classical statistical techniques, e.g. factor analysis
by the maximum likelihood method, not only require
that each variable entered shows a normal distribution
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but in addition that the whole data set shows a multivari-
ate normal distribution. None of the test data sets comes
even close to a multivariate normal distribution, neither
the original data (Fig.4) nor the log-transformed (In) data
(Fig.5). Such methods should thus be avoided in treating
geochemical and environmental data.

What influence has the absence of normal and lognormal
distributions in geochemistry on one of the most
frequently used techniques: correlation analysis? An easy
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way to visualise the sensibility of correlation to outliers is
the distance-distance (D-D) plot (Rousseeuw and Van
Driessen 1999) which is, for example, implemented in the
software package S-PLUS (Venables and Ripley 1997).
Here the Mahalanobis distance is drawn against the
robust distance. Robust distances can be obtained by
introducing robust counterparts to the arithmetic mean
and the sample variance-covariance matrix into the for-
mula for the Mahalanobis distance. A fast and stable pos-
sibility for estimation of mean and covariance in a robust
way is to use the minimum covariance determinant
(MCD) estimator (Rousseeuw 1985). The objective is to
find those h out of n observations, typically h=0.75 n,
for which the classical covariance matrix has the lowest
determinant. The MCD estimate of location is then the
average of these h points, whereas the MCD estimate of
scatter is their covariance matrix. On both axes of the
D-D plot the cutoff value /72,5 separates outlying
observations. All points in the D-D plot should plot near
the stippled line if outliers did not corrupt the data.
Deviations from this line indicate that the classical esti-
mators for mean and covariance, and hence also the cor-
relation matrix, are biased.

Environmental Geology 39 (9) July - © Springer-Verlag

Fig. 6 shows, for two examples, the moss and the C-hori-
zon data-sets of the Kola project, that large differences
have to be expected between the results of a robust corre-
lation analysis and correlation analysis performed with
the original data. The situation is improved when log-
transformed (Iln) data are entered into correlation analysis
(Fig. 6). But even after log-transformation (In) of the orig-
inal data there is still a large number of outliers (Fig. 6).
This outcome is a clear indication that all non-robust cor-
relation-based methods will deliver distorted results with
geochemical and environmental data. A robust correlation
matrix, which can be obtained by the MCD-estimator,
should be used as a foundation for all correlation based
methods (e.g. principal component analysis, factor analy-
sis). Another solution would be to first use techniques
that are well suited to detect data outliers (e.g. EDA),
remove these and then continue with more advanced
methods. When, for example, uncritically entering a factor
analysis even with the original (log-transformed) data the
results will be governed by the process(es) causing the
“high” values. The result is thus biased and could be
easily predicted by much simpler methods.
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Frequently used statistical parameters, tests and multivariate methods and their suitability for regional geochemical and
environmental data which neither show a normal or lognormal distribution

Location and spread

Arithmetric mean

Geometric mean

Median

Robust mean (Hampel or Huber)
Standard deviation

Mad (medmed)

Hinge spread

Robust spread

Tests for comparability of means/variances

t-test

F-test

“Notches” in boxplot
Nonparametric tests
Robust tests

Multivariate methods
Correlation analysis

Should only be used in special cases

Can be used, but may be problematic in some cases

Can be used, should be first choice as location estimator
Can be used

Should not be used if data outliers exist

Can be used

Can be used

Can be used

Should not be used

Should not be used

Can be used, very easy and fast
Can be used

Can be used

Should not be used with the original (untransformed) data OK in graphical form
(e.g. draftman’s display)

Regression analysis

Robust regression analysis
Nonparametric regression analysis
Principal component analysis (PCA)
Robust PCA

Factor analysis

Robust factor analysis
Discriminant analysis
Correspondence analysis

Cluster analysis

Partial least squares (PLS)

Robust PLS

ANOVA

Robust ANOVA

Should not be used with the original (untransformed) data
Can be used, preferably on log-transformed data

Can be used, preferably on log-transformed data

Very sensible to outlying observations, should not be used
Can be used, preferably with log-transformed data

Very sensible to outlying observations, should not be used
Can be used, preferably with log-transformed data

Very sensible to outlying observations, should not be used
Very sensible to outlying observations, should not be used
Can be used

Very sensible to outlying observations, should not be used
Can be used

Very sensible to outlying observations, should not be used
Can be used

Table 3 gives a collection of the most frequently used sta-
tistical parameters, tests, and methods in geochemistry
and environmental sciences together with an estimation
of their vulnerability to non-normally distributed data.

Conclusions

It has been suggested (Ahrens 1953) that geochemical
data as a law show a lognormal distribution. This is,
however, a rare exception in geochemistry (e.g. when sev-
eral analyses are carried out on the same samples or
when all samples where taken from one outcrop or one
rock unit over a very limited area — Vistelius 1960).
Regional geochemical and environmental data almost
never follow a normal distribution. In the majority of
cases a data transformation (e.g. log, In, logit, square
root or range) will not result in a normal distribution.
This observation has serious consequences for the further
statistical treatment of geochemical and environmental
data that are widely neglected.

Mean and standard deviation, which are the best estima-
tors of location and spread for data that follow a normal
distribution, are far from ideal when used for regional
geochemical or environmental data. The reason for the
strong skew in data sets from geochemistry and environ-

mental sciences is often that the samples represent more
than one population/process. In most cases the best
measure of location for such data is the median. The geo-
metric mean may be an acceptable alternative (but has a
number of other associated dangers - see discussion in
Rock 1988). As a measure of spread, the median absolute
deviation (mad) or the hinge-spread (Tukey 1977) should
be used instead of the standard deviation which is very
vulnerable to the existence of data outliers. Due to the
very different information that mean and median rep-
resent for skewed data, it may be justified to present
both in data tables.

The vast majority of classical statistical methods are
based on the assumption of a normal distribution in the
data entered. If using them with non-normally distributed
data one should be very aware that this could give biased
or even faulty results. Data outliers do not influence
robust methods. Non-parametric methods are not based
on model assumptions. These are thus preferable to the
classical methods. In any case, a thorough univariate
analysis and documentation of geochemical and environ-
mental data sets is an absolute necessity before using
more advanced statistical methods. Some multivariate
methods and statistical tests require not only that each
variable shows a normal distribution but also a multivari-
ate normal distribution. None of the test data sets came
even close to a multivariate normal distribution. A log-
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transformation (In) of the data resulted only in a slight
improvement, not however, in multivariate normal dis-
tributions. Methods requiring a multivariate normal dis-
tribution are especially vulnerable when used with geo-
chemical and environmental data and will often deliver
unstable and faulty results.

Geochemists and environmental scientists should realise
that in very many cases they are actually presenting biased
and faulty results by still believing in the lognormal law of
distribution of their data. It is high time that they stop to
uncritically use techniques that were not made for such
situations. Today there exist a multitude of statistical tech-
niques giving correct results. Already the simple study of
distributions in graphics will often give more important
geochemical insights than very advanced statistical meth-
ods - as suggested 40 years ago by Vistelius (1960).
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