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Abstract

For high-dimensional data of low sample size it is difficult to compute prin-
cipal components in a robust way. We mention an algorithm which is highly
precise and fast to compute. The robust principal components are used to com-
pute distances of the observations in the (sub-)space of the principal components
and distances to this (sub-)space. Both distance measures retain valuable infor-
mation about the multivariate data structure. Plotting the magnitudes of the
distance measures helps to reveal important multivariate data information.

1 Introduction

Principal component analysis (PCA) is frequently used in an exploratory context to
gain first insight into multivariate data. The method is fast to compute, and also
the geometric concept of PCA is easy to understand. Moreover, for the purpose of
graphically inspecting the multivariate data the data requirements (distributional as-
sumptions, etc.) are very low. These features make PCA attractive for researchers and
practitioners working in various fields. Pairwise plots of the first few principal compo-
nents (PCs) often allow to reveal the multivariate data structure in a way that relations
among the observations as well as data groups and structures can be discovered.

PCA is also often used to identify data outliers. Surprisingly, in many applications
this even works, although it is well known that the directions of the PCs are determined
by the eigenvectors of the covariance matrix of the data. Using the empirical covariance
matrix as an estimator of the covariance results in an unbounded influence function
of the eigenvalues and eigenvectors (Croux and Haesbroeck, 2000) which means that
the eigendecomposition can be completely misled even in case of very small amount
of contamination. On the other hand, huge outliers can attract a PC, and the analyst
will be able to discover such outliers by inspecting the corresponding component. In
that way, PCA does not focus on revealing the main variability of the underlying data
structure, but it still is able to find interesting phenomena in the data. The analyst
would then usually remove this outlier and proceed with a new PCA on the reduced
data to finally reveal the multivariate data structure.

Less extreme outliers or multivariate outliers are not necessarily visible as isolated
points at the projections on the PCs. Even worse, they are able to spoil the PC
directions, and the goal of exploring the relevant data structure by the first few PCs
may completely fail (Croux and Ruiz-Gazen, 2005). This can be avoided if PCA is
robustified. The easiest possibility is to estimate the covariance matrix in a robust
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way, using well known estimators like the MCD (Rousseeuw and Van Driessen, 1999).
The eigenvectors of this robust covariance matrix will be resistant to outliers in the
data and point in directions of high variability of the main data cloud.

Exploring data by PCA and robustifying PCA as mentioned above is possible for
“tall” data where n, the number of observations, is (much) larger than p, the number
of variables. However, there are many applications in chemometrics, marketing, bio-
statistics, etc. where p is much larger than n. Robust covariance estimation e.g. using
the MCD does no longer work in this case and one needs to consider other alternatives.
Moreover, projecting the data on the first two PCs is often still very uninformative
because of the high dimensionality of the data.

In this paper we will briefly describe methods and algorithms for robust PCA in the
case p >> n (Section 2). At the basis of a diagnostics plot for PCA (Hubert et al., 2005)
we construct a plot in Section 3 that allows to reveal multivariate data structure. As a
motivating example we use a data set of 21 NIR spectra in 268 dimensions (Swierenga
et al., 1999).

2 PCA for high-dimensional data

A very appealing approach for robust PCA in high dimensions is based on the projection-
pursuit (PP) principle (Li and Chen, 1985). This approach uses the initial definition
of PCA of finding a direction where the projected data points have maximal variance.
Subsequent directions have the same goal of maximizing the variance of the projected
data, but they are supposed to be orthogonal to previously found directions. Robusti-
fying this approach is in fact very easy, because the measure of variance simply needs
to be robust. The MAD or the Qn estimators have been suggested for this purpose
(Croux and Ruiz-Gazen, 2005). The difficult task, however, is to develop an algorithm
for solving the maximization problem.

In the case p >> n the computational complexity can be reduced considerably
by first performing a singular value decomposition which allows a reduction of the
dimensionality from p to only n dimensions without any loss of information (see e.g.
Stanimirova et al., 2004).

The algorithm of Croux and Ruiz-Gazen (2005) uses candidate directions for finding
the first PC that consist of directions from the center of the data cloud to each single
data point. The resulting n directions are then evaluated by computing the (robust)
variance of the projected data points, and the direction corresponding to the maximum
of the variance is an approximation of the direction of the first PC. The search is then
continued analogously in the subspace orthogonal to the found direction. The identified
directions are approximations of the eigenvectors of a covariance-based approach, and
the corresponding maximal variances are approximations of the eigenvalues.

Recently it was pointed out (Croux et al., 2007) that the algorithm of Croux and
Ruiz-Gazen (2005) has serious drawbacks:

(a) The estimated eigenvalues corresponding to the k-th PC with k > n/2 are exactly
zero if the MAD, the Qn, or any other highly robust scale measure is used. This
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Figure 1: NIR spectra of PET yarns; the highlighted (black) spectra have deviating
structure for small wavelengths.

artefact is also called implosion of the scale measure. Usually, this drawback
has no real consequences because one is mainly interested in the first few PCs.
However, if a robust covariance matrix should be estimated with the robust PCs,
the result could be seriously biased.

(b) Especially for p >> n the algorithm is not very precise. This can be verified by
comparing the theoretical maximum which are the eigenvalues of the eigendecom-
position of the sample covariance matrix with the resulting estimated eigenvalues
of this algorithm using the classical variance measure.

Both disadvantages are solved by the so-called GRID algorithm (Croux et al., 2007).
The idea is to search for the optimal direction only in a plane on a regular grid. The
plane is first spanned by two variables, but later on also information of the other
variables is used by taking linear combinations with the remaining variables. The
resulting directions are highly precise: the estimated eigenvalues are in general consid-
erably higher than for the algorithm of Croux and Ruiz-Gazen (2005), and they come
very close to the true maximum. The GRID algorithm has been implemented in the
library pcaPP of the statistical software R.

2.1 Example

We apply robust PCA on a data set described in Swierenga et al. (1999) of 21 NIR
spectra of PET yarns, measured at 268 wavelengths. The data set is available in R
in the package pls as data set NIR. Swierenga et al. (1999) used these data together
with 28 corresponding densities to construct a robust multivariate calibration model.
Here we will only consider the NIR data, and our goal is to gain insight into their
multivariate data structure using robust PCA. Figure 1 shows the 28 spectra. We
highlighted some spectra with somewhat abnormal behavior at small wavelengths.
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Figure 2: Robust PCA for the NIR data using the GRID algorithm with the MAD as
scale measure.

Robust PCA using the GRID algorithm was applied to the NIR data set. To obtain
robust components the MAD (median absolute deviation) was used as scale measure.
Figure 2 shows the plot of first versus second PC (left) and first versus third PC (right).
The highlighted spectra from Figure 1 are visualized as dark points. The first 3 PCs
include 98.8% of the total variability. However, it is not obvious from these plots that
the highlighted spectra are somehow different. It is possible that this difference is
expressed in the remaining 25 PCs which, on the other hand, only contain a bit more
than 1% of the total variability.

3 Orthogonal distance and score distance

Hubert et al. (2005) used the orthogonal distance (OD) and the score distance (SD)
as diagnostic tools in the context of PCA. For a sample x1, . . . , xn in Rp the OD is
defined as

OD
(k)
i = ‖xi − µ̂− P (k)t

(k)
i ‖ (1)

and the SD as

SD
(k)
i =




k∑

j=1

‖t(k)
i ‖2

lj




1/2

(2)

for i = 1, . . . , n. Here, µ̂ is the estimated center of the data, the matrix P (k) contains
the first k estimated eigenvectors in its columns, lj are the estimated eigenvalues, and

t
(k)
i is the ith score vector in the space of the first k principal components (1 ≤ k ≤ r)

with r being the rank of the data. Both the OD and the SD depend on the number
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Figure 3: Diagnostic plots to the PCA from Figure 2 for 2 (left) and 3 (right) compo-
nents.

of PCs considered. The OD describes the orthogonal distance of an observation to the
space spanned by the first k PCs, whereas the SD is a Mahalanobis-like measure of
distance of an observation within the PC space. Samples with large OD and SD can
have severe leverage to a classical PCA.

Hubert et al. (2005) introduced a diagnostic plot for PCA by plotting SD versus
OD. Critical thresholds for SD and OD allow to identify outlying observations. Fig-
ure 3 shows this diagnostic plot for the NIR data when k = 2 PCs (left) and k = 3
PCs are used to compute the distances. Again, the black points refer to the spectra
with unusual behavior. We used similar critical values as in Hubert et al. (2005): for
the SD a quantile of the chi-squared distribution with k degrees of freedom (we used√

χ2
k;0.975), and for OD we also took the Wilson-Hilferty approximation for the scaled

chi-squared distribution which assumes that the ODs to the power of 2/3 are approxi-
mately normally distributed. The parameters µ and σ of the normal distribution can
be estimated by the median and MAD of the values OD2/3, and the critical value can
be taken as (µ̂+ σ̂z0.975)

3/2, with z0.975 being the 97.5% quantile of the standard normal
distribution. The critical values in Figure 3 for k = 3 allow to identify two observations
as “outliers” because their OD is larger than the critical value. Note that our goal is
not necessarily outlier detection using the PCs but rather to learn about the multivari-
ate data structure. These plots, however, do not reveal any special phenomenon like
groups of deviating data points.

It is possible, that such a diagnostic plot would reveal deviating data points in
a better way if more PCs were used for computing the OD and SD. Hubert et al.
(2005) suggested to take as many PCs such that about 90% of the total variability are
explained. This would correspond to the right plot in Figure 3.
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4 Exploring the multivariate data structure

It is easy to show that

SD
(k)
i ≤ SD

(k+1)
i and OD

(k)
i ≥ OD

(k+1)
i

for 1 ≤ k < r. These properties can also be observed in Figure 3. In fact, the SD is
just the projection of the Mahalanobis distance on the space spanned by the first k
PCs, see Equation (1). Using all PCs for computing the SD is exactly the Mahalanobis
distance. Naturally, the distances in a higher dimensional space are increasing. Also
for OD the above property is obvious because for increasing dimension of the PC space
the orthogonal distances to the data space have to decrease, see Equation (2). On the
other hand, also the critical values for OD and SD change for an increasing number k
of PCs. Moreover, it is possible that an observation has large OD and small SD for k
PCs, but small OD and large SD for k +1 PCs. This can be the case if the observation
is far away from the space spanned by k PCs but very close to PC number k + 1.

Thus, studying the OD and SD for various values of k might provide more insight
into the multivariate data structure. Since it will be rather difficult to use a diagnostic
plot like in Figure 3 for several or all values of k we prefer to present two separate plots
for the OD and for the SD. Following the suggestions of Maronna and Zamar (2002), we

multiply the SD with the scaling factor
√

χ2
k;0.5/median(SD

(k)
i ) which improves the chi-

square approximation significantly. Afterwards, we divide the OD and the scaled SD by
their critical values corresponding to the 97.5% quantiles or the respective distribution.
OD and SD are thus standardized, and a comparison with the critical threshold 1 can
be easily done. Figure 4 shows the resulting plots for the number of PCs ranging from
1 to 28. Each line in the plot corresponds to the standardized OD (left) or SD (right)
of an observation. The black lines are the atypical observations from Figure 1. The
dashed lines refer to the critical threshold 1. Most of the atypical observations are only
exceeding the threshold if more than 3 PCs are taken.

The visualization of Figure 4 can be improved by observing if an observation exceeds
the critical value at a given number of PCs or not. This information is shown in Figure
5 for the OD (left) and for the SD (right). A white square indicates that the observation
did not exceed the critical value for given k. Light gray, dark gray and black boxes
are plotted if the observations exceed the corresponding 97.5%, 99%, or 99.9% critical
values, respectively. The atypical observations visible in Figure 1 refer to the indices
1, 3, 6, 10, 15, and 21, which are also atypical in the plot of the OD and/or SD in
Figure 5. There are additional outstanding observations which refer to further deviating
structure in some of the NIR spectra. Thus, the plot provides an impression about the
multivariate data structure.

5 Summary

For high-dimensional data it is not trivial how to compute robust principal components.
We propose to use the GRID algorithm (Croux et al., 2007) which is very precise and
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Figure 4: Standardized OD (left) and SD (right) for each observation using k =
1, . . . , 28 PCs. The dashed lines indicate the 97.5% critical values.
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Figure 5: OD (left) and SD (right) for each observation using k = 1, . . . , 28 PCs. The
different gray levels indicate that the 97.5% (light gray), 99% (dark gray), or 99.9%
(black) critical value was exceeded.
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results in highly robust PCs. The estimated eigenvectors and eigenvalues from this ap-
proach can be used to compute orthogonal and score distances which are indications of
outlyingness of the observations. We introduced a new plot of these distance measures
computed for various numbers of principal components. Deviations of observations
from the main data structure in a certain sub-space spanned by k PCs are indicated
in the plot. Since the dimension of the sub-space changes with the number of PCs, the
plot helps to reveal the multivariate data structure.

In the presentation we will also give other real data examples where this plot gives
insight into the data structure. Moreover, we will demonstrate that not only the
robustness of PCA is important for an informative plot, but also the precision of the
PCA algorithm.
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