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Abstract

A method for the detection of multivariate outliers is proposed which accounts
for the data structure and sample size. The cut-off value for identifying outliers
is defined by a measure of deviation of the empirical distribution function of
the robust Mahalanobis distance from the theoretical distribution function. The
method is easy to implement and fast to compute.

1 Introduction

Outlier detection belongs to the most important tasks in data analysis. The outliers
describe the abnormal data behavior, i.e. data which are deviating from the natural
data variability. Often outliers are of primary interest, for example in geochemical
exploration they are indications for mineral deposits. The cut-off value or threshold
which divides anomalous and non-anomalous data numerically is often the basis for
important decisions.

Many methods have been proposed for univariate outlier detection. They are based
on (robust) estimation of location and scatter, or on quantiles of the data. A major
disadvantage is that these rules are independent from the sample size. Moreover, by
definition of most rules (e.g. mean ±2· scatter) outliers are identified even for “clean”
data, or at least no distinction is made between outliers and extremes of a distribution.

The basis for multivariate outlier detection is the Mahalanobis distance. The stan-
dard method for multivariate outlier detection is robust estimation of the parameters
in the Mahalanobis distance and the comparison with a critical value of the χ2 distribu-
tion (Rousseeuw and Van Zomeren, 1990). However, also values larger than this critical
value are not necessarily outliers, they could still belong to the data distribution.

In order to distinguish between extremes of a distribution and outliers, Garrett
(1989) introduced the χ2 plot, which draws the empirical distribution function of the
robust Mahalanobis distances against the χ2 distribution. A break in the tail of the
distributions is an indication for outliers, and values beyond this break are iteratively
deleted.

The approach of Garrett (1989) needs a lot of interaction of the analyst with the
data since this method is not an automatic procedure. We propose a method which
computes the outlier threshold adaptively from the data. By investigation of the tails
of the difference between the empirical and a hypothetical distribution function we find
an adaptive threshold value which increases with sample size if there are no outliers
and which is bounded in presence of outliers.
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2 Methods for Multivariate Outlier Detection

The shape and size of multivariate data are quantified by the covariance matrix. A
well-known distance measure which takes into account the covariance matrix is the
Mahalanobis distance. For a p-dimensional multivariate sample xi (i = 1, . . . , n) the
Mahalanobis distance is defined as

MDi =
(
(xi − t)T C−1(xi − t)

)1/2
for i = 1, . . . , n (1)

where t is the estimated multivariate location and C the estimated covariance matrix.
Usually, t is the multivariate arithmetic mean, and C is the sample covariance matrix.
For multivariate normally distributed data the values are approximately chi-square
distributed with p degrees of freedom (χ2

p). Multivariate outliers can now simply be
defined as observations having a large (squared) Mahalanobis distance. For this pur-
pose, a quantile of the chi-squared distribution (e.g., the 97.5% quantile) could be
considered. However, this approach has several shortcomings. The Mahalanobis dis-
tances need to be estimated by a robust procedure in order to provide reliable measures
for the recognition of outliers. Single extreme observations, or groups of observations,
departing from the main data structure can have a severe influence to this distance
measure, because both location and covariance are usually estimated in a non-robust
manner. Many robust estimators for location and covariance have been introduced in
the literature. The minimum covariance determinant (MCD) estimator is probably
most frequently used in practice, partly because a computationally fast algorithm is
available (Rousseeuw and Van Driessen, 1999). Using robust estimators of location
and scatter in formula (1) leads to so-called robust distances (RD). Rousseeuw and
Van Zomeren (1990) used these RDs for multivariate outlier detection. If the squared
RD for an observation is larger than, say, χ2

p;0.975, it can be declared a candidate outlier.
This approach, however has shortcomings: It does not account for the sample size n

of the data, and, independently from the data structure, observations could be flagged
as outliers even it they belong to the data distribution. A better procedure than
using a fixed threshold is to adjust the threshold to the data set at hand. Garrett
(1989) used the chi-square plot for this purpose, by plotting the squared Mahalanobis
distances (which have to be computed at the basis of robust estimations of location
and scatter) against the quantiles of χ2

p, the most extreme points are deleted until the
remaining points follow a straight line. The deleted points are the identified outliers.
This method, however, is not automatic, it needs user interaction and experience on the
part of the analyst. Moreover, especially for large data sets, it can be time consuming,
and also to some extent it is subjective. In the next section a procedure that does not
require analyst intervention, is reproducible and therefore objective, into consideration
is introduced.

3 An Adaptive Method

The chi-square plot is useful for visualizing the deviation of the data distribution from
multivariate normality in the tails. This principle is used in the following. Let Gn(u)
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denote the empirical distribution function of the squared robust distances RD2
i , and let

G(u) be the distribution function of χ2
p. For multivariate normally distributed samples,

Gn converges to G. Therefore the tails of Gn and G can be compared to detect outliers.
The tails will be defined by δ = χ2

p;1−α for a certain small α (e.g., α = 0.025), and

pn(δ) = sup
u≥δ

(
G(u)−Gn(u)

)+

is considered, where “+” indicates the positive differences. In this way, pn(δ) measures
the departure of the empirical from the theoretical distribution only in the tails, defined
by the value of δ. pn(δ) can be considered as a measure of outliers in the sample. Gervini
(2003) used this idea as a reweighting step for the robust estimation of multivariate
location and scatter. The efficiency of the estimator could be improved considerably.

pn(δ) will not be directly used as a measure of outliers. The threshold should be
infinity in case of multivariate normally distributed data, i.e. extreme values or values
from the same distribution should not be declared as outliers. Therefore a critical
value pcrit is introduced, which helps to distinguish between outliers and extremes.
The measure of outliers in the sample is then defined as

αn(δ) =

{
0 if pn(δ) ≤ pcrit(δ, n, p)
pn(δ) if pn(δ) > pcrit(δ, n, p).

The threshold value which will be called adjusted quantile is then determined as cn(δ) =
G−1

n (1 − αn(δ)). The critical value for distinguishing between outliers and extremes
can be derived by simulation, and the result is approximately

pcrit(δ, n, p) =
0.24− 0.003 · p√

n
for δ = χ2

p,0.975 and p ≤ 10

and

pcrit(δ, n, p) =
0.252− 0.0018 · p√

n
for δ = χ2

p,0.975 and p > 10

(see Filzmoser, Reimann, and Garrett, 2003).

4 Example

We simulate a data set in two dimensions in order to simplify the graphical visual-
ization. 85 data points follow a bivariate standard normal distribution. Multivariate
outliers are introduced by 15 points coming from a bivariate normal distribution with
mean (2, 2)T and covariance matrix diag(1/10, 1/10). The data are presented in Figure
1. The MCD estimator is applied and the robust distances are computed. Figure 2
shows in more detail how the adaptive outlier detection method works. The plot shows
the empirical distribution function of the ordered squared distances (points) and the
theoretical distribution function of χ2

2 (solid line). The dotted line χ2
2;0.975 identifies

only four outliers which are presented in the left part of Figure 3 as dark points. The
adjusted quantile gives a more realistic rule, and the identified outliers are shown in
the right part of Figure 3.
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Figure 1: Simulated bivariate data with outliers shown as dark points.
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Figure 2: Empirical distribution function of the ordered squared distances (points) and
theoretical distribution function of χ2

2 (solid line).

4



−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Outliers based on 97.5% quantile
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Outliers based on adaptive method

Figure 3: Resulting outliers (dark points) according to χ2
2;0.975 (left) and the adaptive

quantile (right).

5 Summary

An automated method to identify outliers in multivariate space was developed. The
method compares the difference between the empirical distribution of the squared ro-
bust distances and the distribution function of the chi-square distribution. The method
accounts not only for different dimension of the data but also for different sample size.
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