
Abstract. Statistical hypothesis testing is very important for finding decisions
in practical problems. Usually, the underlying data are assumed to be precise
numbers, but it is much more realistic in general to consider fuzzy values
which are non-precise numbers. In this case the test statistic will also yield a
non-precise number. This article presents an approach for statistical testing at
the basis of fuzzy values by introducing the fuzzy p-value. It turns out that
clear decisions can be made outside a certain interval which is determined by
the characterizing function of the fuzzy p-values.
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1 Introduction

Real observations of continuous quantities are not precise numbers but more
or less non-precise. The best description of such data is by so-called non-
precise numbers. Such observations are also called fuzzy. The fuzziness is
different from measurement errors and stochastic uncertainty. It is a feature
of single observations from continuous quantities. Errors are described by
statistical models and should not be confused with fuzziness. In general
fuzziness and errors are superimposed.

A typical example for a non-precise number is the life time of a system
which can in general not be described by one real number because the time of
the end of the life time is not a precise number but more or less non-precise.
Other examples of non-precise data are data given by color intensity pictures
or readings on an analogue measurement equipment. Also readings on digital
measurement equipments are not precise numbers but intervals since there is
only a finite number of decimals available. Further examples are given in
Viertl (2002).
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A special case of non-precise data are data in form of intervals. Precise
real numbers x0 2 R as well as intervals ½a; b� � R are uniquely characterized
by their indicator functions Ifx0gð�Þ and I½a;b�ð�Þ respectively, where the indi-
cator function IAð�Þ of a classical set A is defined by

IAðxÞ ¼
1 for x 2 A
0 for x 62 A.

�

Often the fuzziness of measurements implies that exact boundaries of interval
data are not realistic. Therefore it is necessary to generalize real numbers and
intervals to describe fuzziness. This is done by the concept of non-precise
numbers as generalization of real numbers and intervals. Non-precise num-
bers as well as non-precise subsets of R are described by generalizations of
indicator functions, called characterizing functions nð�Þ (see, e.g., Viertl, 1996).
Characterizing functions are real functions n : R�!½0; 1� with the following
properties:

(i) 0 � nðxÞ � 1 for all x 2 R
(ii) 9 x0 2 R : nðx0Þ ¼ 1
(iii) For all d 2 ð0; 1� the so-called d-cut Cd nð�Þð Þ :¼ fx 2 R : nðxÞ � dg
¼ ½ad; bd� is a closed finite interval.

In the following, non-precise observations and non-precise numbers will be
marked by stars, i.e. x�, to distinguish them from (precise) real numbers x. In
order to simplify the notation we denote the d-cut of a characterizing function
nð�Þ of a fuzzy observation x� by Cdðx�Þ.

Methods how to obtain the characterizing function of one-dimensional
non-precise observations are given in Viertl (2002).

Remark. The concept of non-precise numbers is more general than the concept
of fuzzy numbers. It contains both fuzzy numbers and fuzzy intervals. This is
necessary because real fuzzy data are of this more general shape.

The paper is organized as follows. In Section 2 we explain how the
vector of fuzzy observations is combined to form a non-precise element of
the sample space. Section 3 is concerned with testing hypotheses with
precise numbers. In Section 4 we extend the testing problem to fuzzy
values of a test statistic and introduce the fuzzy p-value. This concept is
illustrated in several examples with typical testing problems (Section 5). In
the final section some conclusions and proposals for further research are
given.

2 Statistics with fuzzy data

Let us consider a univariate random variable X . Drawing a sample of n
observations of X results in n non-precise numbers x?1; . . . ; x?n. In a general
setting, these n non-precise numbers will have different characterizing func-
tions denoted by n1ð�Þ; . . . ; nnð�Þ. We can combine these non-precise numbers
into an n-dimensional fuzzy vector x? which is determined by a so-called
vector characterizing function fð�; . . . ; �Þ. The function f : Rn�!½0; 1� has the
following properties:
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(i) 0 � fðx1; . . . ; xnÞ ¼ fðxÞ � 1 for all ðx1; . . . ; xnÞ ¼ x 2 Rn

(ii) 9 x0 2 Rn : fðx0Þ ¼ 1
(iii) 8d 2 ð0; 1� the d-cut Cd fð�; . . . ; �Þð Þ ¼ Cdðx?Þ :¼ fx 2 Rn : fðxÞ � dg is a

closed compact and convex subset of Rn.

One way to combine the characterizing functions n1ð�Þ; . . . ; nnð�Þ into a vector
characterizing function fð�; . . . ; �Þ of x? is the minimum combination rule

fðx1; . . . ; xnÞ ¼ min n1ðx1Þ; . . . ; nnðxnÞ½ � for all ðx1; . . . ; xnÞ 2 Rn:

By this definition it holds that fð�; . . . ; �Þ is a vector characterizing function.
Moreover, the d-cuts Cdðx?Þ are Cartesian products of the d-cuts of the n non-
precise numbers x?1; . . . ; x?n, i.e.

Cdðx?Þ ¼ Cdðx?1Þ � Cdðx?2Þ � � � � � Cdðx?nÞ for all d 2 ð0; 1�:
Let us now consider a real valued continuous function gð�; . . . ; �Þ which is
applied to the non-precise numbers x?1; . . . ; x?n. The resulting value gðx?1; . . . ; x?nÞ
is again a non-precise number, denoted by y?. The values gðyÞ of the char-
acterizing function gð�Þ of y? can be obtained by the extension principle
developed by Zadeh (see Bandemer and Näther, 1992, or Dubois and Prade,
2000):

gðyÞ ¼
supffðxÞ : gðxÞ ¼ yg if g�1ðfygÞ 6¼ ;

0 if g�1ðfygÞ ¼ ;

( )
for all y 2 R

The function gð�Þ of y? is indeed a characterizing function whose d-cuts are
given by

Cdðy?Þ ¼ min
x2Cdðx?Þ

gðxÞ; max
x2Cdðx?Þ

gðxÞ
� �

for all d 2 ð0; 1�

(see Viertl, 1996).

3 Testing of hypotheses

A hypothesis testing problem may be regarded as a decision problem where
decisions have to be made about the truth of two propositions, the null
hypothesis H0 and the alternative H1. For precise data, the decision rules are
based on a sample x1; . . . ; xn of an underlying random variable X whose
distribution Ph (h 2 H) is at least partially unknown. The decision is usually
depending on a test statistic gðx1; . . . ; xnÞ which is a function of the obser-
vations x1; . . . ; xn. The randomness of the sample is expressed by the
assumption that the data are generated by a random sample X1; . . . ;Xn of X
according to the model Ph. The decision is then based on the test statistic

T ¼ gðX1; . . . ;XnÞ
which is evaluated for the sample, resulting in the value t ¼ gðx1; . . . ; xnÞ.

Usually we consider two-decision testing problems where a hypothesis is
rejected or not. In this case the space of possible values of the test statistic T is
decomposed into a rejection region R and its complement Rc ¼ A, the
acceptance region. Depending on the hypotheses H0 and H1, the rejection
region R takes one of the forms:
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ðaÞ T � tl; ðbÞ T � tu;

or ð1Þ

ðcÞ T=2ðta; tbÞ;
where tl, tu, or ta and tb are certain quantiles of the distribution of T such that
under H0 the error probabilities are

ðaÞ P ðT � tlÞ ¼ a; ðbÞ P ðT � tuÞ ¼ a;

or ð2Þ

ðcÞ P ðT � taÞ ¼ P ðT � tbÞ ¼ a=2:

a is the probability of rejecting H0 if H0 is true, it is also called significance
level of the test. The cases (a) and (b) represent one-sided tests, case (c)
corresponds to a two-sided test. The hypothesis H0 is rejected (and there-
fore H1 is accepted) if the value t ¼ gðx1; . . . ; xnÞ falls into the rejection
region R.

An equivalent testing procedure is to calculate the p-value which is defined
for cases (a), (b), and (c) as

ðaÞ p ¼ P ðT � tÞ; ðbÞ p ¼ PðT � tÞ;

or ð3Þ

ðcÞ p ¼ 2min½P ðT � tÞ; P ðT � tÞ�:
If the p-value is less than a, then H0 is rejected (at the significance level a),
otherwise H0 is not rejected.

One could also think of situations which give rise to the formulation of a
three-decision testing problem:

– accept H0 and reject H1,
– reject H0 and accept H1,
– both H0 and H1 are neither accepted nor rejected.

The need for formulating a three-decision testing problem was already indi-
cated by Neyman and Pearson (1933). A typical example is accepting a new
treatment, rejecting it, or recommending it for further study. Here, we dis-
tinguish between acceptance region A, rejection region R, and region N with
neither acceptance nor rejection.

4 The Fuzzy p-value

Let us consider the case of having fuzzy data x?1; . . . ; x?n which are to be used
for a statistical test. According to Section 2, the value t? ¼ gðx?1; . . . ; x?nÞ of a
continuous test statistic becomes fuzzy, and the fuzziness of t? is expressed by
its characterizing function gð�Þ. This implies that usual decision rules as
described in Section 3 can no longer be applied.

The problem can be solved by using the concept of the p-value. Let
suppðgð�ÞÞ denote the support of the characterizing function gð�Þ which is
defined as suppðgð�ÞÞ :¼ fx 2 R : gðxÞ > 0g. In applications the support of
gð�Þ is usually finite.
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Let us consider a one-sided test situation according to cases (a) and (b) of
the previous section. As a first step we can define the p-value for non-precise
numbers t? of a test statistic with characterizing function gð�Þ as
ðaÞ p ¼ P T � t ¼ max suppðgð�ÞÞð Þ ðbÞ p ¼ P T � t ¼ min suppðgð�ÞÞð Þ

ð4Þ
as a precise value. A similar definition can be derived for a two-sided test. An
illustration of this definition is given by the following example.

Example 4.1 We use a test statistic T which is standard normally distributed.
This is a very typical situation for many classical tests. Moreover, the charac-
terizing function gð�Þ of the fuzzy values t? of the test statistic is assumed to be a
symmetric triangular function with center at 0.7. This rather theoretical
example of a characterizing function was chosen only for illustrative purposes.
For realistic characterizing functions obtained from fuzzy data compare Viertl
(2002).

Figure 1 shows the density function f ðxÞ and the characterizing function
gð�Þ. We want to test the hypothesis H0 : h � h0 against H1 : h > h0, where h is
the unknown parameter and h0 a fixed value (here we have h0 ¼ 0). This is a
one-sided test where definition (b) from above has to be applied, and the p-
value is indicated by the shaded area in the plot. We can compare the
resulting p-value with a significance level a (e.g. a ¼ 0:05) which has to be
fixed in advance, and conclude that H0 cannot be rejected at the significance
level a ¼ 0:05.

The previous definition (4) of the p-value for fuzzy values of a test statistic
has some shortcomings. It would be more logical to obtain a p-value which
also becomes fuzzy because a fuzzy p-value would include much more
information than a precise number. For this reason we improve the above
definition and introduce the fuzzy p-value which is denoted by p?.

Fig. 1. One-sided test: Density f ðxÞ of a standard normally distributed test statistic and
characterizing function gð�Þ of t?. The resulting p-value is indicated by the shaded area.
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Since gð�Þ of t? is a characterizing function, all d-cuts (d 2 ð0; 1�) are closed
finite intervals ½t1ðdÞ; t2ðdÞ�. We can use these intervals for defining the cor-
responding intervals of fuzziness of p?. For a one-sided test we define
according to cases (a) and (b) of Section 3

Cdð p?Þ ¼ P ðT � t1ðdÞÞ; P ðT � t2ðdÞÞ½ � for all d 2 ð0; 1�; ð5Þ
or

Cdð p?Þ ¼ P ðT � t2ðdÞÞ; P ðT � t1ðdÞÞ½ � for all d 2 ð0; 1�: ð6Þ
In case of a two-sided test we first have to decide on which side of the median
m of the distribution of the test statistic the most part of the amount of
fuzziness of t? is located. Therefore, we have to compute the area under the
characterizing function gð�Þ of t? which is on the left side of m and the area on
the right side of m. We denote these areas by Al and Ar, respectively, and
define the intervals of fuzziness of p? for a two-sided test by

Cdð p?Þ¼ 2PðT � t1ðdÞÞ; min ½1;2PðT � t2ðdÞÞ�½ � if Al >Ar

2PðT � t2ðdÞÞ; min ½1;2PðT � t1ðdÞÞ�½ � if Al�Ar

� �
for all d2 ð0;1�:

ð7Þ

Proposition 1: The intervals Cdðp?Þ of definitions (5), (6), and (7) are d-cuts
corresponding to a characterizing function nð�Þ of p?.

Proof: We have to show that the three properties for characterizing func-
tions are fulfilled. Properties (i) and (ii) follow immediately from the fact
that gð�Þ of t? is a characterizing function. Since the probabilities defining
the intervals of the d-cuts are restricted to ½0; 1�, we have for all d 2 ð0; 1�
that the d-cuts Cdð p?Þ are closed finite intervals ½ p1ðdÞ; p2ðdÞ� , which proves
property (iii).

Note that p1ðdÞ � 0 and p2ðdÞ � 1 for all d 2 ð0; 1�. Therefore, the d-cuts
of p? can be interpreted in terms of probabilities and compared with the
significance level a of the test. The decision is made according to a three-
decision testing problem:

If, for all d 2 ð0; 1� and p1ðdÞ � p2ðdÞ,
– p2ðdÞ < a �! reject H0 and accept H1

– p1ðdÞ > a �! accept H0 and reject H1

– a 2 ½p1ðdÞ; p2ðdÞ� �! both H0 and H1 are neither accepted nor rejected.

In the third case, the uncertainty of making this decision is expressed by the
characterizing function nð�Þ of p?.

The case t1ðdÞ ¼ t2ðdÞ for all d 2 ð0; 1� implies p1ðdÞ ¼ p2ðdÞ. In this case
we have a two-decision testing problem similar to tests with precise data.

5 Examples

In this section we want to illustrate different situations of statistical testing. In
Examples 5.1 and 5.2 we use a normally distributed test statistic and consider
a one-sided test. Example 5.3 is based on an F -distributed test statistic, the
test is two-sided.
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Example 5.1 Similar to Example 4.1 we use a standard normally distributed
test statistic T , and a symmetric triangular characterizing function gð�Þ of the
fuzzy value t? of the test statistic with center at 0.7. The left plot in Figure 2
shows the density function f ðxÞ and the characterizing function gð�Þ.

Like in Example 4.1 we want to test the hypothesis H0 : h � h0 against
H1 : h > h0, where h is the unknown parameter and h0 ¼ 0 a fixed value. This is
a one-sided test, and the fuzzy p-value is determined by definition (6). The
resulting characterizing function nð�Þ of p? is presented in the right plot of
Figure 2.

In Figure 2 we show in detail how n was computed for d ¼ 0:5. In the left
plot, the d-cut Cdðt?Þ ¼ ½t1ðdÞ; t2ðdÞ� for d ¼ 0:5 is indicated by two vertical
lines. The exact p-value for t2ð0:5Þ is shown by the dark area, and for t1ð0:5Þ by
the dark and light area under the curve of f ðxÞ. These p-values form the
d-cut Cdðp?Þ for d ¼ 0:5, which is presented in the right plot at the intersection
of the horizontal line with the vertical lines through the exact p-values.
Following this procedure for all d 2 ð0; 1�, the characterizing function nð�Þ of p?

can be constructed. Finally, we compare the resulting fuzzy p-value with
a significance level a (e.g. a ¼ 0:05) which has to be fixed in advance, and
conclude that H0 is not rejected at the significance level a ¼ 0:05.

Example 5.2 We take the same distribution of the test statistic and the same
hypotheses as in Example 5.1. We also consider a symmetric, triangular-shaped
characterizing function of t? (see Figure 3). The aim here is to study fuzzy
p-values for different outcomes of t? which are presented by the characterizing
functions g1 to g6. The corresponding characterizing functions n1 to n6 of p? are
shown in the right plot of Figure 3.

We conclude that H0 is rejected at the level a ¼ 0:05 for the first fuzzy
t-value t?characterized by g1 since for all d 2 ð0; 1�, the upper bound of the
d-cuts of n1 is below 0.05. On the other hand, since the lower bound of the
d-cuts of n3 to n6 is above 0.05 for all d 2 ð0; 1�, H0 cannot be rejected for
values of t? presented by g3 to g6. For an outcome of the test statistic t? with
characterizing function g2 we can neither accept nor reject H0 and H1 at the
significance level a ¼ 0:05.

Fig. 2. One-sided test: Density f ðxÞ of a standard normally distributed test statistic and
characterizing function gð�Þ of t? (left), characterizing function nð�Þ of the fuzzy p-value p? (right).
The computation of the fuzzy p-value is indicated for d ¼ 0:5. H0 is not rejected at level a ¼ 0:05.
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Example 5.3 In this example we consider a two-sided test with the hypothesis
H0 : h ¼ h0 against H1 : h 6¼ h0. Moreover, we take a test statistic which is
distributed according to F ð10; 12Þ, i.e. F -distribution with 10 and 12 degrees of
freedom. A typical example for such a situation is testing the equality of the
variances of two random variables.

Similar to the previous example we want to investigate different outcomes of
the fuzzy value t? of the test statistic. These outcomes are described by the
characterizing functions g1 to g4 and drawn in the left plot of Figure 4. The
shape of the characterizing functions is similar to a normal distribution. We also
present the density function f ðxÞ of the distribution F ð10; 12Þ, and indicate its
median m by a vertical line.

In the right plot of Figure 4 we show the characterizing functions n1 to n4 of
p?, corresponding to g1 to g4 which are found by definition (7). For g1 and g2 the
area Al on the left side of the median m is zero, and for g4 the area Ar is zero.
For g3 we see that Al < Ar and hence apply the second line of definition (7).
Note that for computing n3 we are bounding the d-cuts of p? at the maximum 1.

Using the significance level a ¼ 0:10, the hypothesis H0 is rejected for test
statistics t? characterized by g1 and g4, and not rejected for g2 and g3.

Fig. 3. One-sided test: Density f ðxÞ of a standard normally distributed test statistic and
characterizing functions g1 to g6 for different outcomes of t? (left); corresponding characterizing
functions n1 to n6 of the fuzzy p-value (right). H0 is rejected for g1, not rejected for g3 to g6; no
decision for g2 (significance level a ¼ 0:05).

Fig. 4. Two-sided test: Density f ðxÞ of a test statistic with distribution F ð10; 12Þ, median m, and
characterizing functions g1 to g4 for different outcomes of t? (left); corresponding characterizing
functions n1 to n4 of the fuzzy p-value (right). H0 is rejected for g1 and g4, and not rejected for g2
and g3 (significance level a ¼ 0:10).
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Remark. The situation with precise values t0 of the test statistic is a special case
of the methods given here by using the one-point indicator function Ift0gð:Þ of the
value t0.

6 Conclusions

Since observations of continuous random variables are non-precise also the
values of related test statistics become non-precise. Therefore decision rules
for statistical tests have to be adapted to this situation. This is done in the
paper using a generalization of p-values. The resulting fuzzy p-values results
in a more detailed description of the testing problem. Like for classical tests,
the fuzzy p-value is compared with a given significance level a. The null
hypothesis is then either rejected or not, or it comes to a third situation where
no decision can be made, which is similar to sequential test decision proce-
dures.

The situation of non-precise values of the test statistic shows the impor-
tance of a decision maker, because in real situations based on continuous
quantities it is not possible to arrive at a decision by automatic decision rules
like in standard statistics.

It should be possible to use the above concepts also in the situation of
testing fuzzy hypotheses (see e.g. Last et al., 1999; Bertoluzza et al., 2002).
This should be done in future research on testing based on fuzzy data.
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