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Abstract. Principal component regression (PCR) is often used in regression with
multicollinearity. Although this method avoids the problems which can arise in the
least squares (LS) approach, it is not optimized with respect to the ability to predict
the response variable. We propose a method which combines the two steps in the
PCR procedure, namely finding the principal components (PCs) and regression
of the response variable on the PCs. The resulting method aims at maximizing
the coefficient of determination for a selected number of predictor variables, and
therefore the number of predictor variables can be reduced compared to PCR. An
important feature of the proposed method is that it can easily be robustified using
robust measures of correlation.

1 Introduction

We consider the standard multiple linear regression model with intercept,

yi = β0 + xi1β1 + . . . + xipβp + εi i = 1, . . . , n (1)

where n is the sample size, xi = (xi1, . . . , xip)> are collected as rows in a
matrix X containing the predictor variables, y = (y1, . . . , yn)> is the response
variable, β = (β0, β1, . . . , βp)> are the regression coefficients which are to be
estimated, and ε = (ε1, . . . , εn)> is the error term.

Problems can occur when the predictor variables are highly correlated,
this situation is called multicollinearity. The inverse of X>X which is needed
to compute the least squares (LS) estimator β̂LS of β, becomes ill-conditioned
and is numerically unstable. This matrix is also used for computing the stan-
dard errors of the LS regression coefficients and for the correlation matrix of
the regression coefficients. In a near-singular case they can be inflated consid-
erably and cause doubt on the interpretability of the regression coefficients.

A number of techniques have been proposed when collinearity exists among
the predictors. One possibility is principal component regression (PCR) (see,
e.g., Basilevsky, 1994) where principal components (PCs) obtained from the
predictors X are used within the regression model. Most of the problems
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mentioned above are then being avoided. If all PCs are used in the regres-
sion model, the response variable will be predicted with the same precision
as with the LS approach. However, one goal of PCR is to simplify the re-
gression model by taking a reduced number of PCs in the prediction set. We
could simply take those first k < p PCs in the regression model having the
largest variances (sequential selection) but often PCs with smaller variances
are higher correlated with the response variable. Hence, it might be more
advisable to set up the PCR model by a stepwise selection of PCs due to an
appropriate measure of association with the response variable. In more de-
tail, in the first step we could search for that PC having the largest Squared
Multiple Correlation (SMC) with the response variable, in the second step
search for an additional PC resulting in the largest SMC, and so on. In fact,
due to the uncorrelatedness of the principal components, this comes down to
selecting the k components having the largest squared (bivariate) correlations
with the dependent variable.

PCR can deal with multicollinearity, but it is not a method which directly
maximizes the correlation between the original predictors and the response
variable. It was noted by Hadi and Ling (1998) that in some situations PCR
can give quite low values for the SMC. PCR is a two-step procedure: in
the first step one computes PCs which are linear combinations of the x-
variables, and in the second step the response variable is regressed on the
(selected) PCs in a linear regression model. For maximizing the relation to
the response variable we could combine both steps in a single method. This
method has to find k < p predictor variables zj (j = 1, . . . , k) which are linear
combinations of the x-variables and have high values of the SMC with the y-
variable. Note that the linear combination of the predictor variables giving the
theoretical maximal value of SMC with the dependent variable is determined
by the coefficients of the LS-estimator. Of course, due to the multicollinearity
problem mentioned before, we will not aim at a direct computation of this
LS-estimator.

2 Algorithm

The idea behind the algorithm is to find k components z1, . . . , zk having the
property that the Squared Multiple Correlation between y and the compo-
nents is as high as possible, under the constraints that these components are
mutually uncorrelated and have unit variance. Under these contraints, it is
easy to check that

SMC = Corr2(y, z1) + Corr2(y, z2) + . . . + Corr2(y, zk).

We will try to optimize the above SMC in a sequential manner. First by
selecting a z1 having maximal squared correlation with the dependent vari-
able, and then by sequentially finding the other components having maximal
correlation with y while still verifying the imposed side restrictions. Below
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we propose an easy heuristical algorithm yielding a good approximation to
the solution of the stated maximization problem under contraints.

For finding the first predictor variable z1, we look for a vector b resulting
in a high value of the function

b → |Corr(y,Xb)|. (2)

The correlation in (2) is the usual sample correlation coefficient between two
column vectors. Since the value of the objective function in (2) is invari-
ant with respect to scalar multiplication of b, we add the constraint that
Var(Xb) = 1. The maximum of (2) would be obtained by choosing b as the
LS estimator β̂LS due to model (1). However, to avoid the multicollinearity
problem, we are not looking at the global maximum of this function, but we
restrict ourselves at evaluating (2) at the discrete set

Bn,1 =
{

xi

‖xi‖ ; i = 1, . . . , n

}
.

(Similar as in the algorithm of Croux and Ruiz-Gazen (1996) for principal
component analysis.) The scores of the first component are then simply given
by the vector z1 = Xb1, where b1 is the value maximizing the function (2)
over the set Bn,1. Afterwards, b1 is rescaled in order to verify the side restric-
tion of having unit sample variance for the scores of the first component. The
set Bn,1 is the collection of vectors pointing at the data, and can be thought of
as a collection of potentially interesting directions. Note that finding b1 can
be done without any numerical difficulty, and in O(n2) computation time.
Even in the case of more variables than observations (p > n), which is of
interest for example in spectroscopy, the variable z1 can easily be computed.
For very large values of n, one could pass to a subset of Bn,1.

For finding the scores of the second component z2, we need to restrict to
the space of all vectors having sample correlation zero with z1. Denote Xj the
j-th column of the data matrix X, containing the realizations of the variable
xj with 1 ≤ j ≤ p. Herefore we regress all data vectors y,X1, . . . , Xp on the
already obtained first component z1, just by means of a sequence of p + 1
simple bivariate regressions. Since all these regressions are bivariate, they
cannot imply any multicollinearity problems. We will continue then to work
with the residual vectors obtained from these regressions, which we denote by
y1, X1

1, . . . , X
1
p. Note that all these vectors are uncorrelated with z1. With

X1 = (X1
1, . . . , X

1
p), the second predictor variable is found by maximizing

the function
b → |Corr(y1,X1b)|. (3)

The maximum in (3) can in principle be achieved by taking the LS estimator
for b. Using the statistical properties of LS estimators, it can be seen that this
would yield a SMC value between y and z1, z2 equal to the SMC between y
and the x-variables. But, again, since we are concerned with the collinearity
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problem, we will approximate the solution of (3) by searching only in the set
Bn,2 =

{
x1

i

‖x1
i
‖ ; i = 1, . . . , n

}
where x1

i denotes the i-th row vector of X1. The
vector b2 maximizing the function (3) over the set Bn,2 defines, after rescaling
to get unit variance, the scores on the second component z2 = X1b2. Since we
passed to the space of residuals, the first two components will be uncorrelated,
as required.

Note that if we would have worked with the theoretical maximum in (2)
of the first step, then the objective function (3) would be equal to zero, since
LS residuals are orthogonal to the explicative variables. In the latter case,
there is no correlation left to explain after the first step. But since we are only
approximating the solution, and not computing the LS-estimator directly, we
will still have a non-degenerate solution to (3). A comparison of the numerical
values of the maxima in (2) and (3) tells us how much explicative power is
gained by adding z2 to the model.

The other components z3, . . . , zk are now obtained in an analogous way
as z2. Component zl (l = 3, . . . , k) is found by maximizing

b → |Corr(yl−1,X l−1b)| (4)

where yl−1, X l−1 = (X l−1
1 , . . . , X l−1

p ) are obtained by regressing the previ-
ously obtained residual series yl−2, X l−2

1 , . . . , X l−2
p on component zl−1. We

approximate the solution of (4) by considering only the n candidate vectors

of the set Bn,l =
{

xl−1
i

‖xl−1
i

‖ ; i = 1, . . . , n
}

.

3 Example

We consider a data set from geochemistry which is available in form of a geo-
chemical atlas (Reimann et al., 1998). An area of 188000 km2 in the so-called
Kola region at the boundary of Norway, Finland, and Russia was sampled.
More than 50 chemical elements have been analyzed for all 606 samples. For
some of the most interesting elements like gold (Au) it is not possible to
obtain reliable estimations of the concentration because often the concentra-
tion is below the detection limit. It would thus be advantageous to estimate
the contents of the “rare” elements by using the information of the other
elements. Similar chemical structures of rocks and soil allow a dependency
among the chemical elements which can sometimes be very strong. This leads
to a regression problem with multicollinearity. Filzmoser (2001) used a ro-
bust PCR method to predict the contents of these “rare” elements. Here we
apply our proposed algorithm to predict the concentration of cromium (Cr)
using 54 other chemical elements as predictors. Cr belongs certainly not to
the “rare” elements, but it is strongly related to many other elements, and
hence it is suitable for testing our method and comparing it with conventional
PCR. Figure 1 shows the comparison of (1) PCR with sequential selection
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Fig. 1. Comparison of (1) PCR with sequential selection of PCs, (2) PCR with
stepwise selection of PCs, (3) proposed method. The coefficient of determination is
drawn against the number of predictor variables.

of PCs, (2) PCR with stepwise selection of PCs, and (3) the newly proposed
method. The coefficient of determination is drawn against the number of pre-
dictor variables used in the linear model. Figure 1 shows that for each fixed
number of predictor variables the coefficient of determination was highest
for the new method. As already expected, the sequential selection of PCs
according to their largest variances gives the lowest coefficient of determina-
tion. Our method would therefore allow a major reduction of the number of
explanatory variables in the regression model.

4 Simulation study

We want to compare the proposed method with the classical multiple regres-
sion approach, and with PCR regression. Therefore, we generate a data set
X1 with n = 500 samples in dimension p1 = 50 from a specified N(0, Σ)
distribution. For obtaining collinearity we generate X2 = X1 + ∆, and the
columns of the noise matrix ∆ are independently distributed according to
N(0, 0.001). Both matrices X1 and X2 are combined in the matrix of in-
dependent variables X = (X1|X2). Furthermore, we generate a dependent
variable as y = Xa + δ The first 25 elements of the vector a are generated
from a uniform distribution in the interval [−1, 1], and the remaining ele-
ments of a are 0. The variable δ comes from the distribution N(0, 0.8). So,
y is a linear combination of the first 25 columns of X1 plus an error term.

In the simulation we consider PCR of y on X by sequentially selecting
the PCs according to the magnitude of their eigenvalues and by stepwise
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Fig. 2. Comparison of (1) PCR with sequential selection of PCs, (2) PCR with
stepwise selection of PCs, (3) the proposed method, and (4) stepwise regression.
The mean coefficient of determination is drawn against the number of predictor
variables.

selecting the PCs according to the largest increase of the R2 measure, our
proposed regression method, and stepwise regression (forward selection of the
predictor variables). We computed m = 1000 replications and a maximum
number k = 20 of predictor variables.

We can summarize the resulting coefficients of determination by comput-
ing the average SMC over all m replications. Denote R2

LS(t, j) the resulting
SMC coefficient of the t-th replication if j regressors are considered in the
model. Then

R2
LS(j) =

1
m

m∑
t=1

R2
LS(t, j), (5)

for each number of regressors j = 1, . . . , k. Figure 2 shows the mean coefficient
of determination for each considered number j of regressors. We find that our
method gives a higher mean coefficient of determination especially for a low
number of predictor variables which is most desirable. PCR with sequential
selection gives the worst results. For obtaining the same mean coefficient of
determination, one would have to take considerably more predictor variables
in the model than for our proposed method.

5 Discussion

The two-step procedure of PCR, namely computing the PCs of the predictor
variables and performing regression of the response variable on the PCs can



A Projection Algorithm for Regression with Collinearity 7

be reduced to a single step procedure. Like PCR, the proposed method is able
to deal with the problem of multicollinearity, but the new predictor variables
which are linear combinations of the original x-variables lead in general to a
higher coefficient of determination compared to PCR. Since one usually tries
to explain the main variability of the response variable by a possibly low
number of predictor variables, the proposed method is preferable to PCR,
and also to the stepwise regression technique as was shown by the simulation
study.

Often it is important to find a simple interpretation of the regression
model. Since PCR as well as our proposed method are searching for lin-
ear combinations of the x-variables, the resulting predictor variables will in
general not be easy to interpret. Our example has shown that the inter-
pretation of the predictor variables is not always necessary. However, if an
interpretation is desired, one has to switch to other methods which can deal
with collinear data, like ridge regression (Hoerl and Kennard, 1970). There
are also interesting developments of methods in the chemometrics literature.
Araújo et al. (2001) introduced a projection algorithm for sequential selection
of x-variables in problems with collinearity and with very large numbers of
x-variables.

An important advantage of our proposed method is that it can easily
be robustified. It is well known that outliers in the y-variable and/or in
the x-variables can have a severe influence on regression estimates, even
for bivariate regressions. Hence, robust regression techniques like least me-
dian of squares (LMS) regression or least trimmed squares (LTS) regression
(Rousseeuw, 1984) have been developed which can resist the effect of outliers.
The classical correlations used in (2) and (3) can also be replaced by robust
versions. Note that Croux and Dehon (2001) introduced robust measures of
the multiple correlation.
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