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Robust Redundancy Analysis
by Alternating Regression

M.R. Oliveira, J.A. Branco, C. Croux and P. Filzmoser

Abstract. Given two groups of variables redundancy analysis searches for lin-
ear combinations of variables in one group that maximizes the variance of
the other group that is explained by the linear combination. The method is
important as an alternative to canonical correlation analysis, and can be seen
as an alternative to multivariate regression when there are collinearity prob-
lems in the dependent set of variables. Principal component analysis is itself
a special case of redundancy analysis.

In this work we propose a new robust method to estimate the redun-
dancy analysis parameters based on alternating regressions. These estimators
are compared with the classical estimator as well as other robust estimators
based on robust covariance matrices. The behavior of the proposed estimators
is also investigated under large contamination by the analysis of the empirical
breakdown point.
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1. Introduction

The problem of finding relationships between groups of variables is central in
multivariate analysis. A number of methods have been suggested to pursue this
objective but canonical correlation analysis is by far the most commonly used.
Given two sets of variables the goal of canonical correlation analysis is to construct
pairs of canonical variates (linear combinations of the original variables, one in each
set) such that they have maximum correlation. The correlations between canonical
variates of the same pair are important to the study of the correlations between the
two sets but they cannot be interpreted as the degree of relation between the sets
of variables. In particular the squared canonical correlations represent the variance
shared by the two canonical variates of the same pair but not the variance shared
by the two sets of observed random variables.
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To overcome the difficulty in using the squared canonical correlations as a
measure of the shared variance between the two sets, a redundancy index was pro-
posed by Stewart and Love (1968). This index is a measure of the proportion of the
variance in one set y = (y1, . . . , yq)t (dependent or criterion set) that is accounted
for by the other set x = (x1, . . . , xp)t (independent or predictor set). The redun-
dancy analysis model, proposed by van den Wollenberg (1977), searches for the
linear combination, u1 = αt

1x (the first redundancy variate), of the independent
set that maximizes the redundancy index, Ry, defined as

Ry =
q∑

j=1

Corr(αtx, yj)2/q, (1.1)

under the restriction V ar(αt
1x) = 1. The second redundancy variate, u2 = αt

2x,
is defined as the linear combination of the independent set, non-correlated with
u1, that maximizes Ry under the restriction V ar(αt

2x) = 1. A maximum of r =
min (p, q) redundancy variates can be sequentially defined, following the scheme as
above. The objective of this paper is to provide robust estimators for α and Ry.
Robust estimation is particularly useful in the analysis of multivariate data where
the presence of outlying observations is common.

In Section 2, the relationship between redundancy and canonical correlation
analysis is highlighted. This will help to address the problem of robust estimation
in redundancy analysis and in particular to introduce the robust method based
on alternating regressions. The algorithm to estimate the redundancy variates by
alternating regressions is also presented in Section 2, and in Section 3 a simulation
study is developed in order to compare the performance of the proposed estima-
tors with others based on robust covariance matrices. In the last section a brief
discussion about the results obtained is made and links with canonical correlation
analysis and suggestions for future work are discussed.

2. Robust Estimation

The classical solution to (1.1) comes down to an eigenvector/eigenvalue problem,
as was shown by van den Wollenberg (1977). The coefficients α are the eigenvectors
of the matrix R−1

11 R12R21, where Rij (i, j = 1, 2) are the usual partition matrices of
the correlation matrix associated with the two sets of variables. A simple approach
to robust estimation is to robustify the correlation matrix and then apply the
traditional methods of estimation. So given a robust estimate of the correlation
matrix the eigenvectors of R−1

11 R12R21 are calculated in order to estimate the
coefficients α. This approach will be considered in Section 3. For the estimation
of the robust correlation matrix we will use the M -estimator (M) as outlined
by Maronna (1976). As an alternative we will consider the minimum covariance
determinant (MCD) estimator of Rousseeuw (1985).

The above approaches were studied for the first latent variate (redundancy
variate) in Oliveira and Branco (2002). Additionally, a method based on robust al-
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ternating regression was considered. This technique, originally suggested by Wold
(1966), has recently been used in the context of robust factor analysis (Croux et al.,
2003) and robust canonical correlation analysis (Branco et al., 2003). Like Tenen-
haus (1998) has pointed out, the algorithm is quite similar to the one proposed for
canonical correlation analysis, initially discussed by Wold (1966), Lyttkens (1972)
and later on mentioned by Tenenhaus (1998). For higher-order redundancy vari-
ates, the algorithm is based on repeating the idea underlying the construction of
the first redundancy variate in successive residual spaces. Since these spaces have
reduced rank, problems occur in the regression procedure.

In this paper we will focus on estimating higher order redundancy variates
by robust alternating regressions. This procedure has a main advantage over the
approach based on robust correlation matrix estimation: While the latter method
discards an outlying observation completely, robust alternating regression is still
using the information of the non-outlying cells for parameter estimation. For this
reason, the method based on robust alternating regressions can also deal with
missing values (Croux et al., 2003).

The general idea of the algorithm takes advantage of the links between re-
dundancy analysis and canonical correlation analysis. In the context of canonical
correlation analysis, the redundancy index (1.1) can be written as in Rencher
(1998) by:

Ry = ρ2

q∑

j=1

Corr(βty, yj)2/q, (2.1)

where ρ is the canonical correlation coefficient and β the canonical coefficient
associated with the y′s. Looking at the redundancy coefficient from these two
different perspectives, an alternating procedure based on regression models can
be built. To clarify this idea, let us consider that an initial value β is given. If
the redundancy index is written in the form (2.1), to maximize Ry we need to
determine the vector α that maximizes ρ2 = Corr(αtx, βty)2. From standard
results on multiple regression, it follows that α is proportional to the regression
coefficient a in the model

βty = atx + γ1 + ε1. (2.2)

This step is analogous to the procedure followed in canonical correlation analysis
(Branco et al., 2003).

Once α has been obtained, the value β has to be updated. Taking into account
that Ry is a measure of the proportion of the variance in set y explained by αtx,
Tenenhaus (1998) suggested that β can be chosen proportional to b = (b1, . . . , bq)t,
where its components are the coefficients of the regression equations

yj = bjα
tx + γ2j + ε2j , (2.3)

that maximizes the variance of yj explained by αtx, i.e., b̂j is such that
Corr

(
yj , b̂jα

tx
)2

is maximum. From regression standard results Corr(yj , ŷj)2 =



238 M.R. Oliveira, J.A. Branco, C. Croux and P. Filzmoser

Corr(yj , b̂jαtx)2 = Corr(yj , αtx)2. Choosing b̂j in s way leads to an updated
value of β, that maximizes the variance of yj explained by αtx. By (1.1)

∑q

j=1
Corr(ŷj , yj)2/q = Ry,

where Ry is the value of the redundancy index obtained in the previous step.
This scheme can be implemented using least squares regression, but it leads

to non robust estimates. In order to robustify the parameters in redundancy anal-
ysis we can simply use robust regression estimators. In the case of least squares
estimators convergence of the algorithm is fast. However, using a robust estimator
yields more local minima, and less smooth objective functions, so higher risks of
lack of convergence appear. One benefits from choosing weighted L1 regression
estimators since they have bounded influence functions and the algorithm is fast
to compute, once the weights are properly calculated. These weights are defined
smoothly according to an appropriate distance measure associated with each obser-
vation. Although, weighted L1 regression is a good choice other robust regression
estimators could be used.

In the next subsection we give a general description of the algorithm to
estimate the redundancy variates by alternating regressions.

2.1. Algorithm

It is convenient to center the observations, so that the intercept terms, γ1 and
γ2j , can be eliminated from the equations (2.2) and (2.3). The observations are
centered using robust estimators of location. In the present work, the median of
each variable, (x̃, ỹ), has been chosen for robust estimators of location. So, if X
and Y represent the data matrices of size (n × p) and (n × q), respectively, the
centered data are

X0 = X − 1px̃
t and Y 0 = Y − 1qỹ

t,

where 1k is a k-vector of ones.

2.1.1. First Redundancy Variate. The algorithm starts by choosing an initial
value, β(0), followed by the estimation of the regression coefficients in (2.2).
Starting values: In the context of robust estimation, the starting values can be of
crucial importance. For the classical version of the algorithm Tenenhaus (1998)
suggested to use the vector β(0) = (1, 0, . . . , 0)t. However, we have built the start-
ing value using the first robust principal component of X0, z1 (see e.g. Croux and
Ruiz-Gazen, 1996). Let b̂

(0)
j (j = 1, . . . , q) be the estimated regression coefficient

associated with the model
y0j = bjz1 + ε3j , (2.4)

where y0j is the jth column of Y 0. The starting value is defined as

β(0) = b̂
(0)

/||b̂(0)||, (2.5)

where b̂
(0)

= (b̂(0)
1 , . . . , b̂

(0)
q )t, and the corresponding latent variate is v(0) = Y 0β

(0).
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Step s: Given the values β(s−1) and v(s−1) (for s > 1), the â(s) is the estimated
regression coefficient of the model

v(s−1) = X0a
(s) + ε4. (2.6)

The estimated vector of redundancy coefficients is

α(s) = â(s)/||â(s)||, (2.7)

and the associated redundancy variate is u(s) = X0α
(s).

Given these new estimated values, β(s−1) and v(s−1) have to be updated. Let
b̂
(s)
j (j = 1, . . . , q) be the estimate of the regression coefficient associated with the

model
y0j = b

(s)
j u(s) + ε5j . (2.8)

So, the updated vector is defined as

β(s) = b̂
(s)

/||b̂(s)||, (2.9)

where b̂
(s)

= (b̂(s)
1 , . . . , b̂

(s)
q )t, and the corresponding latent variate is v(s) = Y 0β

(s).
Repeat this procedure until convergence of the algorithm, and let α1 and

u1 be proportional to the last values of α(s) and u(s), respectively, where the
proportional constant is such that u1 has norm equal to one.

The first redundancy coefficient, Ry1, is estimated using a robust estimator of
the correlation coefficient (in the present case, reweighed MCD estimator, RMCD,
Rousseeuw and Van Driessen, 1999).

Ry1 =
q∑

j=1

Corr(u1, y0j)
2/q. (2.10)

We recall that RMCD is the empirical covariance matrix computed from the subset
of size h ≈ 0.75n with the smallest determinant, where n is the sample size.

2.1.2. Redundancy Variates of Higher Order. The next redundancy variate, u2,
has to be uncorrelated with the previous one. In other words, we can say that u1

and u2 have to be orthogonal. This restriction can be fulfilled if the data matrix,
X0, is projected into the space orthogonal to u1. Let us consider the following
regression model

X0 = u1c
t + ε6 (2.11)

where X1 = X0 − X̂0 are the corresponding estimated residuals. Due to stan-
dard results from multiple linear regression, the residuals, X1, are orthogonal to
u1. Hence, repeating the procedure to obtain the first redundancy variate using
the residuals, X1, instead of the original data, X0, we can guarantee that the
next redundancy variate (a linear combination of the columns of X1) is, in fact,
orthogonal to u1.

However, this idea raises some difficulties, since X1 is orthogonal to u1, and
therefore, it has rank (p − 1), because rank (X0) = p. In order to overcome this
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collinearity problem we consider, as in Branco et al. (2003), the singular value
decomposition

X1 = UDV t = U∗D∗V ∗t, (2.12)
where D is a diagonal matrix of the p singular values, D∗ is diagonal matrix
reduced by one row and column associated with the null singular value. A similar
idea is used to define the matrices U∗ and V ∗. Using (2.12), we can define X∗

1 =
U∗tX1 = D∗V ∗t, and this matrix of size (n × (p − 1)) has full rank. Finally,
the procedure proposed to estimate the first redundancy variate can be applied
to X∗

1 and Y 0. As opposed to the estimation method developed for canonical
correlation analysis (Branco et al., 2003), in the redundancy analysis there is no
need to transform Y 0.

Let u∗ and α∗ be the results, after convergence, of the iterative procedure
developed to estimate the second redundancy variate. These quantities are defined
in residual spaces. Hence, a transformation to the original space has to be done,
under the orthogonality condition, that is, u2 = X0α2 has to be orthogonal to
u1. Let us consider the regression model

u∗ = eu1 + ε7, (2.13)

and let ũ be the estimated residuals. This vector, ũ, is orthogonal to the previous
estimated redundancy variate, u1. Moreover, in order to express the redundancy
variate as a linear combination of X0 with coefficients α2 we need to regress
ũ on X0

ũ = X0f + ε8. (2.14)

Then α2 = kf̂ , where k is such that u2 = X0α2 has norm equal to one.
To obtain redundancy variates of order l ∈ {3, . . . , r}, with r = min{p, q},

a similar procedure has to be developed, but to transform the estimates into the
original space, instead of using (2.13), a slightly different regression model has to
be considered

u∗ = Ue + ε9, (2.15)
where U = [u1, . . . , ul−1]. This model guarantees that ul is orthogonal to u1, . . . ,
ul−1.

2.2. Robust Alternating Regressions

As suggested in Croux et al. (2003) and Branco et al. (2003), the regression models
considered in the iterative procedure are estimated using weighted L1 regression,
with weights wi(X∗

l−1) defined by

wi(X∗
l−1) = min

(
1,

χ2
p∗,0.95

D2
i (X

∗
l−1)

)
, i = 1, . . . , n, (2.16)

where χ2
p∗,0.95 is the upper 5% critical value of a chi-squared distribution with

p∗ = p − l + 1 degrees of freedom (the number of columns of X∗
l−1), and

Di(X∗
l−1)=

√
(x∗(l−1)

i −T (X∗
l−1))tC(X∗

l−1)−1(x∗(l−1)
i −T (X∗

l−1)), i=1,...,n,
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where x
∗(l−1)
i is the ith column of X∗

l−1 and Di is a robust distance. By the
same reasons pointed out in Croux et al. (2003) and Branco et al. (2003) T and
C were chosen to be MVE estimators of location and scatter, respectively. The
regressions used to rewrite u∗ in the original space were estimated using LTS
regression (Rousseeuw, 1984). However, other robust estimators of regression can
also be used.

3. Simulation Study

It is convenient to keep the simulation conditions as in Branco et al. (2003). By
doing so, it is possible to compare the performance of the robust estimators based
on alternating regressions not only with other robust estimators but also with
the robust estimators of canonical correlation analysis based on alternating re-
gression. This makes sense since the correlation matrices chosen are such that the
redundancy analysis and the canonical correlation analysis lead to the same lin-
ear combination of the observed variables, i.e. the true values for the canonical
coefficients are equal to the true values for the redundancy coefficients.

The performance of the robust estimators based on alternating regressions
(RAR) are compared with the performance of the estimators based on robust
correlation matrices (RMCD - h ≈ 0.75n and M-Estimator (M), using Huber psi-
function: w(s) = min

(
1, χ2

(p+q),0.95/|s|
)
) as well as with the classical estimator

(Class). To do so, samples of size 500 were generated from four different distri-
butions: normal distribution (NOR), with zero mean and covariance matrix Σ
(N(0, Σ)); symmetric contaminated normal (SCN) where each vector of observa-
tions is generated from a normal distribution (N(0, Σ)) with probability 0.9 and
from N(0, 9Σ) with probability 0.1; t-distribution with 3 degrees of freedom (T3)
and asymmetric contamination (ACN) where 90% of the data are generated from a
N(0, Σ) and the other 10% of the observations are equal to the vector tr(Σ)1t

(p+q).
For each type of distribution and each estimation method m = 300 samples

of 500 observations were produced. To assess the performance of each estimation
method the following measures of MSE, were defined

MSE(α̂l) =
1
m

m∑

j=1

cos−1

(
|αtα̂j

l |
||α̂j

l || · ||αl||

)
,

MSE(R̂yl) =
1
m

m∑

j=1

(
R̂j

yl − Rj
yl

)2

,

where α̂j
l is the jth estimate of the lth redundancy coefficient, αl, and R̂j

yl is the
jth estimate of the lth redundancy index, Ryl.

Table 1 shows the values of p and q that were considered, together with the
correlation matrix between the two groups. The correlation matrix of each group
was taken as the identity matrix.
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Table 1. Simulation setup. R11 = Ip and R22 = Iq.

n m p q R12

500 300 2 2

[
0.9 0
0 1/2

]

500 300 2 4

[
0.9 0 0 0
0 1/2 0 0

]

500 300 4 4




0.9 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4




The results for the case p = q = 2 are summarized in Figure 1 and 2 (see
Figure 5(a) to identify each contamination scheme). In this case, it can be said
that the contamination influences the vectors of redundancy coefficients equally.
ACN is the contamination scheme that produces more damages in the estimated
values, and only the estimates of redundancy coefficients based on RMCD and
RAR are robust for this kind of contamination. ACN has also a serious effect on
the first redundancy index when the classical method is used. In the case p = 2
and q = 4 something quite similar happens, except that RAR reveals to be even
better to estimate the first redundancy coefficient. Because of lack of space the
figures associated with this case are omitted.
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Figure 1. Mean square error of the redundancy coefficients, p = 2,

q = 2.
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Figure 2. Mean square error of the redundancy indexes, p = 2, q = 2.
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For p = q = 4 we obtain very similar results for the first redundancy coeffi-
cient and index as for p = q = 2. However, the effect of the contamination increases
with the order of the redundancy coefficients (see Figures 3, 4, and Figure 5(a) to
identify each contamination scheme). The method based on alternating regression
performs slightly worse than RMCD for the two last redundancy coefficients (α3

and α4), and for the two last redundancy indexes (Ry3 and Ry4).
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(b) α4
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Figure 3. Mean square error of the first and last redundancy coeffi-

cients, p = 4, q = 4.
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Figure 4. Mean square error of the first and last redundancy indexes,

p = 4, q = 4.
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RAR

Figure 5. (a) On the left – legend of Figures 1, 2, 3 and 4. (b) On

the right – legend of the figures summarizing the performance and the

empirical breakdown point of the various estimators.
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3.1. Empirical Breakdown Point

Another criteria to compare the performance of the estimators is based on the
empirical breakdown point. To do so, a simulation study was carried out, with the
same setup that was used in Branco et al. (2003), where each group has 3 variables
(p = q = 3). For each sample, (100 − ε)% of the points were generated from a
normal distribution with zero mean and correlation matrix, R, with R11 = I3 and
R22 = I3 and

R12 =




0.9 0 0
0 1/2 0
0 0 1/3



 ,

and the other ε% of the observations are equal tr(Σ)1t, (in the present case,
tr(Σ) = 6). The values of ε were chosen from zero (no contamination) to 25
(25% of contamination), i.e., ε ∈ {0, 1, . . . , 25}. As before we chose n = 500. The
procedure was repeated 200 times for each estimation method. The results, for the
first and last redundancy coefficients and indexes, are summarized in Figures 6 and
7 (see Figure 5(b) to identify each estimator considered). In Figure 7(a), the MSE
associated with the M, RMCD and RAR estimators seems to be equally low due to
the apparent large magnitude of the MSE of the Class estimator. Nevertheless, the
empirical breakdown point for Ry2 and Ry3 (see Figure 7(b)) show that the RAR
has lower empirical breakdown point than RMCD but higher than the estimators
based on the M-estimator (M). Similar conclusions apply to α1, α2 and α3, as
showed in Figure 6.
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Figure 6. Empirical breakdown point, redundancy coefficients.
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Figure 7. Empirical breakdown point, redundancy indexes.
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4. Discussion and Future Work

The RAR procedure produced useful results and it has the advantage that it can
be carried out in the case of more variables than observations. It is also capable
of dealing with missing values and it can cope with outlying cells (Croux et al.,
2003). Moreover, RAR aims at directly maximizing the redundancy index, and
is therefore in a way intuitively more appealing than a covariance matrix based
procedure. However, the search for other robust estimators should be pursued. In
Oliveira and Branco (2002) various robust estimators have been studied for the
first redundancy variate, where the estimators based on projection pursuit revealed
promising results. This estimator has to be developed for higher order variates.

The simulation developed in this study was designed to facilitate the com-
parison with the study in Branco et al. (2003). So far, it can be said that the
behavior of RAR is similar in both canonical correlation analysis and redundancy
analysis. Having resolved the problem of robustifying (by alternating regression)
the canonical correlation analysis and redundancy analysis we are compelled to
consider the generalization of these two methods proposed by DeSarbo (1981).

As it was pointed out by van den Wollenberg (1977), principal components
analysis is a special case of redundancy analysis. If we choose the dependent vari-
ables, y, equal to the independent variables x, the principal components differ
from the redundancy variates by a constant term. In principal components anal-
ysis, we search for a linear combination of the x, a, that maximizes atRa and
ata = 1 (R = Corr(x)). In redundancy analysis we seek for a linear combination
of x, α, that maximizes αtR2α, where αtRα = 1. Both the solutions of the two
problems have the directions of the eigenvectors of R. Therefore, the algorithm
based on alternating regressions can be used to estimate principal components. It
would be interesting to compare this approach with other suggestions made in the
literature, like the procedure based on alternating regressions to estimate principal
components proposed in Wold (1966), and other robust estimators, e.g., based on
projection pursuit.
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