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Abstract. The PLS approach is a widely used technique to estimate path models
relating various blocks of variables measured from the same population. It is fre-
quently applied in the social sciences and in economics. In this type of applications,
deviations from normality and outliers may occur, leading to an efficiency loss or
even biased results. In the current paper, a robust path model estimation technique
is being proposed, the partial robust M (PRM) approach. In an example its benefits
are illustrated.

1.1 Introduction

Consider the situation where one disposes of j blocks of observable variables,
each of which one supposes to be the effect of a sole unobservable, latent

variable. Furthermore, structural relations between the latent variables of the
different groups are assumed to exist. Different techniques to estimate these
latent variables as well as the relations between them, have been proposed in
literature.

On the one hand, one can use maximum likelihood techniques such as LIS-
REL (Jöreskog and Sörbom 1979), where rigid model assumptions concerning
multinormality have to be verified. If one desires less rigid assumptions, so-
called soft modelling might prove a viable alternative. The most successful
approach to soft modelling of the problem described before, is the so-called
PLS approach (Wold 1982), which moreover gives the benefit of estimating
the latent variables at the level of the individual cases, in contrast to LIS-
REL. The PLS approach is also known as PLS path modelling or as PLS

structural equation modelling. A myriad of applications of the PLS approach
have been reported in literature, the most salient one probably being the
European Customer Satisfaction Index (Tenenhaus et al. 2005).

The simplest path model one can consider is a path model relating a
block of variables x to a univariate variable y, through a latent variable ξ.
Model estimates for this setting can also be used for prediction of y. Hence
the PLS approach, relating two blocks of variables to each other over a single



latent variable (which may be a vector variable), can be used as a regression

technique.
The PLS estimator can be seen as a partial version of the least squares

estimator. The latter has properties of optimality at the normal model. How-
ever, at models differring from the normal model, other estimators such as the
M-estimator may have better properties (Huber 1981). Especially for heavy-
tailed distributions such as the Cauchy distribution or the ε-contaminated
normal distribution, partial versions of robust estimators may be expected
to out-perform PLS. Hence, in a recent paper we have proposed the partial

robust M-regression estimator (Serneels et al. 2005). Simulations have cor-
roborated the aforementioned assumptions. As the PLS regression estimator
is very sensitive to outliers and extreme values, the same holds for the PLS
approach as a whole, since a PLS regression is carried out at each iteration.

In the current paper, we propose a robust version of the PLS approach
based on the robust M-estimator, which will be called the Partial Robust

M-approach. An example will show the beneficial properties of the novel ap-
proach introduced here.

1.2 The model and the partial robust M-approach

Before we can proceed with the description of the partial robust M-approach,
we first provide a brief introduction to the PLS approach. More elaborate in-
troductions can be found in the works of Tenenhaus (1999) and Chin and
Newsted (1999). Suppose one disposes of j blocks of centred observable vari-
ables xi = xi1, · · · , xiki

(i ∈ 1, 2, · · · , j), where ki denotes the number of vari-
ables in block i. These variables are referred to as the manifest variables.
Each of these groups of variables can be considered to be essentially uni-
variate: they are the observable counterpart of a single latent variable ξi.
Manifest and latent variables are related to each other by the linear model
(h ∈ 1, · · · , ki):

xih = $ihξi + εih. (1.1)

It is supposed that the random error term εih has zero expectation and is
non-correlated to the latent variable. The studied phenomenon is assumed to
have been generated by structural relations between the latent variables

ξi =
∑

q

βiqξq + φi, (1.2)

where it is assumed that the random error term φi has zero expectation and
is not correlated to the latent variable ξi.

In practice, the latent variables are estimated as linear combinations yi

of the manifest variables xih:

yi =
∑

h

wihxih = w
T
i xi (1.3)



The vectors wi are called the weights. However, due to the structural relations
(1.2), another estimate zi of ξi is given by:

zi ∝

∑

q 6=i

cqiyq. (1.4)

The sign ∝ indicates that the variable on the left hand side of the Equation
sign is the standardized version of the expression on the right hand side.

Several estimation schemes exist. In this paper we will limit ourselves to
the so-called centröıd scheme, as this is the only scheme which will be used
in the following section (a motivation thereto can be found in Tenenhaus,
1998). In the centroid scheme, it is necessary for the operator to specify the
expected sign ciq = sgn(corr(ξi, ξq)), where ciq is set to zero if the latent
variables considered are not expected to be correlated.

In the original work by H. Wold, two modes for estimation of the weights
were proposed. Here we will limit our discussion to what Wold referred to
as “mode A”, which corresponds to the definition of the weights in PLS
regression:

wi = cov (xi, zi) (1.5)

This leads to the following condition of stationarity:

yi ∝ x
T
i xi

∑

q 6=i

cqiyq (1.6)

From Equation (1.6) it can be seen that the estimates for ξi can be ob-
tained iteratively, starting from an initial guess yi. It can also be seen from
Equation (1.5) that in each iteration, the computation of the new values for
yi can be done by computing the first component of a PLS regression of zi

on xi.

A robustification of the PLS approach is now straightforward. The same
iterative estimation scheme is being maintained, albeit at each step the re-
spective PLS regressions are replaced by partial robust M-regressions (Serneels
et al. 2005). Partial robust M-regression is an extension of robust M-regression
to the latent variable multivariate regression scheme; in this context it has
been proven to be superior to PLS if the data come from a non-normal dis-
tribution such as a Cauchy or a Laplace distribution.

It has been shown that the partial robust M-regression estimator can
be implemented as an iteratively re-weighted PLS algorithm (Serneels et al.
2005), where the weights correct for both leverage and vertical outlyingness.
A good robust starting value for the algorithm has been described. The use
of an iterative re-weighting algorithm makes the method very fast in the
computational sense.



1.3 Example: economical inequality leads to political

instability

In this section we will study a data set first published by Russett (1964). It has
been analyzed by PLS and PLS path modelling by Tenenhaus (1998, 1999).
In the data set, five variables which were at the time thought to be represen-
tative of a country’s economical situation, were included. Their relation to
seven variables which correspond to political (in)stability, was studied. It has
been shown that some data pre-processing was necessary in order to obtain
interpretable results. In the current paper, we will not further discuss the data
pre-processing, but we will assume that the variables have been pre-processed
as has been described by Tenenhaus (1999). The same pre-processing has been
used for the classical and robust estimation. Furthermore, 3 observations out
of 45 contained missing data. These observations have been left out in the
results obtained here.

The first block of variables, which correspond to the countries’ economical
situation, in fact consists of two blocks. The first block, comprising the first
three manifest variables, are variables which describe the (in)equality in terms
of the possession of land fit for agriculture. The second block of manifest
variables, consisting of the remaining two variables describing a country’s
economical situation, correspond to the degree of industrialization in the
respective country.

Hence, Tenenhaus (1999) proposed a path model, where it is assumed
that each of the blocks has been generated by a single latent variable, i.e. the
agricultural inequality (ξ1), the degree of industrialization (ξ2) and political
instability (ξ3). It is assumed that the agricultural inequality leads to political
instability, whereas industrialization does not. Hence, we have obtained the
coefficients ciq from Equation (1.6): c13 = c31 = 1 and c23 = c32 = −1. Both
remaining coefficients c12 and c21 are set equal to zero.

From Equation (1.6) we see how we can build up the iterative estimation

scheme. We start from an initial guess, e.g. y
(1)
1 and y

(1)
3 are the first X and

Y components obtained from a PLS regression of the political variables on

the agricultural variables, whereas y
(1)
2 is taken as the first x2 component

from a PLS regression of the political variables on the industrial variables.
The superscripts indicate the iteration step. Suppose that we have in the

(r − 1)-th step of the algorithm y
(r)
i as the then best estimates of the latent

variables. Then we can update them in the rth step by the following scheme,
based on Equation (1.6):

• the variable y
(r+1)
1 is the first PLS component of a PLS regression of y

(r)
3

on X1 (X1 is a matrix consists of n observations of x1);

• y
(r+1)
2 is the first PLS component obtained from a PLS regression of −y

(r)
3

on X2;
• y

(r+1)
3 is the first PLS component obtained from a PLS regression of

y
(r)
2 − y

(r)
1 on X3.



This processus is repeated until convergence. The robust estimates reported
later in this section are obtained by the same iterative procedure, albeit the

estimates y
(r+1)
j are in that case the first components of the corresponding

PRM regressions.
In path modelling it is customary to represent the path model by a

flowchart. Manifest variables are displayed in boxes; latent variables are dis-
played in circles. The arrows show the direction in which the variables influ-
ence each other. The correlation coefficients between the manifest and latent
variables are shown above the respective arrows. In order to describe the
relations among the latent variables, the regression coefficients di describing
the linear relation y3 = d1y1 + d2y2, are shown above the arrows relating
the latent variables. The results obtained by Tenenhaus (1998) are shown in
Figure 1.1.

Fig. 1.1. Causality scheme estimated by Tenenhaus (1998) by dint of the PLS
approach relating economical inequality and political instability.

Figure 1.1 leads Tenenhaus (1998) to the conclusion that political insta-
bility is caused rather by a lack of industrialization than by an inequality in
the possession of land. However, based on economic arguments, in the origi-
nal analysis by Russett it had been expected that each of the five economical
variables would contribute equally to political instability.

In the data set considered here, no outliers are present in the sense that
they are bad measurements which should be deleted before performing the



PLS approach. However, some influential observations are present. A good
diagnostic to detect influential observations in the PLS context is the Squared
Influence Diagnostic (SID) which is based on the univariate PLS influence
function (Serneels et al. 2004). As it is a univariate test, it should be per-
formed separately on each of the variables of X3. A SID plot of X2 on the
variable “demostab”, e.g., is plotted in Figure 1.2.
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Fig. 1.2. Squared Influence Diagnostic plot for PLS1 regression of the variable
“demostab” on X2.

It unveils that the observation which corresponds to India (observation 22)
is a very influential sample. This has also been signalled by Tenenhaus (1999),
who notices that India is the only democracy whose level of industrialization is
below the mean value. When computing the SID for other combinations of the
Xi blocks and individual variables of X3, a few other influential observations
can be discerned.

The presence of some observations which are very influential on the final
estimate suggests that a robust estimate might in this case suffer less from
these individual observations and might be more apt to discern the general
trend in the data. As a robust estimation technique, we applied the partial
robust M (PRM) approach to estimate the desired quantities. The tuning
constant was set to 4 (for further details see Serneels et al. 200x) and conver-
gence of the partial (PRM) approach was obtained after 3 iterations, as was
the case for the PLS approach. The obtained estimates are shown in Figure
1.3.

From Figure 1.3 it can be seen that the robust estimates differ somewhat
from the estimates obtained by the classical PLS approach. The correlations



Fig. 1.3. Causality scheme estimated by dint of the PRM-approach relating eco-
nomical inequality and political instability.

between the manifest variables and the latent variables show the same trend
as in Figure 1.1, although some small differences may be observed: the vari-
able “einst” is shown to be less informative whereas the variable “ldeat” is
more informative to the robust model. Note that the correlations shown in the
robust causality scheme (Figure 1.3) are Spearman correlations, as the usual
Pearson correlations might also yield unreliable results due to deviations from
normality.

The main difference between the classical and robust estimates resides
in the estimation of the latent variables and the way these are related to
each other. From Tenenhaus (1999) it was decided that the latent variable
corresponding to the level of industrialization (ξ2) determines to a much
greater extent the country’s political instability (ξ3) than the agricultural
inequality (ξ1) does. From the robust estimates, one observes that the latter
latent variable is still more important than the former, although the difference
is much smaller. One could indeed conclude that both agricultural inequality
and industrialization contribute about equally to political instability.

1.4 Conclusions

The PLS approach is a technique which is widely applied to estimate path
models between several blocks of variables. It is believed that the path model



unveils the general trend of the structural relations which exist between these
variables.

The PLS approach is very sensitive to influential observations such as
outliers. These outliers might distort the final estimate in their direction.

The PLS approach is a widely applied technique in social sciences and
economics. In these fields of research, influential observations are frequently
not outliers which are outlying due to bad measurement which should be re-
moved before model estimation, but outliers often correspond to individuals
which behave differently than the majority of the data. Hence, the informa-
tion these observations carry should be used at the model estimation step,
albeit their influence in the final estimate should be controlled. The afore-
mentioned arguments suggest the use of a robust estimation technique for
the path model. Robust M-estimators are resistant with respect to outliers,
but remain highly efficient at the normal model.

In the current paper, the partial robust M-approach has been proposed
as a robust estimation technique for path modelling. It is based on several
steps of partial robust M-regression (Serneels et al. 200x). In an example it
has been shown to yield improvements over the PLS approach such that it
can better unveil the general trend in the path model relation, in case the
data do not follow a normal model.
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