
Robust Multivariate Methods:
The Projection Pursuit Approach

P. Filzmoser1, S. Serneels2, C. Croux3, and P.J. Van Espen2

1 Department of Statistics and Probability Theory,
Vienna University of Technology, A-1040 Vienna, Austria

2 Department of Chemistry,
University of Antwerp, B-2610 Antwerp, Belgium

3 Department of Applied Economics,
K.U. Leuven, B-3000 Leuven, Belgium

Abstract. Projection pursuit was originally introduced to identify structures in
multivariate data clouds (Huber, 1985). The idea of projecting data to a low-
dimensional subspace can also be applied to multivariate statistical methods. The
robustness of the methods can be achieved by applying robust estimators to the
lower-dimensional space. Robust estimation in high dimensions can thus be avoided
which usually results in a faster computation. Moreover, flat data sets where the
number of variables is much higher than the number of observations can be easier
analyzed in a robust way.

We will focus on the projection pursuit approach for robust continuum regres-
sion (Serneels et al., 2005). A new algorithm is introduced and compared with the
reference algorithm as well as with classical continuum regression.

1 Introduction

Multivariate statistical methods are often based on analyzing covariance
structures. Principal Component Analysis (PCA) for example corresponds
to a transformation of the data to a new coordinate system where the direc-
tions of the new axes are determined by the eigenvectors of the covariance
matrix of the data. In factor analysis the covariance or correlation matrix
of the data is the basis for determining the new factors, where usually the
diagonal of this scatter matrix is reduced by a variance part that is unique
for each variable (“uniqueness”). In Canonical Correlation Analysis (CCA)
one is concerned with two sets of variables that have been observed on the
same objects, and the goal is to determine new directions in each of the sets
with maximal correlation. The problem comes down to an eigenvector de-
composition of a matrix that uses information of the joint covariance matrix
of the two variable sets. In discriminant analysis the group centers and group
covariance matrices are used for finding discriminant rules that are able to
separate two or more groups of data coming from different populations.

Traditionally, the population covariance matrix is estimated by the em-
pirical sample covariance matrix. However, it is well known that outliers in
the data can have severe influence to this estimator (see, e.g., Hampel et
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al., 1986). For this reason, more robust scatter estimators have been intro-
duced in the literature, for a review see Maronna and Yohai (1998). Although
robustness is paid for by lower efficiency of the estimator and a higher com-
putational effort, the resulting estimation will usually be more reliable for
the data at hand. Plugging in robust covariance matrices into the before
mentioned methods leads to robust counterparts of the multivariate meth-
ods. The robustness properties of the resulting estimators have been studied,
e.g. Croux and Haesbroeck (2000) for PCA, or Pison et al. (2003) for factor
analysis.

There exists another approach to robustify multivariate methods, with-
out passing by a robust estimate of the covariance structure. This so-called
Projection Pursuit (PP) approach uses the idea to project the multivariate
data onto a lower dimensional space where robust estimation is much easier.
PP was initially proposed by Friedman and Tukey (1974), and the original
goal was to pursue directions that show the structure of the multivariate data
if projected on these directions. This is done by maximizing a PP index, and
the direction(s) resulting in a (local) maximum of the index are considered
to reveal interesting data structures. Huber (1985) pointed out that PCA is
a special case of PP, where the PP index is the variance of the projected
data, and where orthogonality constraints have to be included in the max-
imization procedure. Li and Chen (1985) used this approach to robustify
PCA by taking a robust scale estimator. Croux and Ruiz-Gazen (2005) in-
vestigated the robustness properties of this robust PCA approach, and they
introduced an algorithm for fast computation. Robust estimation using PP
was also considered for canonical correlation analysis (Branco et al., 2005),
and this approach was compared with the method of robustly estimating the
joint covariance matrix and with a robust alternating regression method.

The PP approach has several advantages, including the following:

(a) As mentioned earlier, robust estimation in lower dimension is compu-
tationally easier and faster, although on the other hand the search for
“interesting” projection directions is again time consuming.

(b) Robust covariance estimation is limited to data sets where the number
of observations is larger than the number of variables. Thus, for many
problems–like in chemometrics–PP based methods are the methods of
choice for a robust data analysis.

(c) The search for projection directions is sequential. Thus, the user can
determine a certain number of directions he/she is interested in, and is
not forced to perform a complete eigenanalysis of the covariance matrix.
Especially for high dimensional problems the computation time can be
reduced drastically by PP based methods as the number of interesting
directions to be considered is often small.

In this article we will focus on Continuum Regression (CR), a multivariate
method introduced by Stone and Brooks (1990) that combines ordinary least
squares, partial least squares and principal components regression. Serneels
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et al. (2005) introduced robust CR using the PP approach. In the next section
we will describe CR and outline how the parameters can be estimated in a
robust way. A new algorithm for computation will be introduced in Section
3, and the precision of this algorithm will be compared with the proposed
algorithm of Serneels et al. (2005). Section 4 underlines the robustness of this
method by presenting simulation results for the case of outliers in the space
of the regressor variables. The final section provides a summary.

2 Robust Continuum Regression by Projection Pursuit

CR is a regression technique that was designed for problems with high dimen-
sional regressors and few observations. Therefore, let X be the n× p matrix
of regressors where typically n << p. Let y be a vector with n observations
of the response variable. Like in the regression setting, the model

y = Xβ + ε (1)

with the error term ε is considered and the focus is on estimating the re-
gression coefficients β. Since the regressors are usually highly collinear, the
coefficients β are not directly estimated, but a so-called latent variable model

y = T hξ + ε (2)

with new regression coefficients ξ is considered. The score matrix T h is of
size n×h and h, the number of latent variables, is taken much smaller than p.
The score matrix is related with the original regressors through T h = XW h

with W h = (w1, . . . , wh) being a matrix with weights. The weight vectors
are defined by

wi = argmax
a

{Cov(Xa, y)2Var(Xa)
δ

1−δ−1} (3)

(i = 1, . . . , h) under the constraints

‖wi‖ = 1 and Cov(Xwi, Xwj) = 0 for j < i. (4)

The tuning parameter δ can be chosen in the interval [0, 1]. By taking δ = 0
the criterion corresponds to ordinary least squares, δ = 0.5 is the Partial
Least Squares (PLS) criterion, and δ = 1 results in principal component
regression (see Stone and Brooks, 1990).

The definition (3) of the weight vectors can be understood as PP index
that has to be maximized for a projection direction a, and for subsequent
projection directions the constraints (4) have to be fulfilled. The typically
high dimensional regressor matrix X is projected to one dimension, namely
Xa, and the variance “Var” of the projected data as well as the covariance
“Cov” between two univariate variables are the basis for finding the weight
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vectors. “Var” and “Cov” are usually taken as sample variance and covari-
ance estimators, respectively. By using more robust estimators instead, the
influence of outliers will be reduced and the projection directions will be de-
termined in a robust manner, resulting in a robust CR method. Serneels et
al. (2005) suggested to take the α-trimmed variance and covariance because
these estimators are easy to understand and fast to compute.

The algorithm for (robust) CR based on PP can be summarized as follows:

(a) Fix the number h of latent variables and the tuning parameter δ. The
appropriate choice of h and δ is described in Serneels et al. (2005).

(b) Define E1 as the mean centered data matrix X. For robust CR, robust
mean centering can be achieved by using the L1-median (for an efficient
algorithm see Hössjer and Croux, 1995).

(c) Suppose that the weight vectors W i−1 = (w1, . . . , wi−1) have already
been computed.
(i) The i-th weight vector wi is determined according to criterion (3)

by scanning the projection directions a. In Section 3 we will provide
more details on this. Multiplying the matrix Ei (see below) with these
weights gives the i-th score vector ti.

(ii) The parameter vector ξ in model (2) is estimated by ordinary least
squares in the classical case and in the robust case by any robust
regression method, like Huber M-regression (Huber, 1981). Premulti-
plication with W i−1 gives the estimation of the coefficients β in the
original model (1).

(iii) Carry out a deflation in order to fulfill the model constraints (4):

Ei+1 =
(
In −

i−1∑

j=1

tjt
>
j

t>j tj

)
X. (5)

3 Algorithms for Finding the PP Directions

A crucial point of CR is the maximization of the criterion (3) for the weights.
In principle, all possible projection directions a ∈ IRp have to be scanned,
which is impossible especially in situations where p is large. For this reason,
the number of candidate directions is limited to a set that is still computable
in reasonable time. Serneels et al. (2005) suggested to construct k directions
that are arbitrary linear combinations of the n data points at hand, the first
n directions being directly the n observations. The computation time as well
as the precision of this algorithms will thus strongly depend on the number
k of candidate directions.

Here a new algorithm will be introduced and compared with the other
proposal. This so-called grid algorithm works as follows. Let xi (i = 1, . . . , p)
be the columns, or “variables” of the data matrix X.

(a) If p = 2:
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(i) A first approximation a1 of the projection direction a is obtained by
maximizing

C(γ1jx1 + γ2jx2) = Cov(γ1jx1 + γ2jx2,y)2Var(γ1jx1 + γ2jx2)
δ

1−δ−1

(6)
under the constraints γ2

1j + γ2
2j = 1 for j = 1, . . . , N . The unknowns

γ1j and γ2j are the coordinates of G grid points regularly chosen on
the unit circle in the interval [−π/2, π/2), and the maximum is taken
among these G candidate directions.

(ii) The second approximation a2 is searched like before, but in a smaller
interval [−π/(2f ), π/(2f )) with f = 2. In each new iteration f is in-
creased by 1, until after F interval halving steps the grid is fine enough
to leave the solution essentially unchanged (marginal improvement
smaller than a tolerance bound).

(b) If p > 2:
(i) Compute for each regressor variable i = 1, . . . , p the value of the

objective function

C(xi) = Cov(xi,y)2Var(xi)
δ

1−δ−1 (7)

and sort the variables x(1), . . . , x(p), being in the columns of X, ac-
cording to C(x(1)) ≥ C(x(2)) ≥ . . . ≥ C(x(p)).

(ii) The maximization is done now in the plane like in (a): Maximizing
C(γ1jx(1)+γ2jx(2)) results in the approximation a(1). A next approx-
imation a(2) is obtained by maximizing C(γ1jXa(1) + γ2jx(3)). This
procedure is repeated until the last variable has entered the optimiza-
tion. In a next cycle each variable is considered again for improving
the value of the objective function. The algorithm terminates when
the improvement is considered to be marginal.

The precision of both algorithms is computed using the “Fearn” data
(Fearn, 1983) which consists of 24 observations and 6 regressor variables. For
δ = 0.5 we compute all h = 6 latent variables. Since δ = 0.5 corresponds
to PLS, the solutions of both algorithms can be compared with the exact
solution resulting from the SIMPLS algorithm (de Jong, 1993) in the case
when the empirical sample variance and covariance are used in the criterion
(3). The resulting regression coefficients are compared by computing the sum
of all elementwise squared differences to the exact regression coefficients.
This can be considered as measure of precision of the algorithm, which needs
to be as small as possible. Since the precision measure could depend on
the specifically generated directions for the algorithm described in Serneels
et al. (2005), we average the precision measure over 100 runs. In Figure 1
the resulting precisions are presented for different parameter choices of the
algorithms. For the algorithm of Serneels et al. (2005) different numbers of
directions k are considered (scale on top), and for the grid algorithm different
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Fig. 1. Average precision for the regression coefficients of the Fearn data resulting
from two different algorithms.
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Fig. 2. Average computation time (in seconds) for both algorithms, see Figure 1.

numbers of grid points G and interval halving steps F are used (scale on
bottom). From Figure 1 we see that the precision is comparable for k = 1000
directions and the choice G = 10 and F = 5. By taking more computational
effort, the precision is getting much better for the grid algorithm.

It is also interesting to compare the algorithms with respect to computa-
tion time. Figure 2 presents the average computation time corresponding to
the results of Figure 1. While the precision is about the same for k = 1000
and G = 10 and F = 5, the grid algorithm needs roughly twice as much
time. On the other hand, the time for both algorithms is about the same for
the parameters k = 5000 and G = 20, F = 10, but the precision of the grid
algorithm is about 2 · 10−5 compared to 2 · 10−4 for the other algorithm. In
general, if higher precision is needed, the grid algorithm will be much faster
and at the same time more precise. On the other hand, if moderate precision
is sufficient, the Serneels et al. (2005) algorithm is to be preferred.

4 Simulation

The advantage of robust CR over classical CR in presence of contamination
was already demonstrated in Serneels et al. (2005) by simulations and an
example. In the simulations different distributions of the error term ε in the
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Fig. 3. Squared Errors from the simulation with outliers in the regressor variables.

model (1) were considered. We recomputed the simulations for the grid algo-
rithm and obtained similar results as for the previously proposed algorithm.

Here we will consider the situation of outliers in the regressor variables.
The matrix X of size n × p with n = 100 and p = 10 is generated from
Np(0, C), a multivariate normal distribution with mean 0 and covariance
matrix C = diag(1, 1/2, . . . , 1/p). W h is constructed to fulfill the constraints
(4) with h = 3, and ξ is generated from a uniform random distribution in
[0.5, 1]. These matrices are fixed for a particular simulation setup. Hence, the
true regression parameter β = W hξ is known. Then the error term is gener-
ated according to ε ∼ N(0, 1/10) and 10% of the rows of X are replaced by
outliers coming from Np(5 · 0, Ip). For several values of the tuning parame-
ter δ the classical CR algorithm, the algorithm of Serneels et al. (2005) and
the grid algorithm was applied in 1000 simulation replications. the resulting

Squared Errors
(
β − β̂

(i)

δ,h

)>(
β − β̂

(i)

δ,h

)
were computed for the estimated

regression coefficients β̂
(i)

δ,h in the i-th simulation obtained from the differ-
ent algorithms, and the results are presented by parallel boxplots in Figure
3. Each group of three boxplots corresponds to a different value of δ. Both
algorithms for robust CR lead to comparable results, at least for the choice
k = 1000 directions, G = 10 grid points and F = 2, and α = 10% trimmed
variance and covariance estimators. For all choices of δ the notches of the
classical boxplots do not overlap with the robust ones, which is a strong evi-
dence that the Squared Errors of the classical procedure is higher as for the
robust ones, due to the presence of contamination.

5 Summary

The robustification of multivariate methods by plugging in robust covariance
matrix estimates is limited to the case n > p. This limitation does not hold
for methods based on PP, and the robustness can be achieved by applying
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robust estimators to the projected data. Here we outlined the procedure for
robust CR, and a new algorithm was introduced. Robust CR turns out to
be robust against outliers in the error terms, but also robust with respect to
outliers in the regressor variables, as was shown by the simulations in this
paper. Programs for computation are available in the Matlab programming
environment from the first author.
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