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Abstract: Two robust approaches to principal component analysis and factor
analysis are presented. The different methods are compared, and properties
are discussed. As an application we use a large geochemical data set which
was analyzed in detail by univariate (geo-)statistical methods. We explain the
advantages of applying robust multivariate methods.

1 Introduction

In regional geochemistry an advantage could be that instead of present-
ing maps for 50 (or more) chemical elements only a few maps of the
principal components or factors may have to be presented, containing a
high percentage of the information of the single element maps. Addi-
tionally, it might be possible to find effects which are not visible in the
single element maps. Especially factor analysis is used in different kinds
of applications to detect hidden structures in the data.

Geochemical data sets usually include outliers which are caused by a
multitude of different processes. It is well known that outliers can heavily
influence classical statistical methods, including multivariate statistical
methods. Even one single (huge) outlier can completely determine the
result of principal component analysis. For that reason it is advisable to
use robust multivariate methods for detecting the multivariate structure.
Section 2 treats two methods of robust principal component analysis.
Two different versions of robust factor analysis which have recently been
proposed, are considered in Sections 3 and 4. Section 5 gives an example
with a real geochemical data set.

2 Robust Principal Component Analysis

Let x be a p-dimensional random vector with E(x) = µ and Cov(x) =
Σ. The covariance matrix can be decomposed as Σ = ΓAΓ>, where
the columns of Γ = (γ.1, . . . ,γ.p) are the eigenvectors of Σ and A is
a diagonal matrix with the corresponding eigenvalues (arranged in de-
scending order) of Σ. The principal components of x are defined by
z = Γ>(x− µ). Classically, µ is estimated by the sample mean x̄, and
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Σ by the sample covariance matrix S, which is decomposed into eigen-
vectors and -values. x̄ as well as S are highly sensitive with respect
to outlying observations. Hence, for seriously analyzing geochemical
data, a robust version of principal component analysis (PCA) has to be
applied.

PCA can easily be robustified by estimating the covariance matrix Σ in a
robust way, e.g. by taking the Minimum Covariance Determinant (MCD)
estimator of Rousseeuw (1985). The robustly estimated covariance ma-
trix is not influenced by outliers, and hence the eigenvector/eigenvalue
decomposition is also robust. Since the MCD additionally gives a robust
estimation of µ, the whole PCA procedure is robust. We will discuss
the usage of the MCD estimator in more detail in the context of factor
analysis (Section 3).

Another way for robustifying PCA was introduced by Li and Chen
(1985). The method is based on the projection pursuit technique. PCA
can be seen as a special case of projection pursuit, where the variance of
the projected data points is to be maximized. Let X = (x>1., . . . , x

>
n.)

>
be a data matrix with observation vectors xi. ∈ IRp (i = 1, . . . , n). Now,
let us assume that the first (k − 1) projection directions γ̂.1, . . . , γ̂.(k−1)
are already known. We define a projection matrix

P 1 = Ip , P k = Ip −
k−1∑

j=1

γ̂.jγ̂
>
.j . (1)

P k corresponds to a projection onto the space spanned by the first (k−1)
projection directions. We are interested in finding a projection direction
a which maximizes the function

a −→ S(XP ka) (2)

under the restrictions a>a = 1 and P ka = a (orthogonality to pre-
viously found projection directions). Defining S in (2) as the classical
sample standard deviation would result in classical PCA. The method
can easily be robustified by taking a robust measure of spread, e.g. the
median absolute deviation (MAD)

MAD(y) = med
i
|yi − med

j
(yj)| . (3)

Since the number of possible projection directions is infinite, an approx-
imative solution for maximizing (2) is as follows. The k-th projection
direction is only searched in the set

An,k =
{

P k(x1. − µ̂n)
‖P k(x1. − µ̂n)‖ , . . . ,

P k(xn. − µ̂n)
‖P k(xn. − µ̂n)‖

}
(4)
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where µ̂n denotes a robust estimation of the mean, like the L1-median
or the component-wise median.

The algorithm outlined above was suggested by Croux and Ruiz-Gazen
(1996). It is easy to implement and fast to compute which makes the
method quite attractive to use in practice. Furthermore, this robust
PCA method has a big advantage for high-dimensional data (large p)
because it allows to stop at a desired number k < p of components,
whereas usually all p components are to be extracted by the eigenvec-
tor/eigenvalue decomposition of the (robust) covariance matrix. More-
over, the method still gives reliable results for n < p, which is important
for a variety of applications. The computation of the MCD estimator
requires at least n > p.

3 Robust Factor Analysis using the MCD
The aim of factor analysis (FA) is to summarize the correlation structure
of observed variables x1, . . . , xp. For this purpose one constructs k < p
unobservable or latent variables f1, . . . , fk, which are called the factors,
and which are linked with the original variables through the equation

xj = λj1f1 + λj2f2 + . . . + λjkfk + εj , (5)

for each 1 ≤ j ≤ p. The error variables ε1, . . . , εp are supposed to be in-
dependent, but they have specific variances ψ1, . . . , ψp. The coefficients
λjl are called the factor loadings, and they are collected into the matrix
of loadings Λ.

Using the vector notations x = (x1, . . . , xp)>, f = (f1, . . . , fk)>, and
ε = (ε1, . . . , εp)>, the usual conditions on factors and error terms can
be written as E(f) = E(ε) = 0, Cov(f) = Ik, and Cov(ε) = Ψ, with
Ψ a diagonal matrix containing on its diagonal the specific variances.
Furthermore, ε and f are assumed to be independent.

From the above conditions it follows that the covariance matrix of x can
be expressed by

Σ = ΛΛ> + Ψ. (6)

In classical FA the matrix Σ is estimated by the sample covariance
matrix. Afterwards, decomposition (6) is used to obtain the estimators
for Λ and Ψ. Many methods have been proposed for this decomposition,
of which maximum likelihood (ML) and the principal factor analysis
(PFA) method are the most frequently used.

Similar to the previous section, the parameter estimates can heavily be
influenced when using a classical estimation of the scatter matrix. The
problem can be avoided when Σ is estimated by the MCD estimator,
which looks for the subset of h out of all n observations having the
smallest determinant of its covariance matrix. Typically, h ≈ 3n/4.
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Pison et al. (1999) used the MCD for robustifying FA. They have shown
that PFA based on MCD results in a resistant FA method with bounded
influence function. It has better robustness properties than the ML-
based counterpart. The empirical influence function can be used as
a data-analytic tool. The method is also attractive for computational
reasons since a fast algorithm for the MCD estimator has recently been
developed (Rousseeuw and Van Driessen (1999)).

4 FA using Robust Alternating Regressions

A limitation of the MCD-based approach is that the sample size n needs
to be bigger than the number of variables p. For samples with n ≤
p (which occur quite frequently in the practice of FA), a robust FA
technique based on alternating regressions, originating from Croux et
al. (1999), can be used.

For this we consider the sample version of model (5):

xij =
k∑

l=1

λjlfil + εij (7)

for i = 1, . . . , n and j = 1, . . . , p. Suppose that preliminary estimates
for the factor scores fil are known, and consider them as constants for a
moment. The loadings λjl can now be estimated by linear regressions of
the xj ’s on the factors. Moreover, by applying a robust scale estimator
on the computed residuals, estimates ψ̂j for ψj can easily be obtained
(for example by computing the MAD of the residuals).

On the other hand, if preliminary estimates of the loadings are available,
linear regression estimators can again be used for estimating the factor
scores. Indeed, if we take i fixed in (7) and suppose that the λjl are
fixed, a regression of xij on the loadings λjl yields updated estimates for
the factor scores. Since there is heteroscedasticity, weights proportional
to (ψ̂j)−1/2 should be included.

Using robust principal components (Section 2) as appropriate starting
values for the factor scores, an iterative process (called alternating or
interlocking regressions) can be carried out to estimate the unknown
parameters of the factor model. To ensure robustness of the procedure
we use a weighted L1-regression estimator since it is fast to compute
and very robust. More details about the method and the choice of the
weights can be found in Croux et al. (1999). Note that in contrast to the
method described in Section 3, the factor scores are estimated directly.
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5 Example

We consider a data set described and analyzed by univariate methods
in Reimann et al. (1998). From 1992-1998 the Geological Surveys of
Finland (GTK), and Norway (NGU) and the Central Kola Expedition
(CKE), Russia, carried out a large multi-element geochemical mapping
project, covering an area of 188,000 km2 between 24◦ and 35.5◦E up to
the Barents Sea coast. One of the sample media was the C-horizon of
podzol profiles, developed on glacial drift. C-horizon samples were taken
at 605 sites, and the contents of more than 50 chemical elements was
measured for all samples. Although the project was mainly designed
to reveal the environmental conditions in the area, the C-horizon was
sampled to reflect the geogenic background.

In the following we will apply the alternating regression-based FA ap-
proach (Section 4). Robust PCA and MCD-based FA was used in Filz-
moser (1999) for the upper layer, humus, of the complete data set.

For the investigation of the C-horizon data we only considered the ele-
ments Ag, Al, As, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K , Mg, Mn, Na, Ni,
P , Pb, S, Si, Sr, Th, V and Zn. These variables have been transformed
to a logarithmic scale to give a better approximation to the normal
distribution. In order to put everything to a common scale we first
standardized (robustly) the variables to mean zero and variance one.
We want to analyze the data by using non-robust least squares (LS) re-
gression and robust weighted L1-regression in the alternating regression
scheme. We decided to extract 6 factors which results in a proportion of
total variance of 75% for both cases. The loadings of factors F1 to F6
are shown in Figure 1. We just printed the elements with an absolute
value of the loadings larger than 0.3 to avoid confusion. The percentage
of explained variance is printed at the top of the plots. Figure 1 shows
that for the first factor F1 there is just a slight difference between the
non-robust (a) and the robust (b) method. However, for the subsequent
factors this difference grows. Especially the loadings of factors F4 and
F6 are strongly changing.

It is also interesting to inspect the factor scores which are directly esti-
mated by our method. Because of space limitations we only show the
scores of the second factor F2 (Figure 2), which is interesting because it
nicely reflects the distribution of alkaline intrusions in the survey area.
Figure 2 shows the whole region under consideration. The dark lines are
the borders of the countries Russia (east), Norway (north-west), and
Finland (south-west). The gray lines show rivers and the coast.

At a first glance the two results presented in Figure 2, the non-robust
(a) and the robust (b) scores of factor F2 seem to be very similar. But
already the ranges of the estimated scores are different ([−3.08, 4.98] for
the non-robust and [−3.82, 5.13] for the robust method (in the maps we
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used the same scaling). The smaller range is typical for LS-based meth-
ods because all data points, including the outliers, are tried to be fitted.
Robust methods fit the majority of “good” data points which leads to
a reliable estimation. As a consequence, the regions with high and low
outliers are presented more reliable by the robust method. In the map
the two uppermost classes (crosses) mark areas which are underlain by
alkaline bedrocks. The anomalies in the factor maps are much more
prominent than the intrusions themselves in a geological map. The rea-
son is that the emplacement of the intrusions was accompanied by the
movement of large amounts of hydrothermal fluids. These changed the
chemical composition of the intruded bedrocks. The map thus reflects
the alteration haloes of these intrusions and demonstrates the impor-
tance of the geological process for a very large region.
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7

ROUSSEEUW, P. J. and VAN DRIESSEN, K. (1999): A Fast Algorithm
for the Minimum Covariance Determinant Estimator. Technometrics,
41, 212-223.



8

(a)

0% 38%

Ag

Al

As
Ba

Bi

Cd

Co

Cr

Cu
Fe

K

MgMn
Ni

Pb S
Sr

Th

V

Zn

F1

50%

As

Ba

Bi

Ca
Na

P

Pb

Sr

F2

59%

Ag

Co

Cr

Cu
Mg

Ni

Pb

SrTh

V

F3

65%

Ca

P

Si

F4

70%

Ba

Bi

K

Si

F5

75%

AgP

S

F6
-1

-0.5

0

+0.5

+1

(b)

0% 36%

Ag

Al

As
Ba

Bi

Cd
Co

Cr

Cu
Fe

K

Mg
MnNi

Pb
S

Sr
Th

V
Zn

F1

50%

Ba

Ca

K
Mn

Na
P Sr

F2

58%

Co

Cr

CuFe

Mg
Ni

Pb

V

F3

64%

Bi

S
Si

F4

70%

Ba

K

F5

75%

Ag

Th

F6
-1

-0.5

0

+0.5

+1

Figure 1: Loadings of the alternating regression based FA method using
(a) LS-regression and (b) weighted L1-regression.
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(a)
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Figure 2: Scores of the second factor of the alternating regression based
FA method using (a) LS-regression and (b) weighted L1-regression.


