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A HIERARCHICAL CLUSTERING METHOD FOR ANALYZING FUNCTIONAL
MR IMAGES
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*Department of Statistics and Probability Theory, Vienna University of Technology, A-1040 Vienna and †NMR Group, Institute
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We introduce a novel method for detecting anatomic and functional structures in fMRI. The main idea is to
divide the data hierarchically into smaller groups using k-means clustering. The separation is halted if the
clusters contain no further structure that is verified by several independent tests. The resulting cluster centers are
then used for computing the final results in one step. The procedure is flexible, fast to compute, and the numbers
of clusters in the data are obtained in a data-driven manner. Applying the algorithm to synthetic fMRI data
yields perfect separation of “anatomic,” i.e., time-invariant, and “functional,” i.e., time-varying, information for
a standard off-on paradigm and a typical functional contrast-to-noise ratio of two and higher. In addition, an
EPI-fMRI data set of the human motor cortex was analyzed to demonstrate the performance of this novel
approach in vivo. © 1999 Elsevier Science Inc.
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INTRODUCTION

Recently, functional magnetic resonance imaging (fMRI)
has been established as a potent brain mapping method
(for review see, e.g., ref. 1-3). Upon physiological stim-
ulation of the various senses (e.g., acoustic, motor, ol-
factory, sensory, visual, etc.), a focal hemodynamic re-
sponse may be observed via changes in cerebral blood
flow, volume and/or oxygenation. The actual signal en-
hancement and the size of activated areas depends, in
addition to the stimulation paradigm and the actual he-
modynamic response function of the subjects brain, on
parameters such as magnetic field strength (currently
about 1-4 T), measurement sequence design, (mostly
gradient-recalled echo, echo-planar or spiral imaging)
and measurement parameters. In particular, functional
contrast depends on the spatial resolution, the exitation
flip angle, the echo time, and the repetition time, which
defines the temporal resolution. Nevertheless, the signal
enhancement in cortical brain areas may be only in the
lower percent range, whereas artifactual signal changes
from a) large draining veins, b) gross head motion, or c)

technical artifacts may be much higher.4-6 Furthermore,
physiologic motion also contributes to the noise level, how-
ever, the noise level varies across the brain.7-9

Consequently, the extraction of information primarily
related to focal neuronal activation is still a formidable
task. In addition, due to the large number of non-para-
metric distributed data points per study, typically about
5-100 million, statistical treatment is non-trivial. Histor-
ically, simple statistical tests were applied to visualize so
called “activated brain maps” and corresponding signal
time courses were calculated separately.10 However,
these simple approaches, although broadly used, require
a high degree of prior knowledge, and have a low spec-
ificity to differentiate contributions from large, draining
veins and cortical activation,11-14 as well as stimulus-
correlated brain motion.6 Recently, more elaborate, mul-
tivariate statistical methods have been introduced.15-18

However, they still require a high degree of prior knowl-
edge; not only about the paradigm but also on the actual
(i.e., individual and maybe local) hemodynamic response
function which may not be generally known.
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The latest development in advanced signal processing
in fMRI concerns the application of so-called explor-
ative, paradigm-free approaches such as factor analy-
sis,19,20and fuzzy-cluster analysis.13,14,21,22These meth-
ods aim to extract the full amount of information
available from the acquired data sets without model bias.
This may include actual brain activation as well as phys-
iologic or technical artifacts leading to time-varying sig-
nal changes in fMRI time series. However, every single
approach has advantages and disadvantages, and has to
be selected properly in connection with the actual data
set and quality.

fMRI data is analyzed to detect the main structures
which are caused by different signal intensities and tem-
poral changes. This leads to variations in the data matrix
where groups of data points describing different (main)
signal intensities in the image are expected. The analysis
of grouped data is not advisable with correlation-based
methods since, in general, the assumption of normal
distribution is not fulfilled. A better procedure may be to
separate the various groups using the actual data directly,
which may be achieved by cluster analysis, applying one
of the numerous clustering techniques published (see,
e.g., ref. 23). Since in fMRI the number of observations
or pixel pointsn is very large, we can exclude methods
which are based on the matrix of distances (dimension
n 3 n) instead of directly using the data matrix. Another
objective is to set up a procedure that leads to the final
result in real-time, so time consuming clustering algo-
rithms should be avoided.

Here we present a novel approach for an explorative,
model-free fMRI analysis strategy based on hierarchical
clustering employing crispk-means clustering. The
method is being evaluated using synthetic, and in vivo
fMRI data.

MATERIALS AND METHODS

Synthetic fMRI Data
Thirty-five images, representing transversal brain

slices (full matrix size 1283 128), were simulated by a
time invariant anatomy (Fig. 1a) with signal variations at
the location of activated areas as shown in Fig. 1b (“A”
denotes “cortical” and “B” denotes “venous” activation.)
The number of pixels in area “A” was NA5 35 and in
area “B” was NB5 14. The anatomy consists of two
structures; 1) a checkered pattern representing lower
signal intensity (SI) (SI5 204, n 5 2,268) and higher
signal intensity components (SI5 241, n 5 2,268)
simulating gray and white matter, respectively, and 2)
the (fluid filled) ventricles also represented by a check-
ered pattern with lower and higher intensity component
(SI 5 156,n 5 145 and SI5 192,n 5 145, respective-
ly). The data were corrupted by Gaussian white noise
resulting in a difference in functional contrast-to-noise

ratio (CNR) in the range of 1.33-2.33 between anatomy
(Fig. 1a) and regions “A” and “B” (Fig. 1b). In addition,
a random baseline shift simulating thermal shifts in a
temporal image series was introduced, not exceeding 1%
of the baseline level. For more details about the synthetic
data design see ref.20

Fig. 1. In a, anatomic details of the synthetic data set; b,
simulated activated areas.
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In Vivo fMRI Data
Functional MRI data from the human motor cortex

were measured on a whole body MR-system at 3T
(BRUKER Medspec 30/80-DBX, Ettlingen, Germany),
equipped with a high performance gradient coil (B-GA
55; 19 mT/m in, 300ms) using a quadrature bird-cage
head coil. A single-shot blipped GRE-EPI sequence was
applied to collect 70 T2*-weighted sequential images.
Sequence parameters were as follows: TE5 82 ms,
TR 5 1000 ms, RBW5 200 KHz, MA 5 128 3 128,
FOV 5 2563 256 mm, thk5 3 mm. The reference gray
scale image (see Fig. 5) has been created by averaging all
70 EPI images (without any registration). This also con-
firms that no distorting motion artifacts are present in the
whole image series.

Clustering Algorithm
A clustering technique that is very fast to compute is

the k-means method.24 The objective ofk-means is to
find a partition of the observations intoG groups by
minimizing a predefined criterion. Starting fromG initial
guesses for the cluster centers, each object is transferred
to another group until an “error measure” (e.g., the sum
over the squared distances from each observation point
to its cluster center) cannot be further reduced. As it
would be computationally infeasible to calculate the
overall minimum of the objective function, a procedure
for finding a local minimum may be used.25 In general,
the k-means method is not sensitive to the choice of the
initial cluster centers. The simplest approach is to take
the firstG observations of a data matrix. It is, however,
important to know a priori the numberG of clusters,
which, in general, is not the case with fMRI data. The
problem of the choice ofG can be avoided if the whole
k-means clustering is done for an arbitrary number of
clusters. Thereafter, one may select the “best” or most
satisfying result by whatever criteria. This procedure
takes a lot of time, especially for large data sets and
produces a lot of output that needs to be further analyzed.
Therefore, we suggest a kind of hierarchicalk-means
clustering technique that divides the data into two groups
in each clustering step. The procedure is halted after
there is no structure left in the data, i.e., it is a purely data
driven approach.

Suppose we have acquired a time sequence ofp
images. Each gray scale image consists of 1283 128
pixels. Then 5 1283 1285 16384 pixels can be seen
as the observation points for the time sequence of im-
ages, resulting in a data matrixX of sizen 3 p. The goal
now is to find the main structure contained inX. Either
different signal intensities in pixels located in different
tissue types (i.e., amplitude or “anatomy” based) or
changes in signal intensities with time (i.e., “function”
based) leading to detectable variations in the data matrix.

The algorithm proposed is divided in two main parts:
theclusteringand themergingpart. In the clustering part
we step-by-step divide clusters which contain structures
into two smaller clusters, whereas in the merging part we
re-combine clusters. Finally, the clusters are re-com-
puted using the previously obtained cluster centers.

Initially, all objects (data points) of the data matrixX
are combined in one big cluster. In thefirst step this
cluster is divided into two smaller clusters. This is per-
formed by thek-means method where the first two rows
of X can be taken as initial cluster centers. As a result a
“clustering vector” is obtainedn 5 (n1,. . . ,nn)

T contain-
ing the numbers 1 and 2, which indicate the membership
to cluster 1 or 2 for each observation. Next,X is subdi-
vided into two matricesX1 andX2. The matrixX1 is of
sizen1 3 p and contains all observationsx1. (i-th row of
X) for which ni 5 2 (i 5 1,. . . ,n). Complementary, the
matrix X2 is of sizen2 3 p, wheren1 1 n2 5 n and
contains all observationsxj (j-th row of X) for which nj

5 2 (j 5 1,. . .n). Commonly, for fMRI data, these two
clusters correspond to theregion of interest, i.e., the
brain, and to thebackground.

In clusteringstep 2, we check for each of the clusters
separately, derived from the previous step (i.e., cluster 1
and 2), whether they include further structure or just
noise. There are different possibilities for this examina-
tion:

Visual inspection. Visualize the data set by, e.g.,
plotting the scores of the first and second principal com-
ponent (see ref.26) of X. The principal component scores
correspond to the data values transformed to the coordi-
nate system of the principal components. The (two)
clusters may be displayed by assigning the elements of
the clustering vectorv to the data objects (see Fig. 2). If
the data set is well structured, we can easily decide if
cluster 1 and/or 2 should be further divided.

Eigenvalues.Calculate the eigenvalues of the covari-
ance matrix of data setX l (l 5 1,2) and sort them by their
magnitude. If the eigenvalues are roughly of the same
magnitude, the content of information is approximately
the same, which means that the data contain essentially
noise (see, e.g., ref. 27).

Within cluster sum of squares (WSS).Compute the
sum over the squared distances from each observation to
its cluster center. This value can be adjusted by the
number of objects in clusterl (l 5 1,2). A low value of
the (adjusted) WSS indicates that the data are “compact”
and should, therefore, not be further divided.

Statistical analysis.After each single step in hierar-
chical clustering, statistical tests may be performed to
compute significance levels for the different clusters
obtained. However, note that simple tests to calculate
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e.g.,p values, assume normally distributed data which, in
general, is not the case. Therefore, non-parametric tests
such as the Kolmogorov-Smirnov test are more advisable
(see, e.g., ref. 28).

Based on the guidelines given above, we can decide
whether clusterl (l 5 1,2) should be further decomposed.
In the positive case we divided the cluster(s) by the
k-means method and step 2 is finished. The final result
fully describes the data bym clusters wherem is 2, 3 or
4 and statistical tests confirm the significance level(s).

Experience has shown that, in general, it is not pos-
sible to give exact thresholds to the criteria for eigenval-
ues and WSS, which are valid for all different kinds of
data. This is the reason why, in addition, a visual inspec-
tion is suggested to get a better impression of data quality
and structure.

All computations were performed on a workstation
HP 9,000, (Hewlett Packard, California, USA), model
C180 (180 MHz) with a RISC PA 8,000 processor and
288MB RAM. We used the statistical software package
S-Plus (see, e.g., ref. 29).

RESULTS AND DISCUSSION

We analyzed five synthetic fMRI data sets of size
16,3843 35 and varying “functional” contrast-to-noise
ratio (CNR) (see also ref. 30) and performedk-means
clustering with two clusters and obtained the matricesX1

and X2. In this example (Fig. 1), we show the data set
with delta CNR5 1.66 between anatomy and regions
“A” and “B.” The five largest eigenvalues of the covari-
ance matrix ofX1 are

16020.1 82.1 54.6 52.3 52.1

whereas forX2 we obtained

17.9 17.8 17.5 17.5 17.4

From the magnitude of these eigenvalues it is clear that
X2 includes just noise, i.e., it is the matrix describing the
background, whereasX1 includes the region of interest,
i.e., the brain.

The same differentiation is possible via the within
cluster sum of squares (WSS):

WSS1 5 8.48e 1 7, n1 5 4809,
WSS1

ni
5 17627.0

WSS2 5 6.57e 1 6, n2 5 11575,
WSS2

n2
5 567.8

A Kolmogorov-Smirnov test of the two cluster centers
gives ap value of 0. This means that the null hypothesis
for equality of the empirical distributions of the cluster
centers has to be highly significant rejected. This again
confirms the previous results.

As mentioned before, this synthetic data set is com-
posed of groups with normally distributed data points.
So, for some situations, at-test could also be applied
since the statistical assumptions might be fulfilled. How-
ever, non-parametric tests can be used for each kind of
fMRI data, and the fulfillment of normal distribution
such as in this case is, of course, no contradiction for
applying the Kolmogorov-Smirnov test.

To visualize the clustering, Fig. 2a shows the scores
of the first and second principal component ofX, with the
digits representing the objects corresponding to the clus-
tering vector. This plot confirms the above conclusions:
cluster 2, denoted by the digits 2, includes no further
structure (i.e., represents the background), and cluster 1,
denoted by the digits 1, obviously contains information
which may be further investigated. Note that principal
component 1 (PC1) differentiates between signal inten-
sities constant in time, i.e., “anatomic” structures, and
principal component 2 (PC2) allows differentiation for
time varying signal intensities, e.g., function.

In clusteringstep t(t . 2) we have to decide, on the
basis of the above guidelines, for each ofm clusters
whether they should be decomposed into (two) smaller
clusters. If none of them clusters is further divided, we
have finished the clustering part by obtainingm clusters
with the corresponding cluster centers. During this hier-
archical clustering procedure it may happen that objects
belonging to one group become divided into different
clusters. Note that a potential disadvantage ofk-means
clustering is that this algorithm tries to find clusters with
about the same size. As an extreme case we may consider
groups with very different sizes that are not well sepa-
rated. This situation often appears with fMR images
when only small parts of the brain are activated. Here,
the larger group may be divided unequally into two
clusters such that one of the new clusters will contain
also points from the small, activated part. Although this
smaller group can be separated from the other points in
subsequent steps, it is clear that the clusters containing
the objects of the original large group should be re-
combined.

The above requirement is achieved during the second
part, or merging part, of the proposed procedure. We
compute all (Euclidean) distances between them cluster
centers obtained from the clustering part and sort them in
increasing order. Small numbers indicate that the clusters
are strongly related and they should, therefore, be
merged. Merging clusters means that one of the two
cluster centers is deleted. The merging part should be
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stopped when there is a sudden increase of the distances
for different cluster pairs.

We now continue the clustering procedure with the
above-described data set. The hierarchical clustering
steps are performed until none of the clusters is to be
(significantly) divided any more (seeguidelines). Figure
2b shows the scores of the first and second principal
component of our synthetic fMRI data set, by just show-
ing the data points from the region of interest (i.e.,
represented by the digits 1 in Fig. 2a). The digits repre-
senting the points in Fig. 2b correspond to the actual
clustering vector. We note that cluster 2 and 4 are
strongly related and they should, therefore, be merged
into one cluster. The reason for dividing this cluster can
be duplicated by inspecting the hierarchical clustering
tree shown in Fig. 3. The digits 1 to 9 in Fig. 3 corre-
spond to the clusters 1 to 9 of Fig. 2b, the digit 0
represents the cluster “background.”k-means clustering
has the tendency to extract clusters of about the same
size, which caused a separation of the cluster with the

Fig. 2. To visualize the potential of the hierarchical k-means
clustering approach, principal component analysis was per-
formed. The scores of the first and second principal component
are displayed for different levels of the clustering hierarchy: a)
after the first step cluster 2, denoted by digits 2, shows no
further structure, whereas cluster 1, denoted by the digits 1,
suggests further clustering; b) After finishing the splitting part,
several anatomic (clusters denoted by digits 2-5) and functional
(clusters 6-9, respectively) clusters could be separated. c) By
merging cluster 2 and 4, selecting the cluster centers, and
repeating the k-means clustering on the full data set, perfect
separation of all simulated structures, whether anatomic or
functional, could be obtained.

Fig. 3. All steps of clustering and merging are reported in this
clustering tree. At the beginning (top of the diagram), all points
are combined in one single cluster. After the first clustering
step, this cluster is divided into “background” (cluster 0) and
brain (all other points), and so on. The numbers 0 to 9 indicate
the results after having finished the clustering part (see also Fig.
2b). In the merging part, cluster 2 and 4 are re-combined
(dashed line).
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points labeled by 2, 4, 6 and 7 into one cluster with the
points 2 and another cluster including the remaining
points (see Fig. 2b). The relationship between the clus-
ters may be judged by inspecting the (sorted) distances of
the cluster centers:

Cluster pairs2– 4 6–7 8–9 4–6 5–8 2–6

3–5 4–7 . . .

Distance 12.00 41.93 46.99 60.12 65.40 68.35

71.75 99.70 . . .

The smaller the distance between two cluster centers, the
stronger the similarity between these clusters. The dis-
tance between the centers of cluster 2 and 4 is rather
small in comparison to all other distances. Moreover,
there is a “jump” after the first value of the sorted
distances. The conclusion, therefore, is that we have to
merge cluster 2 with cluster 4. In the clustering tree (Fig.
3) this is marked by the dashed line. Note again that PC1
differentiates between signal intensities constant in time,
and PC2 allows differentiation for temporally and spa-
tially varying signal intensities (Fig. 2b).

After completing the clustering and merging part we
obtain k # m clusters with the corresponding cluster
centers. These centers are taken now as initial guesses for
k-means clustering. This means that the previous proce-
dure (clustering and merging part) just providesk initial
cluster centers for the final clustering wherek is the final
number of clusters. The reason why we do not take the
merged clusters as final clusters is that in the hierarchical
clustering part some objects, e.g., due to low SNR or
(functional) CNR, may be assigned into the wrong clus-
ter. A final k-means clustering is able to correct for such
mistakes. Figure 2c shows the results of this procedure.
We note that besides merging of clusters 2 and 4 in Fig.
2b nothing else has changed. The finalk clusters reflect
the full structure of the data set. The objects of the
clusters correspond to the simulated pixel points of the
synthetic fMR image, whereas the cluster centers (p-
dimensional) give information about the magnitude of
this activation. In Fig. 4a-h the detected groups (clusters)

Fig. 4. Final result of the clustering procedure applied to
synthetic fMRI data and overlaid on the initial (“anatomic”)
image (a-h). Corresponding clusters (extracted activated pixels)
are given in black, overlaid on the basic anatomic structures
(light and dark gray). In (i) the corresponding time-intensity
curves are given. Four clusters represent time invariant struc-
tures (cl. 1-4) and clusters 5-8 represent “stimulus correlated”
signal changes.
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are overlaid onto the original synthetic fMR image. Each
cluster is displayed in black in the image. Furthermore,
Fig. 4i displays the corresponding signal time courses for
the 8 different clusters. Four clusters represent time
invariant structures (cl. 1-4) and the other four clusters
(cl. 5-8) represent “stimulus correlated” signal changes
(paradigm: PAR ***) on top of two different baselines
(cl. 3 and 4). The comparison with the image from the
originally simulated data set (Fig. 1) as well as the
corresponding time courses (and signal intensities; see
text) proofs that the procedure has found the exact solu-
tion. The same holds for all other data sets, i.e., for
CNR $ 2.

In vivo example: In order to demonstrate the potential
of hierarchical k-means clustering, an in vivo EPI fMRI
data set was analyzed. During self-paced right hand
finger tapping in an off/on manner (i.e., 10 images
rest/10 images finger tapping etc.), a total of 70 single
shot gradient-echo EPI images were acquired. Figure 5
displays the final result of the clustering (and merging)
procedure described above with activated pixels overlaid
on gray scale EPI image. In total six clusters of subclus-
ters reflecting the stimulation paradigm were detected.
Details, i.e., cluster time courses and corresponding PCA
plots, are given in Fig. 6. Cluster 10 (subcluster 1), Figs.
6c and d, Cluster 11 (subcluster 3) Figs. 6e and f, and

Cluster 16 (subcluster 1), Fig. 6g and h, represent 3
pixels with relative signal changes (DS/S) greater than
10%. In agreement with anatomic location (Fig. 5) and
literature4,11,13,14,31,32this pixels very likely represent
large through-plane vessels in the central sulcus. Eight
more diffuse distributed pixels in the motor and pre-
motor area (yellow and red pixels) are detected via
clusters 9 (subcluster 3), 10 (subcluster 2) and 16 (sub-
cluster 3), respectively. The results are summarized in
Table 1 and Fig. 5. Note also that the temporal pattern of
signal changes is quite similar for all clusters, indicating
that statistical methods such ast test or correlation anal-
ysis10-12,32would not be able to allow the detailed dif-
ferentiation shown with the proposed clustering tech-
nique.

SUMMARY

Cluster analysis belongs to the family of unsupervised
pattern recognition techniques. It offers the possibility to
recognize structures (similar observations) in a group of
objects. If it is assumed that the objects or points are
structured in such a way that they can be divided into
some groups (clusters), these groups may be obtained by
means of cluster analysis. The points should be classified
on the basis of the degree of their similarity, i.e., points

Fig. 5. Pixels of six clusters or sub-clusters reflecting the stimulation paradigm are overlaid on the anatomy. The hot-color map shows
the signal enhancement (DS/S) of the respective cluster (red pixels belong to the cluster with the lowest signal enhancement (i.e.,
Cluster 4 in Fig. 6b) and the lighter the color the higher the relative signal enhancement of the corresponding cluster. See Fig. 6 and
Table 1).
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Fig. 6. Time courses and corresponding PCA plots of the clusters reflecting stimulation are presented. Cluster 10 (subcluster 1), Fig.
6c and d, Cluster 11 (subcluster 3) Fig. 6e and f, and Cluster 16 (subcluster 1), Fig. 6 g and h, represent three pixels with relative
signal changes (DS/S) greater than 10%. These pixels may be attributed to large through plane vessels in the central sulcus. Eight
more diffuse distributed pixels in the motor and pre-motor area (yellow and red pixels) belong to clusters 9 (subcluster 3), 10
(subcluster 2) and 16 (subcluster 3), respectively.

824 Magnetic Resonance Imaging● Volume 17, Number 6, 1999



of one cluster should be similar, points of different
classes should be dissimilar. The Euclidean distance may
be used as a distance or dissimilarity measure between
two points. Proceeding from a distance matrix that indi-
cates the distances between all points, hierarchical clus-
tering methods (i.e., sequences of partitions) can be
applied. The partitions may be constructed divisively
(i.e., the clusters are subdivided in each step) or agglom-
eratively (i.e., clusters are merged step by step). Divisive
methods are rarely applied because of the computational
expense. Well-known agglomerative methods are single
linkage, complete linkage, average linkage, and centroid
methods.

For large data sets, the hierarchical clustering tech-
niques mentioned above can not be further used since the
distance matrix increases quadratically with the number
of observation points. Fortunately, there are partitioning
methods that are not based on the matrix of distances but
directly on the data values. Since these algorithms are, in
general, sensitive with respect to local minima, it is
essential to estimate good starting values for the proce-
dure. Ink-means clustering, which is an iterative parti-
tioning method, the number of starting values (i.e., initial
guesses for cluster centers) equals the number of final
clusters which is, in general, unknown.

The proposed procedure combines the ideas for hier-
archical andk-means clustering. In the clustering part the
data are split divisively. At the beginning all points are
combined in one cluster, and in each step of the hierarchy
a cluster is decomposed into two smaller clusters. The
basis for the decomposition is not the distance matrix, as
usual in divisive clustering, but the division is performed
by k-means clustering (with two clusters in each step).
Another difference to usual divisive clustering is that the
procedure for dividing a cluster is stopped at a certain
point. There are different parameters available for the
decision whether a clustered group should be further
divided. In addition, appropriate statistical tests are ap-
plied to prove significance levels, and the visualization of
the data also is very helpful for this task. Once this

divisive clustering procedure stops, clusters that have
been divided unjustified can be re-combined. In this
so-called merging part (statistical) parameters are sup-
plied for the merging decision. As a result we obtain the
final number of clusters, and, since all clusters have been
determined byk-means clustering, the centers of these
clusters. These cluster centers are assumed to be the
optimal starting values for the final part of the proposed
procedure, the (fast)k-means clustering.

We have shown that this procedure works well for
analyzing both, synthetic and in vivo fMR images with
sufficient functional CNR, i.e.,$2. The algorithm re-
quires no prior knowledge on the stimulation paradigm,
the hemodynamic response function of the brain or the
data quality. The computation time for a clustering step
is about 10 ms to 1 s (on the previously mentioned
computer), depending on the number of points to be
clustered, and the final result is obtained in about 1 s. The
parameters for the decision of dividing or merging clus-
ters can be adjusted to the individual data quality and
information content, if known. The data visualization
enables a careful inspection of each step of the proce-
dure. Therefore, it is also possible to improve the proce-
dure by incorporating prior knowledge, which may be
important with pilot studies or limited data quality (e.g.,
patient data). The method presented not only has the
potential to separate time varying from time invariant
structures but also, within the same analysis, allows the
segmentation of various time invariant, i.e., anatomic,
structures. This may help to better correlate anatomy and
function in the human brain.

Since the computation time of the procedure is very
short, it is especially suited for fMRI studies with a large
number of sequential images, e.g., for EPI or spiral
fMRI. The proposed method, in principal, may be im-
proved by taking a clustering method that is more sen-
sitive with respect to small clusters. This, however, could
increase the computation time. For the analysis of large
data sets of known data quality, the somewhat cumber-
some procedure described above may be automated and
made faster by using the same initial guesses for the
clustering procedure estimated in a single pilot analysis.
This reduces the computation time per data set to the
time needed for the final clustering (i.e., about 1 s).

For in vivo fMRI data, usually providing less ana-
tomic contrast, fuzzy clustering may have advantages
over crisp clustering methods. This modified approach is
currently tested and will be presented elsewhere.
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Table 1. Detailed results from hierarchical k-means cluster
analysis of the EPI fMRI data set

Cluster (subcluster) DS/S (%) # of activated pixels

Cl 16 (1) 65 1
Cl 11 (3) 23 1
Cl 10 (1) 19 1
Cl 09 (3) 8.7 2
Cl 10 (2) 8.3 4
Cl 16 (3) 6 2

Clusters were selected on the basis of the (temporal) stimulation
pardigm (see text and Fig. 6 for details).
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