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Abstract. In this note we show how the entries of a data matrix can be
approximated by a sum of row effects, column effects and interaction terms
in a robust way using a weighted L1 estimator. We discuss an algorithm
to compute this fit, and show by a simulation experiment and an example
that the proposed method can be a useful tool in exploring data matrices.
Moreover, a robust biplot is produced as a byproduct.
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1 Introduction

Multivariate data can often be represented in the form of a data matrix whose
elements will be denoted by yij , where 1 ≤ i ≤ n denotes the row index, and
1 ≤ j ≤ p the column index. Each entry in the data matrix is supposed to
be the realization of a random variable

Yij = µij + εij , (1)

where µij is the median value of each variable Yij and the residuals εij are
supposed to form a white noise. It is assumed that the values µij can be
decomposed as a sum of four terms:

µij = c + ai + bj +
k∑

l=1

λjlfil, (2)

with k ≤ p. The constant c can be interpreted as an overall median, ai as
a row effect and bj as a column effect. The last term represents the inter-
action between rows and columns and is factorized as the scalar product
between a vector of loadings λj· = (λj1, . . . , λjk)> and a vector of scores
fi· = (fi1, . . . , fik)>. The above model is like the FANOVA model introduced
by Gollob (1968), which combines aspects of analysis of variance and factor
analysis. We are mainly interested in data matrices in which the rows rep-
resent individuals and the columns variables, possibly representing different
types of measurement. Therefore we will not continue to pursue symmetry
between rows and columns. To identify uniquely the parameters ai, bj , and
c, the following restrictions are imposed:

med
i

(ai) = med
j

(bj) = 0 and med
i

(fil) = med
j

(λjl) = 0, (3)

for l = 1, . . . , k. Furthermore, the scores are standardized by imposing f2
1l +

· · · + f2
nl = 1 for l = 1, . . . , k. Note that there is no orthogonality condition



for the factors, implying that the vectors of loadings λj· and scores fi· are
not uniquely determined, as is common in factor models.

By taking k = 2, and representing in the same two-dimensional plot the
rows by (fi1, fi2) and the columns by (λj1, λj2), a biplot is obtained. The
biplot allows us to investigate the row and column interaction by visual in-
spection of a two-dimensional graphical display.

Among others, Gabriel (1978) considered models like (2) and estimated
the unknown parameters using a least squares fit. It is however well known
that an LS-based method is very vulnerable in the presence of outliers. In
this paper, we will propose a robust approach to fit model (2), show by a
simulation experiment its merits and illustrate it with an example.

2 A robust fit

A first suggestion is to use the L1-criterion to fit the model. If we denote by
θ the vector of all unknown parameters in the model, and by ŷij(θ) = µ̂ij(θ)
the corresponding fit, then this procedure minimizes the objective function

n∑

i=1

p∑

j=1

|yij − ŷij(θ)|. (4)

For the computation of the estimator we use an iterative procedure known
as alternating regressions, which was originally proposed by Wold (1966) and
used in the context of generalized bilinear models by de Falguerolles and
Francis (1992). The idea is very simple: if we take the row index i in the
model equation (2) fixed and consider the parameters bj and λj· as known
for all j, then we see that a regression with intercept of the ith row of the
two-way table on the k vectors of loadings yields estimates for ai and the
vector of scores fi·. Reversely, if we take j fixed and suppose that ai and fi·
are known for all i, and regress the jth column of the data matrix on the
k vectors of scores, then we can update the estimates for bj and λj·. To
make things robust, we will of course use a robust regression method, as was
already proposed by Ukkelberg and Borgen (1993). Minimizing the criterion
(4) results in performing alternating L1 regressions.

Unfortunately, L1-regression is sensitive to leverage points. Therefore we
propose a weighted L1-regression, corresponding to minimizing

n∑

i=1

p∑

j=1

|yij − ŷij(θ)|wi(θ)wj(θ). (5)

These weights will downweight outlying vectors of loadings or scores. The
row weights are defined by

wi = min(1, χ2
k,0.95/RD2

i ) for i = 1, . . . , n,

where RD1, . . . , RDn are robust Mahalanobis distances computed from the
collection of score vectors {fi·|1 ≤ i ≤ n} and based on the Minimum Volume
Ellipsoid (Rousseeuw and van Zomeren, 1990). Analogously, we define the set
of column weights wj using the vectors of loadings. Since the true loadings
and scores are unobserved, wi and wj depend on the unknown parameters,
and will be updated at each iteration step in the alternating regression pro-
cedure. To start the iterative procedure one can take initial values obtained



by robust principal component analysis (Croux and Ruiz-Gazen, 1996). It is
recommended to orthogonalize the vectors of scores at the end of the iteration
procedure.

It was shown by many simulations and experiments, that the above method
works well, is highly robust and converges. As a byproduct of the algorithm,
robust biplots can be produced. An S-plus program of the proposed algorithm
is available at http://www.statistik.tuwien.ac.at/public/filz/research.html.

3 Simulation experiment

In this section we study the performance of the proposed method by a modest
simulation study. We generated data sets with n = 25 rows and p = 15
columns according to a model with two factors:

Yij = c + ai + bj +
2∑

l=1

λjlfil + εij

(i = 1, . . . , n; j = 1, . . . , p). Values for c, ai, bj , fil, and λjl were randomly
generated and fulfilled the restrictions discussed in Section 1. The noise term
εij was quite small (distributed according to a N(0, 0.05)) for n × p − nout
of the entries in the data matrix. However, for nout entries, randomly placed
in the data matrix, the noise term followed a N(0, 10), which induced nout
outlying cells.

Fitting the model gave estimated parameters ĉs, âs
i , b̂s

j , f̂s
il, and λ̂s

jl, for
s = 1, . . . , nsim = 150 simulated samples. As a measure of deviation of the
estimated parameters from the true ones we took the mean squared error
(MSE):

MSE(c) =
1

nsim

nsim∑
s=1

‖ĉs − c‖2, MSE(a) =
1

nsim

nsim∑
s=1

‖âs − a‖2,

where as is a vector of length n with components as
i and ‖ ·‖ is the Euclidean

norm. (The expression for MSE(b) is obtained analogously.) It is also possible
to compute proximity indices between the sets of estimated and true vectors
of loadings, resp. scores, using e.g. angles between subspaces. We preferred,
however, to compute an overall measure of the quality of the estimation
procedure :

1
nsim

nsim∑
s=1

n∑

i=1

p∑

j=1

(µ̂s
ij − µij)2, (6)

with µ and µ̂s defined according to (2).
This simulation experiment was repeated for a percentage of outliers in the

data set varying from 1 to 27. Figure 1 displays the summary measures as a
function of the percentage of outliers when using the algorithm based on LS,
L1 and weighted L1 regression. We clearly see that the approach based on
LS is highly non-robust: even for a small percentage of outliers, we observe
huge MSEs and a bad quality of the fit. For the estimation of the overall
median, row and column effects, L1 and weighted L1 behave similarly. But
the overall fit is much better for weighted L1 than for L1, since the latter
approach is not capable of extracting the factor structure in the interaction
terms when outliers are present.
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Fig. 1. MSE of the estimates for the row effects, column effects and for the overall
median, and a general measure for the quality of the fit using the Least Squares
(−−), the L1 (− ·−) and the weighted L1 (solid line) estimators, in function of the
percentage of outliers.

4 Example

We measured p = 13 variables for the 17 Styrian political districts (Styria is
part of Austria). One district is the capital Graz (G). The typical rural dis-
tricts are Feldbach (FB), Hartberg (HB), Murau (MU), Radkersburg (RA),
and Weiz (WZ), while typical industrial regions are Bruck/Mur (BM), Ju-
denburg (JU), Knittelfeld (KN), and Mürzzuschlag (MZ). Graz-Umgebung
(GU) is the surroundings of Graz. Liezen (LI) is a touristic region with beau-
tiful nature. The remaining districts are Deutschlandsberg (DL), Fürstenfeld
(FF), Leibnitz (LB), Leoben (LE), and Voitsberg (VO). As variables were
considered: the proportion of children (< 15 years) (chi) and old people
(> 60 years) (old) in each district. Furthermore, the proportion of employed
people in the industry (ind), trade (tra), tourism (tou), service (ser), and
agriculture (agr), and the total proportion of unemployed people (une) was
measured. Other variables are the proportion of mountain farms (mou), of
people with university education (uni), of people which just attended pri-
mary school (pri), of employed people not commuting daily (cnd), and the
proportion of employed people commuting to another district (cdi). The ori-
gin of these measurements is the Austrian census of 1991, and the data are
available at the before mentioned web page.

We fitted the model, using weighted L1 regression, with k = 2 to the raw
data, although that it may be more appropriate to apply the logit transfor-
mation first. In Table 1, we displayed the estimated row effect âi and column



effect b̂j , together with the residual matrix yij − µ̂ij . We see that Graz (G)
appears as an outlier for a lot of variables, indicating that it is clearly distinct
from most other districts. The district GU has a high residual for commuting
to another district (namely to Graz), which is also true for VO, and for em-
ployed people in the industry (it is a quite and refined district). District RA
has an atypical row effect, and an outlying residual for the cell corresponding
with employed people in agriculture.

The biplot (Figure 2) pictures the estimates (f̂i1, f̂i2) and (λ̂j1, λ̂j2). The
typical agricultural districts (FB, HB, MU, RA, WZ) have high loadings on
the variable representing the employed people in agriculture, but they also
have high values for commuting to another district (the latter is also true
for GU, the surroundings of Graz). Additionally, the districts FB, HB, RA,
and MU have high loadings for the variable “commuting not daily” (cnd).
The industrial regions (BM, JU, KN, MZ) have high values at the vector
“industry” (ind), but also GU and LE have high values there. LE additionally
has a high value for employed people in service.

Graz appears as an outlier again. Fortunately the biplot is robust, implying
that Graz will not influence too much the estimates of loadings and scores. A
classical biplot would also reveal Graz as an outlier, but then the estimated
loadings and scores are heavily influenced by this outlier, making their inter-
pretation subject to a lot of doubt.
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Table 1. Estimates for the row effects and column effects together with the residuals
for the Styrian districts data set using the weighted L1 approach (rounded values,
in %).
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Fig. 2. Robust biplot representation of the interactions between rows and columns
for the Styrian districts data set.


