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Abstract: Discriminant analysis for multiple groups is often done using
Fisher’s rule, and can be used to classify observations into different popu-
lations. In this paper, we measure the performance of classical and robust
Fisher discriminant analysis using the Error Rate as a performance criterion.
We were able to derive an expression for the optimal error rate in the situation
of three groups. This optimal error rate serves then as a benchmark in the
simulation experiments.

1 Introduction

Discriminant analysis was introduced by Fisher (1938) as a statistical method
for separating two groups of populations. Rao (1948) extended this multi-
variate technique to multiple populations. At the basis of observations with
known group membership–the training data–so-called discriminant functions
are constructed aiming at separating the groups as much as possible. These
discriminant functions can then be used for classifying new observations to one
of the populations. We distinguish linear and quadratic discriminant analysis,
and this terminology refers to the discriminant function that is to be built. In
this paper we focus on Fisher’s method (for two or more populations) leading
to linear discriminant functions. The problem can be formulated as a simple
eigenvector/eigenvalue problem, and the method is attractive and frequently
used in practice.

Suppose we have given observations of a multivariate random variable
X = (X1, . . . , Xp)t coming from g populations ℘1, . . . , ℘g. Let πj be the prior
probability that an observation to classify belongs to group ℘j , for j = 1, . . . , g.
The population means are denoted by µ1, . . . , µg and the population covari-
ances by Σ1, . . . , Σg. We define the overall weighted mean by µ̄ =

∑
j πjµj .

Then the covariance matrix B describing the variation between the groups is
defined as
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B =
g∑

j=1

πj(µj − µ̄)(µj − µ̄)t. (1)

The within groups covariance matrix W is given by

W =
g∑

j=1

πjΣj , (2)

and can be seen as a pooled version of the covariance matrices of the groups.
We consider the linear combinations Y = atX (where a 6= 0). The expected

value for population ℘j is

µjY = E(Y | X ∈ ℘j) = atE(X | X ∈ ℘j) = atµj

and the variance is

σ2
jY = Var(Y | X ∈ ℘j) = atCov(X | X ∈ ℘j)a = atΣja.

If we can assume that the group covariances are all equal, i.e. Σ1 = . . . , Σg =
Σ, then the variance of Y is σ2

Y = atΣa for all populations. We can then form
the ratio ∑g

j=1 πj(µjY − µ̄Y )2

σ2
Y

=
atBa

atΣa
=

atBa

atWa
(3)

with µ̄Y = atµ̄. The ratio (3) measures the variability between the groups of
Y values relative to the variability within the groups, and maximizing this
expression with respect to a corresponds to maximizing the separation of the
group centers. Note that if the assumption of equal group covariance matrices
is not fulfilled, then the last equality in (3) is incorrect.

It can be shown (e.g. Johnson and Wichern, 2002) that the solutions for
a to maximize (3) are the eigenvectors v1, . . . , vs of W−1B (scaled so that
vt

iWvi = 1, for 1 ≤ i ≤ s). Here s is the number of strictly positive eigenvalues
of W−1B, and it can be shown that s ≤ min(g − 1, p). Using the notation
V = (v1, . . . , vs), it is easy to see that Cov(V tX) = Is, meaning that the
components of the new discriminant space are uncorrelated and have unit
variance.

For a new observation x to classify, the linear combinations yi = vt
ix are

called the values of the i-th Fisher linear discriminant functions (i = 1, . . . , s).
The observation x is assigned to population ℘k if

Dk(x) = min
j=1,...,g

Dj(x), (4)

with the so-called Fisher discriminant scores

D2
j (x) = [V t(x−µj)]t[V t(x−µj)]− 2 log πj =

s∑

i=1

(yi−µjYi)
2− 2 log πj . (5)
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The j-th discriminant score measures the distance of the observation x to the
j-th group center in the discriminant space, where this distance turns out to
be simply the Euclidean distance. Note that the distances are penalized by the
term −2 log πj , and this penalty is larger for smaller group prior probabilities
πj . By using the penalty term for the Fisher discriminant scores, it can be
shown that the assignment of an observation due to (4) is equivalent to the
minimization of the total probability of misclassification if the populations are
normally distributed with equal covariance matrices and if s is the number
of strictly positive eigenvalues of W−1B (see Johnson and Wichern, 2002,
p. 637).

Since s ≤ min(g − 1, p), Fisher’s method allows for a reduction of the di-
mensionality. This can be useful for the graphical representation of the obser-
vations in the new discriminant space. Moreover, since the Fisher discriminant
functions corresponding to the largest eigenvalues are more important than
those corresponding to the smallest (because they have more contribution
to the measure of spread of the populations, see (3)), s could also be taken
smaller than min(g − 1, p). Of course, this will in general lead to a different
discriminant rule, but for the purpose of visualization it can be of advantage.

2 Estimation and Robustness

According to the previous section, for obtaining the Fisher linear discriminant
functions we need to estimate the matrices B and W from the given n data
points forming the training sample. The prior probabilities are in general
unknown. Usually, the prior probability πj is estimated by the number nj of
observations of the training data belonging to group ℘j , divided by n (j =
1, . . . , g). The group centers and covariance matrices are typically estimated
by the sample means and covariance matrices. However, since sample means
and covariances are not robust, the resulting classical Fisher discriminant rule
will not be robust either. Outliers in the training sample can have a severe
influence to the estimate, and therefore new observations might be classified
incorrectly.

It has thus been proposed in the literature to use robust estimators of
location and covariance for estimating B and W. For this purpose, Ran-
dles et al. (1978) used M-estimators, MCD-estimators were used by Chork
and Rousseeuw (1992), Hawkins and McLachlan (1997), and Hubert and
Van Driessen (2004). He and Fung (2000) and Croux and Dehon (2001) pro-
posed to use S-estimators. In the presence of outliers it turns out that the
performance of a robust discriminant procedure is better than the classical
one. In the example below, the performance of the discriminant method will
be measured by the error rate, also called the total probability of misclassifi-
cation.
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2.1 Example

We consider the anorexia data (Hand et al., 1993, data set 285) which consists
of measures of weight (in lbs.) of 72 young female anorexia patients before and
after treatment. There were 3 types of therapy: control (group 1), cognitive-
behavioral (group 2), and family therapy (group 3).

We apply Fisher’s linear discriminant analysis based on the classical esti-
mators (using sample mean and covariance) and on the robust estimators (us-
ing MCD). In this example we have dimension p = 2 and g = 3 groups. Fisher’s
method results in a discriminant space of dimension s = min(g − 1, p) = 2.
Since there is no reduction of the dimensionality, we prefer to present the re-
sults in the original data space for reasons of interpretability. Figure 1 shows
the results for the classical (left) and for the robust (right) method. The num-
bers refer to the group membership of the observations, the big numbers are
the estimated group centers. The lines illustrate the group separation: points
lying exactly on the line have the same (smallest) discriminant score (5) for
both neighboring groups.
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Fig. 1. Scatter plot of the anorexia data consisting of 3 groups. The lines correspond
to Fisher’s linear discriminant functions using classical (left) and robust MCD (right)
estimators for the population parameters. The estimated population centers are
represented by large numbers.

In this example we used all available data points as training data for
estimating the discriminant functions, and then the same data points were
classified. We can now estimate the error rate by simply counting the num-
ber of misclassified observations. The resulting number is also called apparent
error rate (AER). Efron (1986) pointed out that the AER is an optimisti-
cally biased error rate, and the problem does not disappear unless the group
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sample sizes are very large. Later, in the simulation experiments we will also
use alternative procedures. The AER for the classical method is 51.4%, and
for the robust procedure we obtain 41.7%. In other words, 37 out of 72 ob-
servations have been misclassified using the classical method, in the robust
case we have 30 misclassified objects. This preferable behavior of the robust
discriminant method is also visible in Figure 1. In particular, we see that the
sample average of the observations in the third group is attracted by a few
outlying observations in group three. These outliers are, as we infer from Fig-
ure 1, close to the center of the first group, and will be incorrectly classified
by both the robust as the classical method. While they do strongly influence
the estimation of the third group center using the classical estimator, they
only have limited influence on the robust estimate.

3 Optimal Error Rate for Three Groups

An optimal error rate is obtained if the total probability of misclassification
is minimized by the discriminant rule. In Section 1 we already mentioned in
which cases the Fisher discriminant rule leads to an optimal error rate: equal
group covariances, s being taken as the number of strictly positive eigenval-
ues of W−1B, and a penalty term for the discriminant scores like in (5) for
normally distributed populations. Using these assumptions, we are interested
to find an analytical expression for the optimal error rate. Since this would
be very complicated in a general setting, we consider the case of g = 3 groups
with non-collinear group centers. Thus we assume





X | G = 1 ∼ Np(µ1, Σ) with probability π1

X | G = 2 ∼ Np(µ2, Σ) with probability π2

X | G = 3 ∼ Np(µ3, Σ) with probability π3

with Σ being non-singular, p ≥ 2, and G being a variable that indicates the
group membership. Fisher’s linear discriminant analysis reduces the dimen-
sionality to s = 2, where the discriminant functions are constructed by the
eigenvectors V = (v1, v2) of W−1B.

Lemma 1 provides an expression for the probability of misclassifying ob-
servations from the first population. Similarly, expressions for the probabil-
ity of misclassifying objects from group 2, respectively group 3, can be ob-
tained. Adding these misclassification probabilities, each multiplied by the
corresponding prior probability, yields the total error rate. To obtain the mis-
classification probability in Lemma 1, we assume w.l.o.g. that µ1 = −µ2. (If
this is not the case, we subtract (µ1 + µ2)/2 from X.)

Lemma 1. Using the above assumptions, the probability of misclassifying ob-
servations of the first group is given by

Φ

(
−‖V tµ1‖ − log(π1/π2)

2‖V tµ1‖
)

+ sign(θ)
∫ 0

−∞

∫ α+βx̃1

−sign(θ)∞
f1((x1, x2)t)dx2dx1,
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where Φ is the distribution function of the univariate standard normal dis-
tribution. The density function f1 is bivariate normal with identity covari-
ance and mean W tV tµ1, where W = (w1, w2) is the orthogonal base with
w1 = −V tµ1

‖V tµ1‖ and w2 = ((w1)2,−(w1)1)t. The remaining parameters are de-
fined as θ = wt

2V
tµ3‖V tµ1‖,

α =
(µt

1V V tµ3)2 + θ2 + 2 log(π1/π3)‖V tµ1‖2 − ‖V tµ1‖4
2‖V tµ1‖θ ,

and

β =
µt

1V V tµ3 − ‖V tµ1‖2
θ

.

Proof of Lemma 1. The probability of misclassifying an observation of the
first population can be written as

P (D2
2(X) < D2

1(X) | G = 1) + P (D2
3(X) < D2

1(X) | G = 1) (6)
−P ({D2

2(X), D2
3(X)} < D2

1(X) | G = 1)

using the discriminant scores defined in (5). This corresponds to the probabil-
ity that observations of the first group lie on the wrong side of the separation
line between the first and j-th population (j = 2, 3). The last term in (6) is
the probability that an observation from the first group is on the wrong side
of the separation line between the first and second group and on the wrong
side of the separation line between the first and third group.

The term P (D2
2(X) < D2

1(X) | G = 1) can be computed via a rota-
tion, such that the discrimination line is parallel to the second axis. The
rotation is defined by the matrix W = (w1, w2), with w1 = −V tµ1/‖V tµ1‖
and w2 = ((w1)2,−(w1)1)t. The random variable in the discriminant space
will be denoted by X̃ = (X̃1, X̃2)t = W tV tX. Since Cov(V tX) = I2 (see
Section 1) the covariance matrix of X̃ is also the identity matrix, and the
transformed means are µ̃1 = W tV tµ1 = (wt

1V
tµ1, 0)t = (−‖V tµ1‖, 0)t = −µ̃2

and µ̃3 = W tV tµ3 =: (−µt
1V V tµ3, θ)/‖V tµ1‖. The probability of misclas-

sification of observations from the first into the second group is thus given
by

P (D2
2(X) < D2

1(X) | G = 1)
= P ((X̃ − µ̃2)t(X̃ − µ̃2)− 2 log π2 < (X̃ − µ̃1)t(X̃ − µ̃1)− 2 log π1 | G = 1)
= P ((X̃1 − (µ̃2)1)2 + X̃2

2 − 2 log π2 < (X̃1 − (µ̃1)1)2 + X̃2
2 − 2 log π1

| X̃ ∼ N2(µ̃1, I2))
= P ((X̃1 − ‖V tµ1‖)2 < (X̃1 + ‖V tµ1‖)2 − 2 log(π1/π2)

| X̃1 ∼ N(−‖V tµ1‖, 1))
= P (−2‖V tµ1‖X̃1 < 2‖V tµ1‖X̃1 − 2 log(π1/π2) | X̃1 ∼ N(−‖V tµ1‖, 1))

= P

(
log(π1/π2)
2‖V tµ1‖ < X̃1 | X̃1 ∼ N(−‖V tµ1‖, 1)

)
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= P

(
Z ≤ −‖V tµ1‖ − log(π1/π2)

2‖V tµ1‖ | Z ∼ N(0, 1)
)

= Φ

(
−‖V tµ1‖ − log(π1/π2)

2‖V tµ1‖
)

,

where Φ is the distribution function of the standard normal distribution. Thus,
the computation of the first term in (6) is very simple.

The computation of the last two terms in (6) is done simultaneously by
defining the separation line in this space between the first and third group
by the points for which the Euclidean distances to both groups are equal. So,
these points x̃ = (x̃1, x̃2)t must fulfill

(x̃− µ̃3)t(x̃− µ̃3)− 2 log π3 = (x̃− µ̃1)t(x̃− µ̃1)− 2 log π1

⇔ (x̃1 − (µ̃3)1)2 + (x̃2 − (µ̃3)2)2 − 2 log π3 = (x̃1 + ‖V tµ1‖)2 + x̃2
2 − 2 log π1

⇔ −2(µ̃3)1x̃1 + (µ̃3)21 − 2(µ̃3)2x̃2 + (µ̃3)22 − 2 log π3 =
2‖V tµ1‖x̃1 + ‖V tµ1‖2 − 2 log π1

⇔ x̃2 = α + βx̃1

with

α =
(µt

1V V tµ3)2 + θ2 + 2 log(π1/π3)‖V tµ1‖2 − ‖V tµ1‖4
2‖V tµ1‖θ

and

β =
µt

1V V tµ3 − ‖V tµ1‖2
θ

.

We can integrate now the bivariate normal density function f1 of the first
group using this separation line between first and third group. When the first
group lies above (below) this separation line, we have to integrate downwards
(upwards). This is the case when α−β‖V tµ1‖ is positive (negative). It is easy
to show that this is true for θ > 0 (θ < 0). Thus, the last two terms in (6) are
equal to ∫ 0

−∞

∫ α+βx̃1

−∞
f1((x1, x2)t)dx2dx1 for θ > 0

and ∫ 0

−∞

∫ ∞

α+βx̃1

f1((x1, x2)t)dx2dx1 for θ < 0.

A more compact notation of the last two formulas and the collection of terms
proofs the lemma. Q.E.D.

4 Simulations

In the previous section we derived an explicit formula for the optimal error
rate for discriminating three groups. It is simple to compute this error rate.
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We used the software R (http://www.r-project.org) for computation, where
functions for the density and distribution function for the p-dimensional nor-
mal distribution are available. If the population parameters are known, which
is the case in a simulation experiment, then the optimal error rate can be
compared with the apparent error rate, resulting from the classical or robust
Fisher rule (see Section 2). In addition to the AER, also other techniques like
cross-validation or bootstrap to estimate the error rate will be used.

4.1 Cross-validation and Bootstrap

Cross-validation can be done by leaving one observation from the training
data out at a time and applying discriminant analysis on the reduced data
set. However, this can be very time consuming, especially for data sets with
larger sample size. An alternative is to divide the data set into several subsets
of approximately equal size. A typical number of subsets is 10, the method
is then called 10-fold cross-validation. One subset is omitted at a time, the
discriminant functions are built with the remaining 9 subsets (training set),
and the evaluation is done at the set which was left out (test set). This gives
an estimated error rate for each test set, and averaging over the 10 error rates
results in the 10-fold cross-validated estimated error rate.

Efron (1983) suggested to use the bootstrap technique instead of cross-
validation, since it seems to work better in many cases. Bootstrap is a method
where samples with replacement of all original observations are repeatedly
taken and analyzed. One can for example draw samples with replacement
of size 3n/4 as training set and evaluate on the test set consisting of the
observations which have not been used in the training set. We will use this
design for 10 replications and average the estimated error rates which makes
the results more independent from the choice of the training set. Like for
cross-validation there exist other strategies for bootstrap, but for the sake of
simplicity we will stick to the techniques which are more standard.

4.2 Simulation Design

The goal of the simulation experiment is to compare the optimal error rate
in the case of 3 groups with the apparent error rate as well as with cross-
validation and bootstrap. It will be interesting to see the influence of outliers
if classical and robust discriminant analysis is applied. Finally, since we can
compute the optimal error rate for dimension p ≥ 2, it will also be of interest
to see the effect of increasing dimension on the estimated error rate.

In all simulations we will use 3 groups with the same prior probabilities
(i.e. same numbers of observations); this assumption makes the interpretation
of effects like outliers or growing dimension much easier. For the same reason
we will use a symmetric design, i.e., the population centers are symmetric
around the overall mean. This is the case for the choice µ1 = (1, 0, ..., 0)t, µ2 =
(−1/2,

√
3/2, 0, ..., 0)t and µ3 = (−1/2,−√3/2, 0, ..., 0)t in Rp, the distance
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between two centers is
√

3 for any dimension p ≥ 2. We assume equal group
covariances, and w.l.o.g. we take Σ = Ip.

Lemma 1 for the optimal error rate holds for normally distributed popu-
lations, thus we sample from the normal distribution. The numbers of obser-
vations of each group are fixed with n1 = n2 = n3 = 1000 (so, n = 3000), and
the considered dimensions will be p = 2, 5, 10, 30, 50. Due to the high sample
size we do not expect computational difficulties for robust estimation, even
not in high dimensions. The number of simulation replications will be 1000
for p = 2, 5, 10, it will be 500 for p = 30, and 200 for p = 50. The resulting
error rates are averaged over all simulations, and standard errors around the
reported results are computed.

Using Lemma 1 we can compute the optimal error rate for this simulation
design which is 30.35% for all considered dimensions.

4.3 Simulation without Outliers

In a first simulation we use exactly the design described in 4.2. We have three
groups with considerable overlap (the optimal error rate is 30.35%, in any
dimension). The results of the simulation are shown in Table 1. We compute
the apparent error rate (AER), the error rate using 10-fold cross-validation
(CV), and the bootstrap error rate (B) as described in 4.1. Fisher’s linear
discriminant analysis is used based on the classical estimators (Classical),
and based on the MCD estimator (Robust), see Rousseeuw and Van Driessen
(1999).

Table 1. Simulation without outliers: Average apparent error rate (AER), and aver-
age error rate estimated by cross-validation (CV) and bootstrap (B), together with
associated standard errors (all values are in %), with classical and robust (MCD)
estimation of Fisher’s rule. The optimal error rate is 30.35%.

p Method AER CV B

2 Classical 30.39 (0.03) 30.44 (0.03) 30.46 (0.03)
2 Robust 30.39 (0.03) 30.45 (0.03) 30.48 (0.03)
5 Classical 30.29 (0.03) 30.43 (0.03) 30.51 (0.03)
5 Robust 30.30 (0.03) 30.48 (0.03) 30.59 (0.03)

10 Classical 30.24 (0.03) 30.56 (0.03) 30.65 (0.03)
10 Robust 30.28 (0.03) 30.62 (0.03) 30.79 (0.03)
30 Classical 29.85 (0.04) 30.85 (0.04) 31.44 (0.04)
30 Robust 30.02 (0.04) 31.08 (0.04) 31.86 (0.04)
50 Classical 29.53 (0.06) 31.24 (0.06) 32.27 (0.06)
50 Robust 29.83 (0.06) 31.58 (0.06) 32.97 (0.06)

Table 1 shows that the difference between classical and robust estimation
is marginal. The robust discriminant method is almost as performing as the
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classical with respect to the estimated error rate. Note that for increasing
dimension the AER is smaller than the optimal error rate, which can be ex-
plained by the fact that AER gives a downward biased estimate of the true
error rate (Efron, 1986). For increasing dimension p, we observe a further de-
crease of the AER. Reason is that for n fixed, and p increasing, the overfitting
problem becomes more severe leading to too optimistic apparent error rates,
and a larger downward bias in estimating the optimal error rate. For both CV
and B, being much more reliable estimates of the true error rate, we see the
reverse effect of slightly increasing error rate with increasing dimension. We
need to realize that the true error rate at finite samples will be higher than
the optimal error rate, since we only work with an estimate of the optimal
discriminant rule. The effect of this estimation error on the loss in error rate
becomes slightly more important in higher dimensions.

4.4 Simulation with Location Outliers

It will be of interest to see the effect of outliers on the estimated error rate.
Therefore, we replace in the above simulation design 10% of the observations
of each group by location outliers. More specifically, these observations are
generated from normal distributions with identity covariance matrix, but the
locations are chosen such that the classically estimated population centers
coincide. The discriminant rule is built on the contaminated data set, but the
evaluation is done on the uncontaminated data. This mimics a situation where
outliers detected by the robust method (and hence having a zero weight for
the MCD-estimator) will not be used in the test samples used in the cross-
validation or bootstrap procedures. Thus, a robust procedure should come
again close to the optimal error rate of 30.35%. For a non-robust procedure,
this type of contamination can lead to the worst possible error rate of 66.67%.
Table 2 shows the results.

In presence of 10% location outliers we see that the classically estimated
error rates go up to 2/3 as predicted, whereas the robustly estimated error
rates remain relative close to the optimal error rate. Both CV and B yield
again larger error rate estimates than AER, at least when using the robust
method.

4.5 Simulation with Scatter Outliers

In a final experiment we replace 10% of the observations in the simulation
design described in 4.2 by scatter outliers: In each group, 10% of the observa-
tions are generated from a normal distribution with the same center but with
a covariance matrix 102Ip. The result is shown in Table 3.

Table 3 again reflects the sensitivity of the classical method with respect to
outliers, but a much lesser extend than in the previous case. The error rates
estimated by AER, CV and B all increase with dimension for the classical
discriminant method. For the robust method, AER decreases slightly with
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Table 2. Simulation with location outliers: Average apparent error rate (AER), and
average error rate estimated by cross-validation (CV) and bootstrap (B), together
with associated standard errors (all values are in %), with classical and robust
(MCD) estimation of Fisher’s rule. The optimal error rate is 30.35%.

p Method AER CV B

2 Classical 66.85 (0.48) 66.97 (0.34) 65.01 (0.22)
2 Robust 30.42 (0.03) 30.47 (0.03) 30.54 (0.03)
5 Classical 65.32 (0.11) 66.63 (0.10) 65.84 (0.09)
5 Robust 30.36 (0.03) 30.54 (0.03) 30.72 (0.03)
10 Classical 64.47 (0.06) 66.75 (0.06) 66.28 (0.06)
10 Robust 30.37 (0.03) 30.76 (0.03) 31.03 (0.03)
30 Classical 62.17 (0.05) 66.53 (0.06) 66.50 (0.05)
30 Robust 30.27 (0.04) 31.40 (0.04) 32.53 (0.04)
50 Classical 60.83 (0.07) 66.62 (0.09) 66.54 (0.07)
50 Robust 30.26 (0.06) 32.14 (0.06) 33.97 (0.06)

Table 3. Simulation with scatter outliers: Average apparent error rate (AER), and
average error rate estimated by cross-validation (CV) and bootstrap (B), together
with together with associated standard errors (all values are in %), with classical
and robust (MCD) estimation of Fisher’s rule. The optimal error rate is 30.35%.

p Method AER CV B

2 Classical 30.53 (0.03) 30.58 (0.03) 30.92 (0.03)
2 Robust 30.32 (0.03) 30.38 (0.03) 30.49 (0.03)
5 Classical 30.95 (0.03) 31.13 (0.03) 31.91 (0.03)
5 Robust 30.33 (0.03) 30.50 (0.03) 30.63 (0.03)
10 Classical 31.60 (0.03) 31.95 (0.03) 33.45 (0.03)
10 Robust 30.28 (0.03) 30.61 (0.03) 30.88 (0.03)
30 Classical 33.82 (0.05) 34.73 (0.05) 37.66 (0.05)
30 Robust 30.15 (0.04) 31.26 (0.04) 32.10 (0.04)
50 Classical 35.34 (0.08) 36.77 (0.08) 40.21 (0.08)
50 Robust 29.91 (0.05) 31.66 (0.06) 33.33 (0.06)

dimension, whereas CV and B increase (for the same reason as explained in
Section 4.1).

5 Conclusions

In the three group case, Fisher’s linear discriminant analysis allows to derive
a formula for computing the optimal error rate. In this paper we presented
results for normally distributed populations. The simulations confirmed the
superiority of robust estimation in case of contamination. But also for uncon-
taminated data, the robust discriminant method was near to the optimal error
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rate. In high dimensions, the error rates as estimated by cross-validation or
bootstrap method slightly increase, not only for the robust method but also
for the classical method with uncontaminated data. We verified that by tak-
ing a larger distance between the group centers, this phenomenon becomes
negligible.
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