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Abstract: The Maximum Likelihood Estimator (MLE) has been widely used
to estimate the unknown parameters in the finite mixture of Generalized
Linear Models (GLMs). However, the MLE can be very sensitive to outliers
in the data. In this paper we consider an approach based on the Trimmed
Likelihood Estimator (TLE) to estimate mixtures of GLMs in a robust way.
The superiority of this approach in comparison with the MLE is illustrated
through a simulation study.

1 Introduction

Finite mixture of distributions have been widely used to model a wide range
of heterogeneous data, e.g., [15] or [29]. In most applications the mixture
model parameters are estimated by the MLE. It is well known, however, that
the MLE can be very sensitive to outliers in the data. In fact, even a single
outlier can ruin completely the MLE. To overcome this, robust parametric
alternatives of the MLE have been developed, e.g., [6], [7], [8], [11], [4], [14],
[19], [21], [28]. Few of these alternatives have been used in fitting finite
mixtures of GLMs. For instance mixtures of Poissons and normals based on
the weighted MLE technique are discussed in [13]. To reduce the outliers
influence on parameter estimates of a mixture of two normals, the Median
of the negative Likelihood Estimator (MedLE) is recommended in [24], the
Breakdown Point (BP) properties of which were studied in [25] and [26].

An indirect technique for the detection of interesting multiple structures
in data by means of redescending M-estimators is suggested in [16] tracing
all possible solutions to the M-estimating equations. This approach is ex-
tended further in [10]. Another way of doing robust estimation in mixtures
of location-scale models has been the replacement of the classical multivariate
location and scatter with their robust counterparts based on M and MCD es-
timates, as in [1], [5] and [20]. Mixtures of t-distributions are recommended in
[15], but this approach is not resistant against leverage points. Thus robust-
ness has been adapted to meet some problems with outliers in clustering and
the clusterwise regression, a particular case of mixtures of GLMs. Generally
speaking, robust fitting of mixtures has not been well developed yet.

Thus, after many years of parallel development of cluster analysis, out-
lier detection and robust techniques, the need for a synthesis between all of
them has become apparent. It was demonstrated in [9] and [20] that such
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a synthesis can be a flexible and powerful tool for an effective analysis of
heterogeneous data. So the aim of this paper is to make a step toward the
achievement of this goal by offering a unified approach based on the trimmed
likelihood methodology for fitting finite mixtures of distributions. The supe-
riority of this approach in comparison with the MLE is illustrated through
a simulation study in the mixtures framework of GLMs.

2 Trimmed likelihood methodology

The Weighted Trimmed Likelihood estimator is defined in [7] and [27] as

WTLk := arg min
θ∈Θp

k∑

i=1

wν(i)f(yν(i); θ), (1)

where f(yν(i); θ) ≤ f(yν(i+1); θ), f(yi; θ) = − logϕ(yi; θ), yi ∈ Y ⊂ Rq for
i = 1, . . . , n are i.i.d. observations with probability density ϕ(y, θ), which
depends on an unknown parameter θ ∈ Θp ⊂ Rp, ν = (ν(1), . . . , ν(n)) is
the corresponding permutation of the indices, which depends on θ, k is the
trimming parameter and the weights wi ≥ 0 for i = 1, . . . , n are associated
with f(yi, θ) and are such that wν(k) > 0.

The basic idea behind the trimming in this estimator is in the removal of
those n−k observations whose values would be highly unlikely to occur if the

fitted model was true. Due to the representation min
θ∈Θp

k∑
i=1

wν(i)f(yν(i); θ) =

min
θ∈Θp

min
I∈Ik

∑
i∈I

wif(yi; θ) = min
I∈Ik

min
θ∈Θp

∑
i∈I

wif(yi; θ), where Ik is the set of all k–

subsets of the set {1, . . . , n}, it follows that all possible (n
k ) partitions of the

data have to be fitted by the MLE. The WTLk estimator is given by that
partition with that MLE fit for which the negative log likelihood is minima.

The WTLk estimator reduces to: (i) the MLE if k = n; (ii) the TLE if
wν(i) = 1 for i = 1, . . . , k and wν(i) = 0 otherwise, the MedLE if wν(k) = 1
and wν(i) = 0 otherwise, e.g., [19]. If ϕ(y, θ) is the multivariate normal
density function then the MedLE and TLE coincide with MVE and MCD
estimators of [21], if ϕ(y, θ) is the normal regression error density the MedLE
and TLE coincide with the LMS and LTS estimators of [21]. Detailes can be
found in [26] and [27].

General conditions for the existence of a solution of (1) can be found
in [3] whereas the consistency is proved in [2]. In the GLMs framework,
the BP properties of (1) are studied in [17]. For the particular cases of
normal, logistic and log-linear regression models it is proved that the BP
of the WTLk estimator is 1

n min{n − k + 1, k − N (X)}, where N (X) :=
max0�=β∈Rp card

{
i ∈ {1, . . . , n}; x�

i β = 0
}

is the maximum number of car-
riers xi ∈ Rp lying in a subspace, X := (x�

i ) is the carriers data matrix
and x�

i β is the so called linear predictor. If xi are linearly independent then
N (X) = p − 1. The BP can be exemplified by the range of the values of k.
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For increasing k the estimator will possess a BP point less than the highest
possible but it will be more efficient at the same time.

Computing the WTLk estimator is infeasible for large data sets because
of its combinatorial and nonlinear optimization nature. To get approximate
TLE an algorithm called FAST-TLE was developed in [18]. It reduces to the
FAST-LTS/LMS/LTA or FAST-MCD/MVE algorithms considered in [9], [22]
and [23] in the normal regression or multivariate Gaussian cases. The basic
idea behind the FAST-TLE algorithm consists of carrying out finitely many
times a two-step procedure: a trial step followed by a refinement step. In the
trial step a subsample of size k∗ is selected randomly from the data sample
and then the model is fitted to that subsample to get a trial ML estimate.
The refinement step is based on the so called concentration procedure. The
cases with the k smallest negative log likelihoods from the trial fit are found.
Fitting the model to these k cases gives an improved fit. Repeating the
improvement step yields an iterative process. The convergence is always
guaranteed after a finite number of steps since there are only finitely many
k–subsets out of (n

k ) in all. At the end of this procedure the solution with
the lowest value of (1) is stored. There is no guarantee that this value will
be the global minimizer of (1) but one can hope that it would be a close
approximation to it. The trial subsample size k∗ should be greater than or
equal to N (X) + 1 which is needed for the existence of the MLE but the
chance to get at least one outlier free subsample is larger if k∗ = N (X) + 1.
Any k within the interval [N(X)+1, n] can be chosen in the refinement step.
A recommendable choice of k is �(n + N (X) + 1)/2� because then the BP
of the TLE is maximized (see, [17]). The algorithm could be accelerated by
applying the partitioning and nesting techniques as in [22] or [23]. We note
that if the data set is small all possible subsets with size k can be considered.

3 Finite mixture of GLMs

Now a short reminder to mixtures will be given. Details can be found in [15].
Let (yi, xi) for i = 1, . . . , n be a sample of i.i.d. observations such that
yi is coming from a mixture of ψ1(yi;xi, θ1), . . . , ψg(yi;xi, θg) distributions,
conditional on the variables xi ∈ Rp, in proportions π1, . . . , πg defined by

ϕ(yi;xi,Ψ) =

g∑

j=1

πjψj(yi;xi, θj), (2)

where Ψ = (π1, . . . , πg−1, θ1, . . . , θg)
T is the unknown parameter vector, the

proportions satisfy the conditions πj > 0 for j = 1, . . . , g, and
∑g

j=1 πj = 1.

The log likelihood is given by log L(Ψ) =
∑n

i=1 log{∑g
j=1 πjψj(yi;xi, θj)}.

The EM algorithm is a standard technique to obtain the MLE of Ψ. It
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consists in maximizing the complete data log likelihood given by

logLc(Ψ) =

g∑

j=1

n∑

i=1

zij{log πj + logψj(yi;xi, θj)}, (3)

where zij denote the component-indicator variables, depending on whether
yi does or does not belong to the jth component. The algorithm pro-
ceeds iteratively, alternating the E and M steps. In the (l + 1)th it-
eration of the E-step the posterior probabilities for each observation are

computed as ẑ
(l+1)
ij (yi;xi,Ψ

(l)) = π
(l)
j ψj(yi;xi, θ

(l)
j )/

∑g
j=1 π

(l)
j ψj(yi;xi, θ

(l)
j ).

In the (l + 1)th M-step iteration the prior probabilities are computed by

π
(l+1)
j = 1

n

∑n
i=1 ẑ

(l+1)
ij (yi;xi,Ψ

(l)) and then the function is maximized

max
θ1,...,θg

g∑

j=1

n∑

i=1

ẑ
(l+1)
ij (yi;xi,Ψ

(l)) logψj(yi;xi, θj). (4)

For mixtures of GLMs, θj = h(xT βj), j = 1, . . . , g, the function h is ap-
propriately chosen and under the assumption that the parameters β1, . . . , βg

have no elements in common a priori (4) is maximized for each component
separately using the posterior probabilities as weights (see, [15]).

4 Adjustments of the FAST-TLE to mixture of GLMs

The FAST-TLE algorithm can be easily implemented using the environment
of software packages such as GLIM, S-PLUS, R, SAS, STATISTICA, etc.,
since the trial and refinement steps are based on a standard MLE procedure.
In the following we illustrate this in the framework of mixtures of GLMs
using the program FlexMix as a computational engine for fitting mixtures of
GLMs models and model-based cluster analysis in R, described in [12]. The
trial and refinement sample sizes k∗ and k depend not only on the sample
size but also on the number of mixture components and model parameters.
As the linear predictor of a standard GLMs consists of an intercept and p
carriers the number of the unknown parameters is p + 1, hence in a mixture
with g components this number is g(p + 1). Therefore the trial sample size
k∗ in a g components mixture of GLMs with random carriers has to be
at least g(p + 1) to ensure the estimability in each component, otherwise
g(N (X)+2). We recommend a larger trial subsample size in order to increase
the chance for each component to contain at least (p + 1) cases. We also
recommend a larger refinement sample size, say 80% or 90% of the data
size, as in mixtures the majority of the data have to accommodate several
heterogeneous components. Any prior information about the data structure
could be useful at this stage. According to the FAST-TLE algorithm a trial
MLE, Ψ̃, is found by maximizing (3) over the trail subsample with size k∗

instead of n. In the refinement step we are evaluating (2) at Ψ̃ for i = 1, . . . , n
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and then sorting f(yi;xi, Ψ̃) = − logϕ(yi;xi, Ψ̃) in ascending order to get

the indices of the k smallest cases. The improved fit Ψ̂ is then obtained by
maximizing (3) over these k cases.

5 Examples

Two artificially generated data sets, the mixture of normal and Poisson re-
gression models, respectively, are shown on the upper two plots of Figure 1.
On the left-hand upper plot, the points 1-40 are generated according to
x ∼ N(2, 1), y = 2 + x + ε, ε ∼ N(0, 0.1), whereas the points 41-80 are their
mirror pattern, and the points 81-100 are outliers uniformly distributed in the
area [xmin, xmax]×[ymin, ymax]. On the right-hand upper plot the points 1-48
are generated according to x ∼ U(20, 200), Ey = log λ = 3 + 0.01x, y ∼
Poisson(λ), whereas the points 49-96 are their mirror pattern, and the points
97-100 are outliers. In both plots, the points that follow the models are
marked by triangles and rhombs whereas the outliers are marked by bullets.
The lines on the upper two plots, and their dotted analogs on the other 4 plots
correspond to the true models. The continuous lines in the middle and bot-
tom plots correspond to the fits. The upper plots heading values correspond
to the negative log likelihood sums based on the whole samples and “good”
subsamples evaluated at the true model parameters. The left heading values
on the remaining plots correspond to the negative log likelihood and TLE
minima based on the whole sample cases. The right heading values corre-
spond to the negative log likelihood sums of the “good” cases evaluated at
the MLE and TLE based on the whole samples.

The middle two plots give an impression about the MLE fits due to the
program FlexMix starting and ending with a mixture of 4 components. The
results of the mixture of Poisson models will be discussed only because of the
similarity with the normal case. In fact we performed 4 experiments over the
same data set in order to guarantee the reliability of the estimation procedure
because of the internal random mechanism of the EM algorithm, respectively
the FlexMix program, as regards the initial classification of the data. Each
one of these experiments consists of 250 FlexMix runs starting respectively
with 2, 3, 4 and 5 specified mixture components to assess the quality of
the fits. As a result of these fits 4×250 plots were produced and examined.
Only 12 times the mixture components were “correctly identified” which
means: (i) on the background of 5 specified components the true components
were 8 times nicely fitted in those 250 runs, however, 3 nonsense structures
were also identified at the same time; (ii) on the background of 4 specified
components the true components were 4 times nicely fitted in those 250 runs,
however, 2 nonsense structures were also identified; (iii) in the remaining
500 trials neither a single nor 2 or 3 components of the mixture fit was
satisfactory.

The bottom plots give an impression about the TLE fits due to the FAST-
TLE algorithm using the FlexMix program with k∗ = 0.1n and k = 0.8n in
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Figure 1: The artificially generated data sets based on mixtures of two normal
and two Poisson regression models with outliers are given on the left-hand
and right-hand upper plots, respectively. The MLE and TLE fits are given
on the middle and bottom plots, respectively.
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both mixture types starting with mixtures of 2 components in 500 runs. The
true structures were correctly identified in all runs within 30 repetitions of
the procedure. Similar results were obtained with k∗ = 0.1n, k = 0.7n. The
MLE and TLE behavior was studied over many simulated mixtures of GLMs
data with similar designs. The results were similar to the presented here.
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