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Abstract

A computationally fast procedure for identifying outliers is presented, that is par-
ticularly effective in high dimensions. This algorithm utilizes simple properties of
principal components to identify outliers in the transformed space, leading to signif-
icant computational advantages for high dimensional data. This approach requires
considerably less computational time than existing methods for outlier detection,
and is suitable for use on very large data sets. It is also capable of analyzing the data
situation commonly found in certain biological applications in which the number
of dimensions is several orders of magnitude larger than the number of observa-
tions. The performance of this method is illustrated on real and simulated data
with dimension ranging in the thousands.
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1 Introduction

Accurate identification of outliers plays an important role in statistical analysis. If classical

statistical models are blindly applied to data containing outliers, the results can be misleading
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at best. In addition, outliers themselves are often the special points of interest in many practical

situations and their identification is the main purpose of the investigation. Classical tools based

on the mean and covariance matrix are rarely able to detect all the multivariate outliers in a

given sample due to the masking effect (Becker and Gather, 1999), with the consequence that

methods based on classical measures are unsuitable for general use unless it is certain that

outliers are not present. Contaminated data are commonly found in several situations, and so

robust methods that identify or downweight outliers are essential tools for statisticians. The goal

of this investigation is to provide an identification of outliers, prior to whatever modeling process

is envisaged. Sometimes identification of outliers is the primary purpose of the analysis, other

times the outliers need to be removed or downweighted prior to fitting nonrobust models. We

do not distinguish between the various reasons for outlier detection, we simply aim to inform

the analyst of observations that are considerably different from the majority. Our procedures are

therefore exploratory, and applicable to a wide variety of settings.

Most procedures with a high resistance to outliers are computationally intensive; not coinciden-

tally, the availability of cheap computing resources has enabled this field to develop considerably

in recent years. Among other advances, there currently exist a wide variety of statistical models

ranging from regression to principal components (e.g. Hubert et al., 2005, among several others)

that can incorporate outliers without being unduly influenced, as well as several algorithms that

explicitly focus on outlier detection.

The availability of faster computers notwithstanding, the majority of robust methods are compu-

tationally intensive and still only feasible for data sets with dimensions ranging in the hundreds.

Apart from S-estimators, for example the robust estimation routines mentioned in the preceding

paragraph experience substantial computational difficulties on large data sets. With improved

data collection and storage facilities, such data sets have become more common in recent years.

There are several applications where high-dimensional outlier identification and/or robust esti-

mation are important. The field of Genetics, for instance, has recently received a lot of attention

from statisticians (e.g. the project Bioconductor, http://www.bioconductor.org). Advances in

computing power have enabled biologists to record and store huge databases of information.

Such information tends to contain a fair amount of gross errors, however, so robust methods are

needed to prevent these errors from influencing the statistical model. Clearly, algorithms that

take a long time to compute are not ideal or even practical for such large data sets. In addition,

there is a further complication encountered in genetic data. The number of dimensions is typi-

cally several orders of magnitude larger than the number of observations, leading to a singular

covariance matrix, so the majority of statistical procedures cannot be applied in the usual way.

As will be discussed later, this situation can be solved through singular value decomposition, but

it does require special attention. Several other biological applications such as medical imaging

and fMRI also contain very large data sets with more dimensions than observations in which

the outliers are the particular values of interest. Similarly, astronomy is another field in which
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outlier identification is useful; with the introduction of cheap electronic recording and storage

devices it is not uncommon for data sets to be measured in terms of terabytes. It can thus be

seen that there are a number of important applications in which current robust statistical models

are impractical.

This investigation is organized as follows. Section 2 presents a brief survey of existing outlier

algorithms focusing on particular problems associated with high dimensional data. We describe

the proposed procedure in section 3, comparing its performance in low dimensions to existing

methods in section 4. High dimensional results are presented in section 5 and finally, section 6

summarizes our findings and mentions areas of future research.

2 A High Dimensional Perspective on Outlier Detection

2.1 A Brief Overview of Outlier Detection

There are two basic approaches to outlier identification – distance-based methods, and projection

pursuit. Distance-based methods aim to detect outliers by computing a measure of how far a

particular point is from the center of the data. The usual measure of “outlyingness” for a data

point xi ∈ IRp, i = 1, . . . , n, is a robust version of the Mahalanobis distance,

RDi =
√

(xi − T )T C−1(xi − T ), (1)

where T is a robust measure of location of the data set X and C is a robust estimate of

the covariance matrix. Difficulties encountered by distance-based methods include (i) obtaining

a reliable estimate of C, as well as (ii) how large RDi should be before a point is classified

as outlying. This highlights the intimate connection between outlier identification and robust

estimation – the latter is required as part of the former. Obtaining good robust estimators of T

and C are prerequisites for distance-based outlier detection procedures. It is then essential to

find a metric (based on T and C) separating outliers from regular points. The final separation

boundary generally depends on user-specified penalties for misclassification of outliers as well as

regular points.

2.1.1 Robust Estimation as Primary Goal

A simple robust estimate of location is the coordinatewise median. This estimator is not orthog-

onally equivariant (does not transform properly under orthogonal transformations), but if this
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property is important, the L1 median should be used instead, defined as

µ̂(X) = argmin
µ∈IRp

n∑

i=1

‖xi − µ‖ , (2)

where ‖ · ‖ stands for the Euclidean norm. The L1 median has maximal breakdown point, and a

fast algorithm for its computation is given in Hössjer and Croux (1995).

A simple robust estimate of scale is the MAD (median absolute deviation), defined for a sample

{x1, . . . , xn} ⊂ IR as

MAD(x1, . . . , xn) = 1.4826 ·med
j
|xj −med

i
xi|. (3)

More complex estimators of location and scale are given by the class of S-estimators (Maronna

et al., 2006), defined as the vector T and positive definite symmetric matrix C that satisfy

min |C| s.t. 1
n

∑n
i=1 ρ(di/c) = b0,

di =
√

(xi − T )T C−1(xi − T ),
(4)

where ρ(·) is a non-decreasing function on [0,∞), and c and b0 are tuning constants that can

be jointly chosen to provide specific breakdown properties. It is usually easier to work with

ψ = ∂ρ/∂d since ψ has a root where ρ has a minimum.

Distance-based algorithms that pursue robust estimation as a primary goal – without explicit out-

lier identification – include the OGK estimate (Maronna and Zamar, 2002), the minimum volume

ellipsoid (MVE) and minimum covariance determinant (MCD) (Rousseeuw, 1985; Rousseeuw and

van Driessen, 1999). MCD attempts to find the covariance matrix of minimum determinant in-

cluding at least h data points, where h determines the robustness of the estimator; it should be

at least (n+ p− 1)/2. The MCD and MVE are examples of S-estimators with non-differentiable

ρ(di) since ρ(di) is either 0 or 1. MCD demonstrates good performance on data sets with low

dimension but on larger data sets the computational burden can be prohibitive – the exact solu-

tion requires a combinatorial search. In the latter case good starting points need to be obtained,

yielding an approximately correct procedure. Equivariant methods of obtaining these starting

points, however, are based on subsampling methods and the number of subsamples required to

obtain an acceptable level of accuracy increases rapidly with dimension. Rousseeuw and van

Driessen (1999) developed a faster version of MCD which was a sizable improvement, but is still

quite computationally intensive. The OGK estimator (Maronna and Zamar, 2002) is based on

pairwise robust estimates of the covariance. Gnanadesikan and Kettenring (1972) calculated a

robust covariance estimate for two variables X and Y based on the identity

cov(X, Y ) =
1

4

(
σ(X + Y )2 − σ(X − Y )2

)
, (5)
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where σ is a robust estimate of the variance. The matrix constructed from these pairwise estimates

will not necessarily be positive semidefinite, so Maronna and Zamar (2002) proceed by performing

an eigendecomposition of this matrix. Since the variables in eigenvector space are orthogonal, the

covariances are zero and it is sufficient to obtain robust variance estimates of the data projected

onto each eigenvector direction. The eigenvalues are then replaced with these robust variances,

and the eigenvector transformation is applied in reverse to yield a positive semidefinite robust

covariance matrix. If the original data matrix is robustly scaled (each component divided by

its robust variance), the OGK will be scale invariant. This procedure can be iterated, although

Maronna and Zamar (2002) find this is not always better. Maronna and Zamar (2002) also find

that using weighted estimates is somewhat better, in which case the observations are weighted

according to their robust distances d as scaled by the robust covariance matrix. They employ a

weighting function of the form I(d < d0) where I(·) is the indicator function and d0 is taken to

be

d0 =
χ2

p(β)med(d1, . . . , dn)

χ2
p(0.5)

, (6)

where χ2
p(β) is the β-quantile of the χ2

p distribution. Observations thus receive full weight unless

their robust distance d > d0, in which case they receive zero weight. Maronna and Zamar (2002)

note that the robust distances d can be quickly computed in the eigenvector space without the

need for matrix inversion since the p components are orthogonal in this space. That is,

di =
p∑

j=1

(
zij − µ(Zj)

σ(Zj)

)2

, i = 1, . . . , n, (7)

where zij are the data in the space of eigenvectors, Zj are the p components in this space, µ is a

robust location estimate and σ is a robust variance estimate.

2.1.2 Explicit Outlier Identification

Extending robust estimation to outlier detection requires some knowledge of the distribution of

robust distances. If X follows a multivariate normal distribution, the squared classic Mahalanobis

distance (based upon the sample mean and covariance matrix) follows a χ2
p distribution (e.g.

Johnson and Wichern, 1998). Also, if robust estimators T and C are applied to a large data

set in which the non-outliers are normally distributed, Hardin and Rocke (2005) found that

the squared distances could be described by a scaled F -distribution. However, for non-normal

data, it is not clear how the outlier boundary should be determined to give optimal classification

rates. These considerations form the basis for the use of d0 by Maronna and Zamar (2002). The

transformation of equation (6) helps the distribution of di’s resemble that of χ2
p for non-normal

original data, leading to better results for the cutoff value than simply χ2
p(β).

Promising algorithms that focus on identifying outliers include MULTOUT (Woodruff and Rocke,

1994), BACON (Billor et al., 2000) and Kurtosis1 (Peña and Prieto, 2001). MULTOUT and BA-
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CON are distance-based and accordingly, direct the majority of computational effort toward

obtaining robust estimators T and C. BACON starts with a small subset of observations pre-

sumed to be outlier-free, to which it iteratively adds points that have a small Mahalanobis

distance based on T and C of the current subset. One reason that makes MCD unreliable for

high p is that its contamination bias grows very rapidly with p (e.g. Adrover and Yohai, 2002).

MULTOUT aims to reduce the computational burden by subdividing the data into cells and

running MCD on each cell, i.e. reducing the number of observations that MCD operates on, with

the same number of dimensions. It then combines the results from each cell to yield a starting

point for an S-estimator (Davies, 1987) that solves a complex minimization problem to produce

a robust estimate of the covariance matrix C. S-estimators can sometimes converge to an incor-

rect local solution, so a good starting point is essential. However, relying on MCD in the first

stage restricts MULTOUT from analyzing large data sets, especially those of high dimension. It

would seem that methods based on combinatorial search and variants thereof possess an inherent

inability to analyze large data sets.

2.1.3 Projection Pursuit

In contrast to distance-based procedures are projection pursuit methods (Huber, 1985) which can

similarly be applied to robust estimation as a primary goal or continue towards explicit outlier

detection. The underlying motive of projection pursuit methods is to find suitable projections of

the data in which the outliers are readily apparent and can thus be downweighted to yield a robust

estimator, which in turn can be used to identify the outliers. Since they do not assume the data to

originate from a particular distribution but only search for useful projections, projection pursuit

procedures are not affected by non-normality and can be widely applied in diverse data situations.

The penalty for such freedom comes in the form of increased computational burden, since it is

not clear which projections should be examined; an exact method would require that all possible

directions be examined. The earliest equivariant robust estimator having a high breakdown point

in arbitrary dimension was the Stahel-Donoho estimator (Stahel, 1981; Donoho, 1982), studied

in greater detail by Maronna and Yohai (1995). Computer approximation based on directions

from random subsamples was developed by Stahel (1981), but clearly a large amount of time is

required to obtain satisfactory results. To improve on the slow convergence rate, Kurtosis1 (Peña

and Prieto, 2001) proposed to examine only the set of 2p directions that maximize or minimize

the kurtosis. A small number of outliers would cause heavy tails and lead to a larger kurtosis

coefficient, while a larger number of outliers would start introducing bimodality and decrease

the kurtosis coefficient. Viewing the data along projections that have maximum and minimum

kurtosis values would therefore seem to display the outliers in a more recognizable representation.

After the two directions have been found that maximize and minimize the kurtosis value for

the current data space, the search is continued in the orthogonal subspace of the remaining

dimensions. Substituting 2p directions for a theoretically infinite set is clearly advantageous,

although there is some debate about whether the kurtosis measure is always the best criterion
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to use. Thus, although projection pursuit algorithms have the advantage of being applicable in

unusual data situations, their computational difficulties seem formidable.

2.2 The High Dimensional Situation

High dimensional data introduce several problems to traditional statistical analysis. As previ-

ously mentioned, computation time increases more rapidly with p than with n. For combinatorial

and projection pursuit algorithms, this increase is of sufficient magnitude to put in question the

feasibility of such methods for high dimensional data. Among the faster distance-based methods,

computation times of algorithms increase linearly with n and cubically with p (matrix inversion

is an order p3 operation). This implies that for very high dimensional data, the computational

burden of inverting the scatter matrix is nontrivial. This is especially noticeable in iterative

methods which require many iterations to converge, since the covariance matrix is inverted on

every iteration. Thus, while the Mahalanobis distance is a very useful metric for finding corre-

lated multivariate outliers, it is expensive to compute. Alternate methods of identifying outliers

fare even worse, however, usually sacrificing either computational time or detection accuracy.

The MCD is a good example of this trade-off in that the exact solution is very accurate but

impractical to compute for all but small data sets, whereas a faster solution can be obtained if

random subsampling is used to yield an approximate solution. It will be investigated in section

5 whether the subsampling version of MCD is competitive regarding both accuracy and compu-

tation time. Projection pursuit methods including the Stahel-Donoho estimator and Kurtosis1

have computation times that increase very rapidly in higher dimensions, and are often at least

an order of magnitude slower than distance based methods since their search for appropriate

projections is an inherently time-consuming task. Thus although the Mahalanobis distance may

be computationally burdensome due to the matrix inversion step, the robust version – RD, as

defined in equation (1) – is an accurate metric for outlier detection and could well be more

computationally attractive than other approaches.

This is relevant to several biological applications where the data frequently have orders of mag-

nitude more dimensions than observations. This is also the typical situation in chemometrics,

which led to the development of Partial Least Squares (PLS) (e.g. Tenenhaus et al., 2005) among

other methods. Since the covariance matrix is singular the robust Mahalanobis distance cannot

be computed. This is not as big a problem as initially appears, however, since the data can be

transformed via singular value decomposition to an equivalent space of dimension n−1 (see, e.g.,

Hubert et al., 2005) and the analysis conducted in the same way as p < n. Nevertheless, this

situation requires special attention and most outlier algorithms have to be modified to process

this type of high-dimensional data.

High dimensional data have several interesting geometrical properties, described in more detail

by Hall et al. (2005). One such property that is especially relevant to outlier detection, is that
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high dimensional data points lie near the surface of an expanding sphere. For instance, if ‖x‖
is the norm of x = (x1, . . . , xp)

T drawn from a normal distribution with zero mean and identity

covariance matrix, then, for large p we have

‖x‖√
p

=

√
p∑

j=1
(xj)

2

√
p

→ 1,

since the summation involves a χ2
p distribution. Thus, if the outliers have even a slightly different

covariance structure from the non-outliers, they will lie on a different sphere. This does not help

low dimensional outlier detection, but if an algorithm is capable of processing high dimensional

data, it should not be too hard to discover the different spheres of the outliers and non-outliers.

The hardest part, of course, is possessing the ability to analyze sufficiently high dimensional data

(within a reasonable time) to observe this phenomenon.

Principal components are a well known method of dimension reduction, that also suggest an

approach to identifying high dimensional outliers. Recall that principal components are those

directions that maximize the variance along each component, subject to the condition of orthog-

onality. Since outliers increase the variance along their respective directions, it seems intuitive

that outliers will appear more visible in principal component space than the original data space;

that is, at least some of the directions of maximum variance are likely to be those that enable the

outliers to “stick out” more. Searching for outliers in principal component space should at least,

however, not be any worse than searching for them in the original data space. If the data originally

reside in a high-dimensional space, many of these dimensions likely do not contribute significant

additional information and are extraneous. Principal components thus selects a handful of highly

informative components (relative to the total number of components), thereby achieving a high

degree of dimension reduction and making the data set much more computationally tractable

without losing a lot of information.

For high dimension data, a large portion of the smaller principal components are essentially noise

(Jackson, 1991). Especially if p À n, the majority of principal components will indeed be noise

and will not contribute to the total variance. By considering only those principal components

that constitute some predetermined level of the total variance, the number of components can

be substantially reduced so that only those components that are truly meaningful are retained.

Practically, we found good results using a level of 99%. It can be argued this produces similar

results to transforming the data via SVD to a dimension less than the minimum of n and p.

Thus, instead of imposing a level of contribution to the variance such as 99%, it would also be

possible to select the n− 1 (or fewer) components with the largest variance.

As outlined in equation (7) in the OGK approach of Maronna and Zamar (2002), after dividing

by the MAD, the Euclidean distance in principal components space is therefore equivalent to

a robust Mahalanobis distance, since the off-diagonal elements of the scatter matrix are zero.
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Hence, it is not necessary to invert a p × p matrix when computing a measure of outlyingness

for each point (i.e. the robust Mahalanobis distance), but merely to divide (or “standardize”)

each principal component by its respective variance element. Since eigenvector decomposition has

computational complexity p3 similar to matrix inversion, doing the robust distance calculations

in principal component space is not more time-consuming than in regular data space. If this

transformation helps the outliers become more visible and reduces the number of iterations

required to detect them, the result will be a net savings in computational time.

It can be seen that the above concepts are based on simple inherent properties of principal

components; this is further evidence of how principal components continue to present appealing

properties to both theoretical and applied statisticians.

3 Description of the Proposed Procedure

The algorithm we present consists of two basic parts: a step that aims to detect location outliers,

and a step that aims to detect scatter outliers. Scatter outliers possess a different scatter matrix

than the rest of the data, while location outliers are described by a different location parameter.

To start, it is useful to robustly rescale or sphere each component using the coordinatewise

median and the MAD, according to

x∗ij =
xij −med(x1j, . . . , xnj)

MAD(x1j, . . . , xnj)
, j = 1, . . . , p. (8)

Dimensions with a MAD of zero should be either omitted, or another scale measure has to be

used instead. Starting with the rescaled data x∗ij, we calculate a weighted covariance matrix, from

which we compute the eigenvalues and -vectors and hence a semi-robust principal components

decomposition. We retain only those eigenvectors/values that contribute to at least 99% of the

total variance; call this new dimension p∗. The remaining components are generally useless noise

and serve only to obscure any underlying structure. For the case p À n, this also solves the

singularity problem since p∗ < n. For the p∗ × p∗ matrix V of eigenvectors we thus obtain the

matrix of principal components as

Z = X∗V , (9)

where X∗ is the matrix with the elements x∗ij. Rescale these principal components by the median

and the MAD similar to equation (8),

z∗ij =
zij −med(z1j, . . . , znj)

MAD(z1j, . . . , znj)
, j = 1, . . . , p∗. (10)

Store Z∗ for the second phase of the algorithm. After the above pre-processing steps, the location

outlier phase is initiated by calculating the absolute value of a robust kurtosis measure for each
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component according to:

wj =

∣∣∣∣∣
1

n

n∑

i=1

(z∗ij −med(z∗1j, . . . , z
∗
nj)

4

MAD(z∗1j, . . . , z
∗
nj)

4
− 3

∣∣∣∣∣ , j = 1, . . . , p∗. (11)

We utilize the absolute value because similar to Peña and Prieto (2001), both small and large

values of the kurtosis coefficient can be indicative of outliers. This enables us to assign weights

to each component according to how likely we think it is to reveal the outliers. We use relative

weights wj/
∑

iwi to provide a familiar scale 0 ≤ wj ≤ 1. If no outliers are present in a given

component, we expect the principal components to be approximately normally distributed similar

to the original data, yielding a kurtosis close to zero. Since the presence of outliers is likely to

cause the kurtosis to become different than zero, we weight each of the p∗ dimensions proportional

to the absolute value of its kurtosis coefficient. Assigning equal weights to all components (during

the computation of robust Mahalanobis distances) weakens the discriminatory power because if

outliers clearly stick out in one component, the information in this component will be diminished

unless it is given higher weight. Particularly in principal component space, outliers are more likely

to be distinctly visible in one particular component than slightly visible in several components, so

it is important to assign this component higher weight. Since the components are uncorrelated,

we calculate a robust Mahalanobis distance utilizing the distance from the median (as scaled

by the MAD), weighting each component according to the relative weights wj/
∑

iwi, with the

kurtosis measure wj defined in equation (11).

This idea is illustrated in Figure 1. The left picture shows the pairwise scatterplot of the first

three dimensions of a 200 × 20 data matrix with 20 outliers. To increase readability, only the

first three dimensions are shown; the remaining dimensions do not differ substantially. The data

are generated according to a multivariate standard normal distribution, the outliers have the

same covariance matrix as the non-outliers but a slightly different center. The exact simulation

setup will be described in section 4 but to summarize, the data were generated according to a

mixture of normals, with the mean of the outlier distribution shifted 4 units along the orthogonal

direction to the first eigenvector. (In the notation of section 4, the shift parameter is k = 4.) All

methods except ours had difficulty with this configuration (see also Table 1 for k = 4). It can be

seen that although a few outliers, marked by the symbol “+”, are somewhat visible in the plot

of the first two variables, this is not sufficient to identify the outliers. In contrast, the pairwise

scatterplot in principal component space – shown in the right picture of Figure 1, reveals many

more outliers in the first component. The (raw) values of the robust kurtosis measure for these

first three components are 13.43, 1.57, and 0.08, and the relative weights are 0.483, 0.056, and

0.003. The kurtosis measure defined in (11) therefore helps to ensure that important information

contained in a particular component is not diluted by components which do not separate the

outliers.

To finish the first phase of the algorithm, we need to determine how large the robust Mahalanobis
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Fig. 1. Left: Pairwise scatterplot of the first 3 original data components. Non-outliers are empty circles,
outliers are marked by the symbol “+”. Right: Pairwise scatterplot of the first 3 principal components.
Non-outliers are empty circles, outliers are marked by the symbol “+”.

distance should be to obtain an accurate classification between outliers and non-outliers. The

kurtosis weighting scheme destroys any resemblance to a χ2
p∗ distribution that might have been

present, so it is not possible use a χ2
p∗ quantile as a separation boundary. Nevertheless, similar to

Maronna and Zamar (2002) and to equation (6), we found that transforming the robust distances

{RDi} according to

di = RDi ·
√

χ2
p∗,0.5

med(RD1,...,RDn)
for i = 1, . . . , n (12)

helped the empirical distances {di} to have the same median as the theoretical distances and

thus bring the former somewhat closer to χ2
p∗ , where χ2

p∗,0.5 is the χ2
p∗ 50th quantile. We utilize the

translated biweight function (Rocke, 1996) to assign weights to each observation and use these

weights as a measure of outlyingness. The translated biweight fits into the general framework of

S-estimators described by equation (4) and is similar to Tukey’s biweight function except that

ψ starts rising from 0 at some point M from the origin. That is, observations closer than the

scaled distance M to location estimate receive full weight of 1. The ψ function of the translated

biweight is thus given by

ψ(d; c,M) =





d, 0 ≤ d < M

d
(
1−

(
d−M

c

)2
)2

, M ≤ d ≤M + c

0, d > M + c

, (13)
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which corresponds to the weighting function

w(d; c,M) =





1, 0 ≤ d < M
(
1−

(
d−M

c

)2
)2

, M ≤ d ≤M + c

0, d > M + c

. (14)

Directly assigning known non-outliers full weights of one while assigning known outliers weights of

zero results in increased efficiency of the estimators (provided the classifications are correct), and

is also computationally faster. Between these extremes is a subset of points that receive weights

similar to the usual biweight function. To maintain a high level of robustness, it is best to be

conservative in assigning weights of one, since if any outliers enter the process with a weight

of one (or close to it) that will make the other outliers harder to detect due to the masking

effect. Recall that since the principal components have been scaled by the median and MAD

these robust distances measure a weighted distance from the median (utilizing transformed units

of the MAD). We found good empirical results assigning a weight of one to the 1/3 of points

possessing the smallest robust distances. At the other end of the weighting scheme we assign zero

weight to points with di > c, where

c = med(d1, . . . , dn) + 2.5 ·MAD(d1, . . . , dn), (15)

corresponding roughly to traditional outlier boundaries. Similar to equation (14), the weights for

each observation are calculated by the translated biweight function according to

w1i =





0, di ≥ c
(
1−

(
di−M
c−M

)2
)2

, M < di < c,

1, di ≤M

(16)

where i = 1, . . . , n and M is the 331
3

rd
quantile of the distances {d1, . . . , dn}. Other weighting

schemes were tried; the advantage of the translated biweight is that it allows a subset of points

(that we are quite sure are non-outliers) to be given full weight, while another subset of points that

is likely to contain outliers can be given weights of zero, thereby precluding undesirable influence

by potential outliers, and a smooth weighting curve for intermediate points. The weights {w1i}
from equation (16) are stored; we will use them again at the end of the algorithm.

The second phase of our algorithm is similar to the first except that we don’t use the kurtosis

weighting scheme. Principal components focuses on those directions that have large variance, so

it is perhaps not surprising that we find good results searching for scatter outliers in the semi-

robust principal component space described at the beginning of this section. That is, we search

for outliers in the space defined by Z∗ from equation (10). As before, calculating the Euclidean
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norm for data in principal component space is equivalent to the Mahalanobis distance in the

original data space, except that it is faster to compute.

Since the distribution of these distances has not been altered like it was through the kurtosis

weighting scheme and assuming we start with normally distributed non-outliers, transforming

the robust distances as before via equation (12) results in a distribution that is reasonably close

to χ2
p∗ . In setting up the translated biweight as in equation (16), then, satisfactory results can

be obtained by setting M2 equal to the χ2
p∗ 25th quantile and c2 equal to the χ2

p∗ 99th quantile.

This distribution is of course not exactly equal to χ2
p∗ , so there are occasions when graphical

examination of these distances could lead to a better boundary than this automated algorithm.

Call the weights calculated in this way, w2i, i = 1, . . . , n.

Finally we combine the weights from these 2 steps to calculate final weights wi, i = 1, . . . , n,

according to

wi =
(w1i + s) (w2i + s)

(1 + s)2 , (17)

where typically the scaling constant s = 0.25. The reason for introducing s is that sometimes too

many non-outliers receive a weight of 0 in only one of the two steps; setting s 6= 0 helps to ensure

that the final weight wi = 0 only if both steps assign a low weight. Outliers are then classified as

points that have weight wi < 0.25. These values imply that if one of the two weights w1i or w2i

equals one, the other must be less than 0.0625 for the point xi to be classified an outlier. Or, if

w1i = w2i, then this common value must be less than 0.375 for xi to be classified as outlying.

We will henceforth refer to this algorithm as PCOut. It is helpful to summarize the algorithm in

point format:

Phase 1: detection of location outliers

Step 1: Robustly sphere the data according to equation (8). Calculate the sample covariance

matrix of the transformed data X∗.
Step 2: Compute a principal component decomposition of the semi-robust covariance matrix

from Step 1 and retain only those p∗ eigenvectors whose eigenvalues contribute to at least

99% of the total variance. Robustly sphere the transformed data as in equation (10).

Step 3: Compute the robust kurtosis weights for each component as in equation (11), and

hence weighted norms for the sphered data from Step 2. Since the data have been scaled

by the MAD, these Euclidean norms in principal component space are equivalent to robust

Mahalanobis distances. Transform these distances according to equation (12).

Step 4: Determine weights w1i for each robust distance according the translated biweight

in equation (16), with M equal to the 331
3

rd
quantile of the distances {d1, . . . , dn} and

c = med(d1, . . . , dn) + 2.5 ·MAD(d1, . . . , dn).

Phase 2: detection of scatter outliers

Step 5: Use the same semi-robust principal component decomposition calculated in Step 2

and compute the (unweighted) Euclidean norms of the data in principal component space.
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Transform according to equation (12) to yield a set of distances for use in Step 6.

Step 6: Determine weights w2i for each robust distance according to the translated biweight

in equation (16) with c2 equal to the χ2
p∗ 99th quantile and M2 equal to the χ2

p∗ 25th

quantile.

Combining Phase 1 and Phase 2: Use the weights from Steps 4 and 6 to determine final

weights for all observations according to equation (17).

4 Comparison with Methods in Low Dimension

Although this algorithm was designed primarily for computational efficiency at high dimension,

we compare its performance against other outlier algorithms in low dimension, since a high dimen-

sional comparison is not feasible. In the following we examine a variety of outlier configurations

in simulated data.

We follow the method of Maronna and Zamar (2002) to generate correlated multivariate normal,

“worst case” data for methods based on principal components such as OGK and ours. Worst

case data are important to consider since neither our method nor OGK are equivariant. We

start by generating the non-outliers from a p-variate standard normal distribution Np(0, I). The

outliers will be generated from Np(y0, δ
2I) for some δ and y0 = ka0 where a0 is a unit vector. We

construct the simulated data X in such a way that for a highly correlated data set X, the data will

be concentrated around the line a1 = (1, 1, . . . , 1)T , the eigenvector with the largest eigenvalue.

The least favorable configuration for principal component methods will then be outliers situated

orthogonally to this line. We therefore take a0 = (b1− b̄, . . . , bp− b̄)T/
√∑p

j=1(bj − b̄)2 where b =

(b1, . . . , bp)
T consists of random draws from a uniform (0, 1) distribution, and b̄ is the arithmetic

mean of b. Combining the non-outliers and outliers into a single data matrix X, we then introduce

correlation through multiplying by a matrix R. Construct R from a diagonal consisting of 1’s

and off diagonal elements ρ. If no outliers are present, the multiple correlation ρmult between

one coordinate of X and all the others can be calculated from ρ. We report ρmult as a measure

of correlation for all of our results since it is more meaningful than ρ. Although ρmult = 0.5 for

all of the simulations shown here, values of ρmult ranging from 0 to 0.999 were investigated; no

essential differences in the relative performance of these methods were encountered compared to

ρmult = 0.5. In this section, we show results for location outliers with k ranging from k = 2 to

k = 10 and for scatter outliers with δ2 ranging from δ2 = 0.1 to δ2 = 5. Table 1 shows results for

the percentage of outliers ε = 0.1 as a compromise between low and high levels of contamination;

space does not permit us to show other values of ε, however, the results are comparable.

We present our results in the form of a table with (i) the percentage of false negatives (FN) –

the outliers that were not identified, or masked outliers, and (ii) the percentage of false positives

(FP) – non-outliers that were classified as outliers, or swamped non-outliers. All programs were
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executed in R (R Development Core Team, 2005) except for Kurtosis1, which was carried out

in the Octave programming environment (http://www.octave.org), a free version mostly com-

patible with Matlab. We compared our algorithm to (i) a procedure based on robust principal

components by Locantore et al. (1999) using the 97.5th quantile of χ2
p as the cutoff value hence-

forth referred to as Sign, (ii) the OGK(2)(0.9) of Maronna and Zamar (2002) implemented in R

by one of the present authors and similarly using the 97.5th quantile of χ2
p as the cutoff value,

henceforth referred to as OGK, (iii) Kurtosis1 by Peña and Prieto (2001) (Matlab code was sup-

plied by original authors), and (iv) FastMCD with the default values as currently implemented

in R, henceforth referred to as MCD. Somewhat similar to our method, the Sign procedure is

also based on a type of robust principal component analysis. It obtains robust estimates of lo-

cation and spread based upon projecting the data onto a sphere (or rather, an ellipsoid if the

components are measured on different scales). In this way, the effects of outlying observations

are limited since they are placed on the boundary of the ellipsoid and the resulting mean and

covariance matrix are robust. Standard principal components can thus be carried out on the

sphered data without undue influence by any single point (or small subset of points). Unless

otherwise mentioned, all of the following results represent the mean value from 500 Monte Carlo

replications. Note that the case k = 0, δ2 = 1 corresponds to no outliers in the data, which

reduces to a measurement of only the false positives.

Examination of Table 1 reveals that PCOut performs well at identifying outliers (low false neg-

atives), although it has a higher percentage of false positive than most of the methods. It does

particularly well for location outliers, i.e. k = 5 (k = 10 is very easy for most methods and

there is not much difference between them). Kurtosis1 does exceptionally well for scatter outliers

(δ2 = 2 and δ2 = 5), but very poorly for location outliers. Nevertheless it is apparent that with

the exception of these cases involving scatter outliers, PCOut has the lowest percentage of false

negatives, often by a considerable margin, and is a competitive outlier detection method.

5 High Dimensional Results

5.1 Simulated Data

In Table 2 we present simulation results in which the dimension was increased from p = 50 to p =

2000, based on the mean of 100 simulations at each level. In contrast to the previous simulation

experiment in dimension p = 10, in this case we were not able to examine the performance

of the other algorithms since they were not computationally feasible for these dimensions. The

number of observations was held constant at n = 2000, as was the number of outliers at 200. The

correlation coefficient ρ was calculated in such a way as to yield a multiple correlation coefficient

ρmult = 0.7 for each dimension. The outliers consisted of pure scatter outliers (i.e. k = 0) with
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Table 1
%FN and %FP; p = 10, n = 1000, nout = 100, ε = 10%, ρmult = 0.5, 500 simulations

Method δ2 = 0.1 δ2 = 0.5 δ2 = 1 δ2 = 2 δ2 = 5

k %FN %FP %FN %FP %FN %FP %FN %FP %FN %FP

PCOut 0 100.00 7.15 99.96 6.81 — 5.30 61.16 4.00 8.84 3.49

Sign 0 100.00 9.14 99.99 3.97 — 2.56 66.19 1.66 10.78 1.06

OGK 0 100.00 4.30 100.00 4.06 — 2.87 61.49 2.03 6.69 1.88

Kurtosis1 0 100.00 3.38 100.00 2.66 — 1.33 16.09 1.21 0.02 1.37

MCD 0 100.00 5.51 100.00 3.74 — 2.60 63.94 1.64 7.65 1.40

PCOut 2 100.00 7.21 99.44 6.29 82.05 4.19 45.61 3.10 8.90 3.23

Sign 2 100.00 7.83 99.89 3.42 92.17 2.24 54.38 1.53 8.87 1.02

OGK 2 100.00 4.39 99.93 3.62 91.97 2.45 47.23 1.97 5.31 1.86

Kurtosis1 2 100.00 3.39 100.00 2.45 95.76 1.14 4.75 1.36 0.004 1.40

MCD 2 100.00 4.69 99.94 3.20 92.58 2.21 50.42 1.54 5.96 1.40

PCOut 5 67.27 1.60 15.29 1.59 7.25 1.65 3.77 1.74 5.92 2.11

Sign 5 91.83 8.13 46.86 3.65 26.98 2.30 12.97 1.51 3.02 0.97

OGK 5 100.00 4.62 89.74 2.12 24.54 1.91 6.82 1.87 1.28 1.86

Kurtosis1 5 100.00 3.32 100.00 2.04 72.13 1.00 0.00 1.36 0.00 1.37

MCD 5 100.00 4.00 32.16 1.43 16.46 1.41 7.20 1.40 1.52 1.40

PCOut 10 0.00 1.49 0.00 1.69 0.00 1.79 0.00 1.87 0.03 1.93

Sign 10 0.00 7.65 0.00 3.68 0.00 2.43 0.002 1.63 0.03 1.02

OGK 10 0.00 1.87 0.00 1.86 0.00 1.86 0.00 1.87 0.01 1.86

Kurtosis1 10 100.00 3.24 100.00 1.25 0.00 1.43 0.00 1.35 0.00 1.39

MCD 10 0.00 1.40 0.00 1.40 0.00 1.40 0.00 1.39 0.01 1.40
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Table 2
Outliers are generated with a slightly larger covariance matrix (δ2 = 1.2). With increasing dimension
PCOut can identify almost all outliers.

Dimension % FN %FP

p = 50 49.5 6.92

p = 100 31.8 6.31

p = 200 18.3 4.98

p = 500 12.9 3.10

p = 1000 6.06 3.39

p = 2000 0.38 2.54

only a small amount of scatter, namely δ2=1.2. None of the known methods experience much

success in identifying outliers with these characters for small dimensions because geometrically,

the outliers are not very different from the non-outliers. However, as dimension increases, it can

be seen how the outliers separate from the non-outliers and become easier to detect. At p = 50

dimensions, barely half of the outliers can be found, at p = 500 dimensions almost 90% are

detected, and at p = 2000 dimensions more than 99% of the outliers are found.

5.2 Computation Time

One of the key aspects of our algorithm is its computational speed. Accordingly, it is useful

to make a detailed comparison of the various methods in this regard. We generate data in the

same manner as in section 4, keeping the number of observations fixed at n = 2000, with the

proportion of outliers at 10%. The outliers are location and scatter outliers with k = 10 and

δ2 = 2, the multiple correlation coefficient is taken to be ρmult = 0. We start with p = 3

dimensions, and increase p until the computation time for a method exceeds 1000 seconds. The

experiment is repeated 10 times (using a computer with a Pentium 4 1.7 MHz processor), and the

average computation time for the corresponding method is computed. These times are presented

graphically in Figure 2 using a log-log scale: The logarithm of p is shown on the horizontal axis,

the logarithm of computation time (in seconds) on the vertical axis.

We see that computation times rise very rapidly for the algorithms Kurtosis1, OGK, and MCD,

while PCOut and the Sign method are very similar. For p ≥ 100 the computation time is very

high for Kurtosis1, OGK, and MCD while PCOut and Sign are still quite feasible.
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Fig. 2. Average computation time for n = 2000 and varying p.

5.3 Microarray Data

The proposed method for multivariate outlier detection will be applied to a data set of Golub

et al. (1999) with DNA microarray expression data, available as dataset “golubMerge” in the R

package “golubEsets”. This data set comes from a study of gene expression in two types of acute

leukemia: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). The data

comprise 47 cases of ALL and 25 cases of AML, resulting in 72 cases. Gene expression levels were

measured using Affymetrix high-density oligonucleotide arrays (HU6800 chip) containing probes

for approximately 6800 human genes, but the chip actually contains 7129 different probe sets.

We regard the 7129 genes as observations and the 72 cases as variables.

This data set has been used in several studies to discriminate the two patient groups (e.g.

Dudoit et al., 2002). We are not aware of other outlier algorithms that examine this data set,

we investigate it using PCOut to illustrate how our algorithm could assist in the analysis of

high-dimensional microarray data. We will try to identify multivariate outliers among the 7129

genes, without using the information of the two leukemia types ALL and AML. The outlying

genes will then be used for differentiating between the cases.

Similar to Golub et al. (1999) we first apply some pre-processing steps to the data: (i) thresh-

olding, using a floor of 100 and a ceiling of 16000; (ii) base-2 logarithmic transformation; (iii)

standardization of the data so that the expression measures for each array have mean 0 and

variance 1 across genes. Note that we will use all available genes, so we do not filter out those

genes that are unlikely to be of interest.
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Fig. 3. Weight for each gene: Genes with weight less than the boundary 0.25 are outliers.

Applying the proposed algorithm PCOut results in the identification of 2609 outliers among 7129

observations. Figure 3 shows the resulting weights for each gene, together with the line at 0.25

separating outliers (below) from non-outliers (above). There is a very dense region of weights

between 0.15 and 0.20. The reason is that in the original data many values are below 100, and

the thresholding step sets them all equal to 100. These constant values are identified as atypical

and thus appear as outliers.

It would be rather impractical to check for the meaning of all 2609 outliers in a gene expression

data base. Thus we will focus only on the most extreme outliers which will be those genes with

weight below 0.05 in Figure 3. In that way we extract 296 outlying genes.

Note that so far we have not used the information of the two patient groups. Nevertheless,

we are interested if the identified 296 outliers allow for a separation of these groups. Applying

a standard hierarchical clustering technique (we used average linkage) based on the distance

matrix (specifically, the Manhattan distance in our case since it is less sensitive with respect to

atypical observations) results in the dendrogram presented in Figure 4. It can be seen that the

two patient groups ALL and AML can be distinguished quite clearly only at the basis of the

extreme outliers.

The classification without using the grouping information can be of advantage if the grouping

information is not reliable or if measurements are available without the corresponding information

from which patient group they were taken from.

If the grouping information is used, we could be interested in deriving classification rules on the

basis of the sub-data set of the 296 outliers. We could, for example, apply linear discriminant

analysis (LDA) to this data set by providing the grouping information, and estimate the per-

centage of misclassified objects (patients). More information on the prediction quality of the 296
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Fig. 4. Dendrogram after hierarchical clustering of the 296 most outlying genes.
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Fig. 5. Misclassification rates with LDA by using only a subset (50%-100%) of observations. The solid
line is for the set of the 296 most outlying genes, the dashed line for the set of 404 most significant
genes according to the two-sample Welch t-test.

selected genes can be obtained by taking only a subset of observations (patients), building the

LDA classification rule, and evaluating how many observations have been misclassified. In Figure

5, subsets of 36 to 72 observations (50% to 100% of the observations) were taken randomly, and

the percentage of misclassified objects was computed over 100 replications. The results are shown

as the solid line in Figure 5. We compare the results for misclassification by selecting genes in a

more traditional way: the genes are filtered according to their nominal p-value for a two-sample

Welch t-test comparing expression measures in ALL and AML patients. We filter out only highly

significant genes with a p-value of less than 0.0001. 404 highly significant genes are identified in

this way; the dashed line in Figure 5 shows the misclassification rates for the new subset of 404

genes. It can be seen that the misclassification rates are in general very low. There is almost no
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difference in the performance of both methods for gene selection if at least 75% of the observa-

tions are used for LDA. The advantage, however, of the gene selection by the multivariate outlier

detection method is that the patient group information is not needed, and that the classification

with LDA works well even if the group information was lost for a considerable proportion of

samples.

It could be of interest to know if genes selected by the outlier identification method are contained

in the 404 most significant genes, or if there is any relation between the two subsets. Figure 6

shows the relation by a mosaic plot: the p-values from the two-sample Welch t-test are split in

several classes, and also the weights from the algorithm PCOut are classified. Combining both

classifications leads to a two-way table with cell frequencies, and the latter are visualized by

proportional areas in the mosaic plot. The plot shows a clear relation between the p-values and

the weights.

5.4 Geochemical Data

In a large geochemical mapping project, carried out from 1992 to 1998 by the Geological Surveys

of Finland and Norway, and the Central Kola Expedition, Russia, an area covering 188000 km2

at the peninsula Kola was sampled. In total, around 600 samples of soil were taken in 4 different

layers (moss, humus, B-horizon, C-horizon), and subsequently analyzed by a number of different

techniques for more than 50 chemical elements. The project was primarily designed to reveal the

environmental conditions in the area. More details can be found in Reimann et al. (1998) which

also includes maps of the single element distributions. Many papers have been devoted to this

data set, a part of the data was also used for multivariate outlier detection by Filzmoser et al.
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Fig. 7. Map of the Kola project area with symbols indicating outlyingness of the observations:
Non-outliers are marked by the symbol •, outliers with low, moderate, and high average element con-
centrations by −, ◦, and +, respectively. Left: PCOut, right: Sign.

(2005). The data are available in the R package mvoutlier.

Similar to the microarray data, multivariate outlier detection is used here as an exploratory

tool – in this case, to give the analyst an idea where in the geographical region irregularities

or exceptional deviations can be expected. Therefore, we use all the variables (chemical element

concentrations) except those where more than 2 percent of the values were below the detection

limit. Since geochemical data are usually very skewed, the data were log-transformed in order to

better resemble elliptical symmetry. The resulting dataset for outlier detection thus consists of

581 observations and 182 variables.

Figure 7 shows the resulting outliers embedded in a map of the project region for the methods

PCOut (left) and Sign (right). Non-outliers are plotted with a small dot, ·. In order to simplify

the interpretation of the outliers, we use 3 different symbols. We utilize the symbol − if an

observation’s value is smaller than the median value for at least half of the variables, the symbol

+ if it is larger than the median for at least half of the variables, and the symbol ◦ otherwise.

Our results are consistent with geochemical knowledge of this region. For instance, there are

multivariate outliers with high element concentrations in the east of the project region – this

area around Monchegorsk contains big smelters causing a lot of pollution. Along the coast we also

find outliers with high concentrations, caused by the sea spray from the Barents Sea. Conversely,

away from the coast in the north we find an area with moderate to low element concentrations.

This region is known to be pristine and is sparsely populated.
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5.5 Data from Chemometrics

A fast multivariate outlier detection method is particularly useful in the field of chemometrics

where hundreds or even thousands of spectra need to be analyzed. We examine a situation in

which archæological glass vessels from the 16th and 17th centuries were investigated through

chemical analysis. The aim of this study was to learn more about the production of these vessels,

particularly regarding their origin and possible trade connections between known producers. The

180 glass vessels were analyzed by an electron-probe X-ray micro-analysis (EXPMA) leading to

1920 characteristics for each vessel. Some previous studies analyzed the element concentrations

of the vessels (e.g. Janssens et al., 1998). Relations between concentrations and spectra were

investigated with partial least squares (PLS) in Lemberge et al. (2000), although these results

were biased due to outliers. Recently, Serneels et al. (2005) applied a robust version of PLS

to these data, identifying a number of important leverage points. These leverage points resulted

from different detector efficiencies in the EXPMA analysis. Besides leverage points, there are also

four different material compositions of the glass vessels, further increasing the inhomogeneity of

the spectral data.

Here we will focus only on outlier detection among the spectra, clearly a high dimensional data

set. First, columns with MAD equal to zero were removed, with the remaining 1905 columns

investigated for outliers. Figure 8 shows the results from PCOut; the different symbols represent

the four different materials comprising the vessels. The intermediate graphs provide more insight

into the workflow of the method: the kurtosis weights of Step 3 of the PCOut algorithm are

shown in the upper left panel, together with the weight boundaries described in Step 4, leading

to the weights in the upper right panel. Similarly, the distances from Step 5 and the weights

from Step 6 are respectively shown in the left and right panel of the second row. The lower

left panel shows the combined weights (Phase 1 and 2 combined) together with the outlier

boundary 0.25, which results in 0/1 weights (lower right panel). The last 38 observations are

clearly visible as multivariate outliers in the intermediate steps of the algorithm; these are the

previously mentioned leverage points (see Serneels et al., 2005). We can also see that the vessels

produced from different materials have different multivariate behaviour than those constituting

the main data cloud. Some of these observations are identified as outliers using the default outlier

boundary 0.25.

We compare the performance of PCOut on this data set with the Sign method; the other algo-

rithms are not feasible due to the high dimensionality. Figure 9 shows the distances (left) and

weights (right) as calculated by the Sign method. It is evident that the four types of vessels can

not be detected with this algorithm, although the 38 leverage points can be identified. A possible

explanation for the difficulty experienced by the Sign method is a masking effect for PCA. It is

evident that PCOut has better performance than the Sign method, which is also evident from the

results in Table 1. We infer that PCOut is a competitive outlier detection algorithm regarding
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Fig. 8. The panels show the intermediate steps of the PCOut algorithms (distances and weights) for
analyzing the EXPMA data of the glass vessels. The plot symbols refer to different types of glass vessels.

detection accuracy as well as computation time.

6 Conclusion

PCOut is a procedure for identifying outliers in multivariate data that utilizes inherent prop-

erties of principal components decomposition. It demonstrates very good performance for high

dimensional data and through the use of a robust kurtosis measure, it also obtains very good

results for location outliers in any dimension. It is very fast to compute and can easily handle

dimensions ranging in the thousands. Thus, it can be extended to fields such as genetics and

data mining where computational feasibility of statistical routines has usually been a limiting

factor. At lower dimensions, it still produces competitive results when compared to well-known

outlier detection methods. Directions of future research including extending the basic algorithm
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Fig. 9. Distances and weights for analyzing the EXPMA data of the glass vessels with the Sign method.
The plot symbols refer to different types of glass vessels.

to provide a fast method for detecting outliers among missing data, as well as a fast method for

detecting outliers among a mixture of categorical and continuous variables. The R code for the

procedure PCOut is available as the function pcout in the R library mvoutlier.
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