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Abstract

The Maximum Likelihood Estimator (MLE) has commonly been used to estimate
the unknown parameters in a finite mixture of distributions. However, the MLE
can be very sensitive to outliers in the data. In order to overcome this the Trimmed
Likelihood Estimator (TLE) is proposed to estimate mixtures in a robust way.
The superiority of this approach in comparison with the MLE is illustrated by
examples and simulation studies. Moreover, as a prominent measure of robustness,
the Breakdown Point (BDP) of the TLE for the mixture component parameters is
characterized. The relationship of the TLE with various other approaches that have
incorporated robustness in fitting mixtures and clustering are also discussed in this
context.

Key words: Maximum Likelihood Estimator, Trimmed Likelihood Estimator,
Breakdown Point, Finite mixtures of distributions, Robust clustering, Outlier
detection

1 Introduction

Finite mixtures of distributions have been widely used to model a wide range
of heterogeneous data. In most applications the mixture model parameters

∗ Corresponding author. Tel.: +3592-8072731, Fax: +3592-9733569
Email addresses: Neyko.Neykov@meteo.bg (N. Neykov),

P.Filzmoser@tuwien.ac.at (P. Filzmoser), rdimova@fmi.uni-sofia.bg
(R. Dimova), Plamen.Neytchev@meteo.bg (P. Neytchev).

Preprint submitted to CSDA 13 December 2006



Acc
ep

te
d m

an
usc

rip
t 

are estimated by the MLE via the expectation-maximization (EM) algorithm
(see e.g. McLachlan and Peel, 2000). It is well known, however, that the MLE
can be very sensitive to outliers in the data. In fact, even a single outlier can
completely ruin the MLE which in mixture settings means that at least one of
the component parameters estimate can be arbitrarily large. To overcome this,
robust parametric alternatives of the MLE have been developed, e.g., Huber
(1981), Hampel et al. (1986), Rousseeuw and Leroy (1987). A direct fitting
of mixture models to data by these robust estimators is of limited use. The
reason is that these robust estimators are designed to fit a parametric model
to the majority of the data whereas the remaining data which do not follow
the model are considered as outliers. In practice, however, the data could be
quite heterogeneous without having a homogeneous part consisting of at least
50% of the data. Fortunately, since the EM algorithm is capable to transfer a
complex mixture MLE problem into relatively simple single component MLE
problems, some of the ideas of robust estimation have been adapted to mixture
models. Details can be found in Campbell (1984), Kharin (1996), Davé and
Krishnapuram (1997), Medasani and Krishnapuram (1998), McLachlan and
Peel (2000), Hennig (2003), just to name a few. In this way robustness has
been adapted to meet the problem with outliers in mixtures of the location-
scale family of distributions. Generally speaking, robust fitting of mixtures
of distributions outside this family has not been developed yet. Exceptions
are Markatou (2000) and Neykov et al. (2004) who discussed fitting mixtures
of Poisson regressions based on the weighted MLE and Trimmed Likelihood
Estimator (TLE) via simulations.

Thus, after many years of parallel development of fitting mixtures, cluster
analysis, outlier detection and robust techniques, the need for a synthesis of
some of these methods beyond the location scale family of distributions has
become apparent. Such a synthesis can be a flexible and powerful tool for an
effective analysis of heterogeneous data. So, the aim of this paper is to make a
step toward the achievement of this goal by offering a unified approach based
on the TLE methodology. Because the TLE accommodates the classical MLE,
the finite mixture methodology based on the MLE can be adapted and further
developed. In this paper the superiority of this approach in comparison with
the MLE is illustrated.

The paper is organized as follows. In Section 2, the basic properties of the
weighted TLE are presented. In Section 3 we briefly discuss the EM algorithm
and explain how robustness can be incorporated. Moreover, the TLE software
implementation and adjustments to the framework of mixtures with existing
software are presented. Comparisons of the MLE and TLE by examples and
simulations are presented in Section 4. Finally, in Section 5 the conclusions
are given.
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2 The Trimmed Likelihood methodology

Definitions. The Weighted Trimmed Likelihood Estimator (WTLE) is defined
in Hadi and Luceño (1997) and in Vandev and Neykov (1998) as

θ̂WTLE := arg min
θ∈Θp

k
∑

i=1

wν(i)f(yν(i); θ), (1)

where f(yν(1); θ) ≤ f(yν(2); θ) ≤ . . . ≤ f(yν(n); θ) for a fixed θ, f(yi; θ) =
− logϕ(yi; θ), yi ∈ IRq for i = 1, . . . , n are i.i.d. observations with probability
density ϕ(y; θ), which depends on an unknown parameter θ ∈ Θp ⊂ IRp,
ν = (ν(1), . . . , ν(n)) is the corresponding permutation of the indices, which
depends on θ, k is the trimming parameter and the weights wi ≥ 0 for i =
1, . . . , n are nondecreasing functions of f(yi, θ) such that at least wν(k) > 0.

The basic idea behind trimming in (1) is the removal of those n−k observations
whose values would be highly unlikely to occur if the fitted model was true.
The combinatorial nature of the WTLE is emphasized by the representation

min
θ∈Θp

k
∑

i=1

wν(i)f(yν(i); θ) = min
θ∈Θp

min
I∈Ik

∑

i∈I

wif(yi; θ) = min
I∈Ik

min
θ∈Θp

∑

i∈I

wif(yi; θ),

where Ik is the set of all k–subsets of the set {1, . . . , n}. Therefore, it follows
that all possible (n

k) partitions of the data have to be fitted by the MLE, and
the WTLE is given by the partition with the minimal negative log likelihood.

The WTLE accommodates: (i) the MLE if k = n; (ii) the TLE if wν(i) = 1 for
i = 1, . . . , k and wν(i) = 0 otherwise; (iii) the Median Likelihood Estimator
(MedLE) if wν(k) = 1 and wν(i) = 0 for i 6= k; If ϕ(y; θ) is the multivariate
normal density function then the MedLE and TLE coincide with the MVE
and MCD estimators (Rousseeuw and Leroy, 1987). If ϕ(y; θ) is the normal
regression error density, the MedLE and TLE coincide with the LMS and
LTS estimators (Rousseeuw and Leroy, 1987). Details can be found in Vandev
and Neykov (1993, 1998). General conditions for the existence of a solution
of (1) can be found in Dimova and Neykov (2004) whereas the asymptotic
properties are investigated in Cizek (2004). The Breakdown Point (BDP)
(i.e. the smallest fraction of contamination that can cause the estimator to
take arbitrary large values) of the WTLE is not less than 1

n
min{n− k, k− d}

for some constant d which depends on the density considered, see Müller and
Neykov (2003). The choice of d in mixture settings will be discussed in Section
3.

The FAST-TLE algorithm. Computing the WTLE is infeasible for large data
sets because of its combinatorial nature. To get an approximative TLE so-
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lution an algorithm called FAST-TLE was developed in Neykov and Müller
(2003). It reduces to the FAST-LTS and FAST-MCD algorithms considered
in Rousseeuw and Van Driessen (1999a,b) in the normal regression or mul-
tivariate Gaussian cases, respectively. The basic idea behind the FAST-TLE
algorithm consists of carrying out finitely many times a two-step procedure: a
trial step followed by a refinement step. In the trial step a subsample of size
k∗ is selected randomly from the data sample and then the model is fitted to
that subsample to get a trial ML estimate. The refinement step is based on the
so called concentration procedure: (a) The cases with the k smallest negative
log likelihoods based on the current estimate are found, starting with the trial
MLE as initial estimator. (Instead of the trial MLE any arbitrarily plausible
value can be used.); (b) Fitting the model to these k cases gives an improved
fit. Repeating (a) and (b) yields an iterative process. The convergence is al-
ways guaranteed after a finite number of steps since there are only finitely
many k–subsets out of (n

k). At the end of this procedure the solution with
the lowest trimmed likelihood value is stored. There is no guarantee that this
value will be the global minimizer of (1) but one can hope that it would be a
close approximation to it. The trial subsample size k∗ should be greater than
or equal to d which is necessary for the existence of the MLE but the chance
to get at least one outlier free subsample is larger if k∗ = d. Any k within
the interval [d, n] can be chosen in the refinement step. A recommendable
choice of k is ⌊(n+ d+ 1)/2⌋ because then the BDP of the TLE is maximized
according to Müller and Neykov (2003). The algorithm could be accelerated
by applying the partitioning and nesting techniques as in Rousseeuw and Van
Driessen (1999a,b). We note that if the data set is small all possible subsets
with size k can be considered.

3 Finite mixtures and robustness

To make the robust approaches in mixture and cluster settings more under-
standable we will briefly sketch the MLE within these frameworks based on
the EM algorithm. For more details see McLachlan and Peel (2000).

The MLE and EM algorithm. Let (yi, x
T
i ) for i = 1, . . . , n be a sample of

i.i.d. observations such that yi is coming from a mixture of distributions
ψ1(yi;xi, θ1), . . . , ψg(yi;xi, θg) conditional on xi ∈ IRp, in proportions π1, . . . , πg

defined by

ϕ(yi;xi,Ψ) =
g

∑

j=1

πjψj(yi;xi, θj), (2)
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where Ψ = (π1, . . . , πg−1, θ1, . . . , θg)
T is the unknown parameter vector. The

proportions satisfy the conditions πj > 0 for j = 1, . . . , g, and
∑g

j=1 πj = 1.
The MLE of Ψ is defined as a maximum of the log likelihood

logL(Ψ) =
n

∑

i=1

log
{

g
∑

j=1

πjψj(yi;xi, θj)
}

. (3)

Under certain assumptions on ψj(yi;xi, θj) for j = 1, . . . , g the MLE of Ψ
exists and belongs to a compact set. However, the resulting MLE is not
reasonable if these assumptions are violated. Usually (3) is not maximized
directly. The EM algorithm is a standard technique to obtain the MLE of
Ψ. It is assumed that each observation (yi, x

T
i ) is associated with an un-

observed state zi = (zi1, zi2, . . . , zig)
T for i = 1, . . . , n, where zij is one or

zero, depending on whether yi does or does not belong to the jth compo-
nent. Treating (yi, x

T
i , z

T
i ) as a complete observation, its likelihood is given

by P (yi, xi, zi) = P (yi, xi|zi)P (zi) =
∏g

j=1 ψj(yi;xi, θj)
zijπ

zij

j . Therefore the
complete-data log-likelihood is defined by

logLc(Ψ) =
n

∑

i=1

g
∑

j=1

zij{log πj + logψj(yi;xi, θj)}. (4)

Considering the zij as missing the EM algorithm proceeds iteratively in two
steps, called the E-step and M-step for expectation and maximization respec-
tively. The E-step on the (l + 1)th iteration involves the calculation of the
conditional expectation of the complete-data log-likelihood, given the observed
data (yi, x

T
i ) and using the current estimate Ψ(l) of Ψ,

Q(Ψ; Ψ(l)) =
n

∑

i=1

g
∑

j=1

τj(yi;xi,Ψ
(l)){log πj + logψj(yi;xi, θj)}, (5)

where τj(yi;xi,Ψ
(l)) = π

(l)
j ψj(yi;xi, θ

(l)
j )/

∑g
h=1 π

(l)
h ψh(yi;xi, θ

(l)
h ) is the current

estimated posterior probability that yi belongs to the jth mixture component.
The function Q(Ψ; Ψ(l)) minorizes logL(Ψ), i.e., Q(Ψ; Ψ(l)) ≤ logL(Ψ) and
Q(Ψ(l); Ψ(l)) = logL(Ψ(l)). The M-step in the (l + 1)th iteration maximizes
Q(Ψ; Ψ(l)) with respect to Ψ. This yields a new parameter estimate Ψ(l+1).
These two steps are alternately repeated until convergence occurs.

The maximization problem can be simplified as (5) can be seen to consist of
two parts. The first depends only on the parameters π1, . . . , πg−1 whereas the
second part depends only on θ1, . . . , θg. Consequently, the prior probabilities
πj are updated by

π
(l+1)
j =

1

n

n
∑

i=1

τj(yi;xi,Ψ
(l)) (6)
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and the expression for θj is maximized,

max
θ1,...,θg

n
∑

i=1

g
∑

j=1

τj(yi;xi,Ψ
(l)) logψj(yi;xi, θj), (7)

considering the posterior probabilities τj(yi;xi,Ψ
(l)) as the prior weights. Un-

der the assumption that θj (for j = 1, . . . , g) are distinct a priori, expression
(7) is maximized for each component separately,

max
θj

n
∑

i=1

τj(yi;xi,Ψ
(l)) logψj(yi;xi, θj), for j = 1, . . . , g. (8)

In case that θj are non-distinct, many techniques exist to reformulate (7) by
single summations, see McLachlan and Peel (2000).

The classification EM algorithm. This approach consists of assigning the ob-
servation (yi, x

T
i ) to the hth component if τh(yi;xi,Ψ

(l)) ≥ τj(yi;xi,Ψ
(l)) for

j = 1, . . . , g. In case of equal estimated posterior probabilities an observa-
tion is assigned arbitrarily to one of the components. Hence instead of (8) the
following expression is maximized

max
θj

nj
∑

i=1

logψj(yi;xi, θj) for j = 1, . . . , g, (9)

where nj is the jth cluster sample size and n1 + n2 + . . . + ng = n. This is a
k–means-type algorithm which converges in a finite number of iterations. The
resulting estimates are neither MLE nor consistent, see McLachlan and Peel
(2000). However, they could be used as starting values in the EM algorithm.

The expressions (8) and (9) are standard MLE problems. In this way the EM
algorithm decomposes complex MLE problems into more simple ones that can
be solved by widely available software packages.

The Breakdown Point of the WTLE in mixture settings. As a consequence of
the EM algorithm, the BDP of the WTLE in mixture settings can be charac-
terized via the BDP of the trimmed version of (5), the trimmed conditional
expectation of the complete-data negative log-likelihood estimator

min
Ψ

min
I∈Ik

∑

i∈I

g
∑

j=1

−τj(yi;xi,Ψ
(l)){log πj + logψj(yi;xi, θj)}. (10)

Here only the BDP of the WTLE for the parameters θj for j = 1, . . . , g will be
treated because the BDP for π1, . . . , πg needs special consideration. Therefore
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the fullness index d of the set Fθ = {
∑g

j=1 − logψj(yi;xi, θj) for i = 1, . . . , n}
has to be characterized using the d–fullness technique of Vandev and Neykov
(1993), and Müller and Neykov (2003). It can be proved easily that the fullness
index of Fθ is equal to d =

∑g
j=1 dj under the assumption that θj are distinct

a priori and the sets Fθj
= {− logψj(yi;xi, θj) for i = 1, . . . , n} are dj–full

for j = 1, . . . , g. Derivation of the fullness index of any of the sets Fθj
is a

routine task. Consequently, there always exists a solution of the optimization
problem (10) if k∗ and k are within the interval [

∑g
j=1 dj, n]. If k satisfies

⌊

(n+
∑g

j=1 dj)/2
⌋

≤ k ≤
⌊

(n+
∑g

j=1 dj + 1)/2
⌋

the BDP of the WTLE is

maximized and equal to 1
n

⌊

(n−
∑g

j=1 dj)/2
⌋

. Generally, the fullness index of
Fθ is less than the above in case of non-distinct parameters. The fullness indices
dj are equal if ψj(yi;xi, θj) for j = 1, . . . , g belong to the same distribution
family, e.g., dj = p+1 in the p-variate normal case (Vandev and Neykov, 1993).
Therefore the BDP of the WTLE in mixtures of p-variate heteroscedastic
normals is equal to 1

n
⌊(n− g(p+ 1))/2⌋. The index of fullness of a mixture of

p-variate homoscedastic normals is g + p and thus the BDP of the WTLE in
this setting is equal to 1

n
⌊(n− g − p)/2⌋. The WTLE reduces to the weighted

MCD estimator in both cases if g = 1 whereas the BDPs coincide with the
BDP of the MCD estimator which is equal to 1

n
⌊(n− p− 1)/2⌋. The same

holds for mixtures of multiple normal and Poisson regressions with intercept
and rank p of the covariates matrix. If the data are not in general position
(which is often the case with mixtures of GLMs) this number should be much
larger, at least g(N(X) + 2), see Müller and Neykov (2003) for the definition
of N(X).

Robust fitting of mixtures. If one is able to perform all k–subsets MLE fits of
n cases for the mixture model (2) then the WTLE could be found. As this is
infeasible for large n the FAST-TLE algorithm can be used to get an approxi-
mation. The FAST-TLE algorithm is a general approach for robust estimation
and thus any MLE procedure for fitting mixtures can be used. However, the us-
age of the EM algorithm has a number of conceptual advantages. For instance,
fitting mixtures of p-variate normals by the FAST-TLE using the classification
EM algorithm reduces to the cluster analysis estimation techniques described
by Garcia-Escudero et al. (2003), Gallegos and Ritter (2005), and Hardin and
Rocke (2004) under the restriction that the covariance matrices are spherical,
homoscedastic and heteroscedastic, respectively. FAST-TLE fitting mixture of
normal regressions using the classification EM algorithm would coincide with
carrying out cluster-wise regression by the FAST-LTS algorithm of Rousseeuw
and Van Driessen (1999a).

Generally, other techniques for robust fitting of mixtures or clustering can be
derived by replacing the g standard MLE problems in (8) or (9) by appropriate
g robust estimation problems. This idea was adapted by Campbell (1984) in
robustly fitting mixtures of normals involving the M-estimators (Huber, 1981)
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of location and scale. The usage of M-estimators for the cluster-wise multiple
linear regression case is discussed by Hennig (2003).

Software adjustments of the FAST-TLE to mixtures. Since the trial and refine-
ment steps are standard MLE procedures, the FAST-TLE algorithm can be
easily implemented using widely available software. We illustrate this in the
framework of mixtures of linear regression models, multivariate heteroscedastic
normals, and Poisson regressions using the program FlexMix of Leisch (2004).
FlexMix was developed in R (http:/www.R-project.org) as a computational
engine for fitting arbitrary finite mixture models, in particular, mixtures of
GLMs and model-based cluster analysis by using the EM algorithm.

In the mixture setting with g components, the trial sample size k∗ must be
at least g(p + 1) to overcome the degenerated case of unbounded likelihood.
Thus we recommend a larger trial sample size to increase the chance to allocate
at least p + 1 cases to each mixture component. If this is not the case, any
program would fail to get an estimate that could serve as a trial estimate.
If this happens a new random subsample of k∗ observations has to be drawn
and supplied to the software estimation procedure. This trial and error process
continues until a trial estimate is derived. The refinement subsample size k has
to be ⌊(n+ g(p+ 1))/2⌋ to ensure the highest BDP of the TLE. If the expected
percentage α of outliers in the data is a priory known, a recommendable choice
of k is ⌊n(1 − α)⌋ to increase the efficiency of the TLE.

Most of the software procedures for fitting mixtures, in particular the FlexMix
program, maximize the expression (8) or (9) according to the user specified
weight option. For instance, if the hard weighting option is specified then
the classification EM algorithm is performed by FlexMix. We recommend this
option within the trial step only. Hence depending on the weight option various
algorithms can be designed.

As a final remark we note that in the refinement steps the negative log likeli-
hoods − logϕ(yi;xi,Ψ) defined by (2) are evaluated at the current estimate Ψ̂
and then sorted in ascending order to get the indices of those k cases with the
smallest negative log-likelihoods, starting with the trial estimate Ψ∗ of Ψ at
the first iteration of the refinement step. In practice, we need 4 or 5 refinement
steps at most to reach convergence.

4 Examples

In the examples below we compare MLE and FAST-TLE approaches using
the program FlexMix as a computational MLE and FAST-TLE procedure.
Sometimes FlexMix returns less components than initially specified. This is
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Fig. 1. Mixture of three regressions: true model (dotted lines), fits based on the
MLE (dashed lines) and FAST-TLE (solid lines) with (a) 20% trimming and 3
components, (b) 40% trimming and 4 components.

because FlexMix allows a removal of components containing less observations
than a user specified percentage to overcome numerical instabilities. Since the
true number of mixture components is unknown in practice, FlexMix is always
run with various numbers of components. The Bayesian Information Criterion
(BIC) based on the MLE and FAST-TLE can then be used to determine
the number of mixture components. In this way we can assess the quality of
the fits as in our examples the number of components and their parameters
are known. A fit is considered as successful if all components are correctly
estimated even if some non-sense fits occur additionally. Correct estimation
means that at least 95% of the observations that are assigned to a particular
component are indeed generated from this model.

Mixture of three regression lines with noise

In this example we consider a mixture of three simple normal linear regressions
with additional noise. The regression lines were generated according to the
models y1i = 3+1.4xi+ǫi (70 data points), y2i = 3−1.1xi+ǫi (70 data points),
and y3i = 0.1xi + ǫi (60 data points), where xi is uniformly distributed in the
intervals [-3,-1] and [1,3], respectively, and ǫi is a standard normal distribution
with σ = 0.1. To these data we added 50 outliers uniformly distributed in the
area [−4.5, 4.5] × [−0.8, 2.8]. The points that follow the models are marked
by rhombs, squares and bullets whereas the outliers are marked by triangles.
The plots in Figure 1 are typical results of the MLE and FAST-TLE fits. The
dotted, dashed and solid lines correspond to the true models, MLE and FAST-
TLE fits, respectively. Starting with an increasing percentage of trimming from
20 to 45 and number of components from 2 to 5 the FAST-TLE algorithm
converged to the correct two components mixture model in almost all trials
whereas the MLE failed.
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Mixture of three bivariate normal models with noise

By this example the behavior of the FAST-TLE is studied for the simulated
data set discussed in McLachlan and Peel (2000). This data consists of 100
observations generated from a 3-component bivariate normal mixture model
with equal mixing proportions and component parameters, respectively as

µ1 = (0 3)T , µ2 = (3 0)T , µ3 = (−3 0)T ,

Σ1 =







2 0.5

0.5 .5





 , Σ2 =







.1 0

0 .1





 , Σ3 =







2 −0.5

−0.5 .5





 .

Fifty outliers, generated from a uniform distribution over the range -10 to 10 on
each variate are added to the original data. Thus a sample of 150 observations
is obtained. McLachlan and Peel (2000) model this data by a mixture of t–
distributions and reduce the influence of the outliers.

The original observations, the outliers, the 3 components MLE and FAST-
TLE fits with 15%, 25%, 35% and 45% trimming are presented in Figure 2
(a)–(d). The original observations, i.e., data that follow the models are marked
by rhombs, squares and bullets whereas the outliers are marked by triangles.
The dotted contours of the ellipses on the plots correspond to the true models
whereas the solid and dashed contours of the 99% confidence ellipses corre-
spond to the FAST-TLE and MLE fits, respectively. For the robust fits we
can see that a lower or higher trimming percentage than the true contamina-
tion level still allows the correct estimation of the ellipsoid centers while the
covariances are overestimated or underestimated due to the too high or low
trimming percentage. The fits are excellent if the specified trimming percent-
age is close to the true percentage of contamination. The classical MLE fits
are poor when using 3 or even more components.

Generally, in real applications the number of mixture components is unknown
and the BIC is widely used for model assessment. The trimmed analog of
BIC is defined by TBIC = −2 log(TLk(Ψ̃)) + m log(k), where TLk(Ψ̃) is the
maximized trimmed likelihood, k is the trimming parameter, and m is the
number of parameters in the mixture model. Obviously, TBIC reduces to BIC
if k = n. To get an impression of the empirical distribution of these quantities
for this example a limited Monte Carlo simulation study was conducted for
a range of different situations. We fit the simulated three bivariate mixtures
of normals with 1 to 5 components and vary the trimming percentage from
0% to 45% in steps of 5%. The experiment was independently replicated 500
times for any combination. The resulting TBIC median values (rounded) are
presented in Table 1. The smallest values for each column are marked in
italics. One can see that these values stabilize in a model with 3 components
which is the correct model. A two-phase regression fit of the 3rd row values
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Fig. 2. Data set of McLachlan and Peel (2000) with mixtures of 3 normals with noise:
true model (dotted lines) and fits of a three component normal mixture based on
the MLE (dashed lines) and FAST-TLE (solid lines) with (a) 15%, (b) 25%, (c)
35%, and (d) 45% of trimming.

against the trimming percentages detects a change point between 25% and
30% trimming which could be interpreted as a data contamination estimate.
We note that the true contamination level in this data set is slightly higher,
however, a part of the noise observations conforms the mixture model. From
this and other similar studies we could conclude that the TBIC might be used
to assess robustly the number of mixture components and the percentage of
contamination in the data.

Mixture of two Poisson regression models with noise

In this example we consider two Poisson regression models with equal mixing
proportions and with additional noise. For each Poisson regression model 100
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Table 1
Simulation experiment for the data of McLachlan and Peel (2000): resulting TBIC
median values (rounded) based on different numbers of components (rows) and
different trimming percentages (columns).

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

1 1672 1510 1382 1253 1119 1003 915 837 749 650

2 1654 1494 1338 1202 1054 920 822 734 643 559

3 1585 1436 1313 1190 1047 902 795 709 620 538

4 1595 1429 1304 1178 1040 908 807 720 631 549

5 1594 1430 1309 1184 1051 922 822 736 647 566
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Fig. 3. Mixture of two Poisson regression components: true model (dotted lines),
fits based on the MLE (dashed lines) and FAST-TLE (solid lines) with (a) 20%
trimming and 2 components, and (b) 40% trimming and 4 components.

data points are generated according to the Poisson distribution with means
log λ1 = 3−0.008x and log λ2 = 3+0.008x, where x is uniformly distributed in
the intervals [-225,-25] and [25,225], respectively. For the noise we generated
50 points from a uniform distribution over the range of each variate. The
plots in Figure 3 are typical results of the MLE and FAST-TLE fits for a
simulated data set. The points that follow the models are marked by squares
and rhombs whereas the outliers are marked by triangles. The dotted, dashed
and solid lines correspond to the true models, MLE and TLE fits, respectively.
Starting with an increasing number of components from 2 to 5 the FAST-TLE
algorithm converged to the correct two components mixture model in most of
the trials whereas the MLE failed, see Figure 3.

In order to get more insight we generated 100 independent data samples ac-
cording to the above model. Each data set was fitted by a mixture model with
2, 3, 4 and 5 components and with 20% trimming. Similar to the previous ex-
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amples, the estimated number of components as returned by FlexMix can be
smaller than initially specified. For each considered model we count how often
a model with a certain number of components is returned among all simulated
data sets. The results for the MLE and FAST-TLE are reported in Table 2.
The number of specified components is presented by the rows in the table,
and the number of returned components by the columns. Additionally to the
frequencies we provide the number of successful fits (number below in italics),
i.e., both Poisson regression components of the mixture model were correctly
estimated. For the MLE method we see that the chance for successful fits
increases only for a larger required number components. Overall, the method
has severe problems in estimating the models since only 37 out of 400 fits were
successful. For FAST-TLE the increase of the initial number of components
has almost no effect, since a model with 2 components is optimal in more than
90% of the fits. Moreover, these models are almost always successful fits. In
total, 392 out of the 400 experiments were successful.

Table 2
Simulation results for the mixture of two Poisson regressions. Models with 2, 3, 4,
and 5 components were fitted for 100 simulated data sets. Out of 400 fits, 37 were
successful for MLE and 392 were correctly estimated by FAST-TLE.

MLE FAST-TLE
returned components returned components

started 2 3 4 5 Total 2 3 4 5 Total

2 100 100 100 100

1 1 98 98

3 100 100 93 7 100

2 2 92 7 99

4 94 6 100 96 4 0 100

4 4 8 94 4 98

5 19 15 66 100 94 6 0 100

3 7 16 26 91 6 97

Total 100 213 21 66 400 383 7 0 0 400

1 9 11 16 37 375 17 392

5 Summary and conclusions

The TLE methodology can be used for robustly fitting mixture models. We
have demonstrated by examples and simulations that in presence of outliers the
TLE gives very reliable estimates comparable to the mixture model generat-
ing parameters. Applying the FAST-TLE algorithm to mixtures boils down to
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carrying out the classical MLE on subsamples. Procedures for mixture models
based on the MLE are widely available and thus the method is easy to imple-
ment. Software in R is available from the authors upon request. The TBIC is
a useful indicator for determining the number of components and contamina-
tion level in the data. If the trimming percentage is chosen too large, some of
the observations that follow the model will be trimmed and incorrectly identi-
fied as outliers. Therefore an additional inspection of the FAST-TLE posterior
weights can be helpful in distinguishing these observations from real outliers.
The TLE will lead to greater computational effort, but having in mind the
growing power of modern-day processors and memory, one can afford this.
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