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Abstract

Different procedures to identify data outliers in geochemical data are reviewed and tested. The calculation of

[meanF2 standard deviation (sdev)] to estimate threshold values dividing background data from anomalies, still used

almost 50 years after its introduction, delivers arbitrary estimates. The boxplot, [medianF2 median absolute deviation

(MAD)] and empirical cumulative distribution functions are better suited for assisting in the estimation of threshold

values and the range of background data. However, all of these can lead to different estimates of threshold.

Graphical inspection of the empirical data distribution using a variety of different tools from exploratory data

analysis is thus essential prior to estimating threshold values or defining background. There is no good reason to

continue to use the [meanF2 sdev] rule, originally proposed as a dfilterT to identify approximately 2O% of the data

at each extreme for further inspection at a time when computers to do the drudgery of numerical operations were

not widely available and no other practical methods existed. Graphical inspection using statistical and geographical

displays to isolate sets of background data is far better suited for estimating the range of background variation and

thresholds, action levels (e.g., maximum admissible concentrations—MAC values) or clean-up goals in environmental

legislation.
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1. Introduction

The detection of data outliers and unusual data

behaviour is one of the main tasks in the statistical

analysis of geochemical data. As early as 1962, several

procedures had been recommended for selecting
ment 346 (2005) 1–16
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threshold levels in order to identify outliers (Hawkes

and Webb, 1962):

(1) Carry out an orientation survey to define a local

threshold against which anomalies can be

judged;

(2) Order the data and select the top 2O% of the

data for further inspection if no orientation

survey results are available; and

(3) For large data sets, which cannot easily be

ordered (at that time—1962; with today’s PCs

this is no longer a problem), use [meanF2 sdev]

(sdev: standard deviation) to identify about

2O% of upper (or lower) extreme values for

further inspection.

Recommendation (1) requires additional field-

work and resources, and consequently such work is

rarely carried out post-survey—by definition orien-

tation surveys should be undertaken prior to any

major survey as a necessary part of survey design

and protocol development. In the second procedure

the 2O% could be questioned: why should there be

2O% outliers and not 5% or 10%, or no outliers at

all? However, 2O% is a reasonable number of

samples for dfurther inspectionT and is, as such, a

dpracticalT approach, and leads to a similar percent-

age of the data as the third procedure identifies.

This third procedure appears the most rigorous and

delivers estimates based on a mathematical calcu-

lation and an underlying assumption that the data

are drawn from a normal distribution. Statisticians

use this approach to identify the extreme values in a

normal distribution. The calculation will result in

about 4.6% of the data belonging to a normal

distribution being identified as extreme values, 2.3%

at the lower and 2.3% at the upper ends of the

distribution. However, are these extreme values

defined by a statistical rule really the doutliersT
sought by geochemists and environmental scientists?

Will this rule provide reliable enough limits for the

background population to be of use in environ-

mental legislation?

Extreme values are of interest in investigations

where data are gathered under controlled conditions.

A typical question would be bwhat are the extreme tall

and small persons in a group of girls age 12Q or bwhat
is the dnormalT range of weight and size in newbornsQ?
In this case extreme values are defined as: values in

the tails of a statistical distribution.

In contrast, geochemists are typically interested in

outliers as indicators of rare geochemical processes. In

such cases, these outliers are not part of one and the

same distribution. For example, in exploration geo-

chemistry samples indicating mineralisation are the

outliers sought. In environmental geochemistry the

recognition of contamination is of interest. Outliers

are statistically defined as (Hampel et al., 1986;

Barnett and Lewis, 1994): values belonging to a

different population because they originate from

another process or source, i.e. they are derived from

(a) contaminating distribution(s). In such a case, the

[meanF2 sdev] rule cannot deliver a relevant thresh-

old estimate.

In exploration geochemistry values within the

range [meanF2 sdev] were often defined as the

dgeochemical backgroundT, recognizing that back-

ground is a range and not a single value (Hawkes

and Webb, 1962). The exact value of mean+2 sdev is

still used by some workers as the dthresholdT, differ-
entiating background from anomalies (exploration

geochemistry), or for defining daction levelsT or

dclean-up goalsT (environmental geochemistry). Due

to imprecise use of language, the threshold is often

also named the background value. Such a threshold is

in fact an estimate of the upper limit of background

variation. In geochemistry, traditionally, low values,

or lower outliers, have not been seen as important as

high values; this is incorrect, low values can be

important. In exploration geochemistry they may

indicate alteration zones (depletion of certain ele-

ments) related to nearby mineral accumulations

(occurrences). In environmental geochemistry, food

micronutrient deficiency related health problems may,

on a worldwide scale, be even more important than

toxicity.

Interestingly, for many continuous distributions,

the [meanF2 sdev] rule results in about 5% of

extreme values being identified, even for a t or chi-

squared distribution (Barnett and Lewis, 1994).

However, a problem with the application of this rule

is that it is only valid for the true population

parameters. In practice, the empirical (calculated)

sample mean and standard deviation are used to

estimate the population mean and standard deviation.

But the empirical estimates are strongly influenced by
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Fig. 1. Tukey boxplot for potassium (K%) concentrations in the O

horizon of podzols from the Kola area (Reimann et al., 1998). Fo

definitions of the different boundaries displayed see text.
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extreme values, whether derived from the data

distribution or from a second (contaminating) distri-

bution. The implication is that the [meanF2 sdev] rule

is not (and never was) valid. To avoid this problem

extreme, i.e. dobviousT outliers, are often removed

from the data prior to the calculation, which intro-

duces subjectivity. Another method is to first log-

transform the data to minimize the influence of the

outliers and then do the calculation. However, the

problem that thresholds are frequently estimated based

on data derived from more than one population

remains. Other methods to identify data outliers or

to define a threshold are thus needed.

To select better methods to deal with geochemical

data, the basic properties of geochemical data sets

need to be identified and understood. These include:

– The data are spatially dependent (the closer two

sample sites, the higher the probability that the

samples show comparable analytical results—

however, all classical statistical tests assume

independent samples).

– At each sample site a multitude of different

processes will have an influence on the measured

analytical value (e.g., for soils these include: parent

material, topography, vegetation, climate, Fe/Mn-

oxyhydroxides, content of organic material, grain

size distribution, pH, mineralogy, presence of

mineralization or contamination). For most statis-

tical tests, it is necessary that the samples come

from the same distribution—this is not possible if

different processes influence different samples.

– Geochemical data, like much natural science data,

are imprecise, they contain uncertainty unavoid-

ably introduced at the time of sampling, sample

preparation and analyses.

Thus starting geochemical data analysis with

statistical tests based on assumptions of normality,

independence, and identical distribution may not be

warranted; do better-suited tools for the treatment of

geochemcial data exist? Methods that do not strongly

build on statistical assumptions should be first choice.

For example, the arithmetic mean could be replaced

by the median and the standard deviation by the

median absolute deviation (MAD or medmed),

defined as the median of the absolute deviations from

the median of all data (Tukey, 1977). These estimators
are robust against extreme values. Another solution

would be to use the boxplot (Fig. 1) for the

identification of extreme values (Tukey, 1977). The

boxplot divides the ordered values of the data into

four dequalT parts, firstly by finding the median

(displayed as a line in the box—Fig. 1), and then by

doing the same for each of the halves. These upper

and lower quartiles, often referred to as upper and

lower dhingesT, define the central box, which thus

contains approximately 50% of the data. The dinner
fenceT is defined as the box extended by 1.5 times the

length of the box towards the maximum and the

minimum. The upper and lower dwhiskersT are then

drawn from each end of the box to the farthest
-
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observation inside the inner fence. This is defined

algebraically, using the upper whisker as an example,

as

Upper inner fence ðUIFÞ

¼ upper hinge xð Þ þ 1:5THW xð Þ ð1Þ

Upper whisker ¼ max x xbUIF½ �ð Þ ð2Þ

where HW (hinge width) is the difference between the

hinges (upper hinge�lower hinge), approximately

equal to the interquartile range (depending on the

sample size), i.e. Q3–Q1 (75th–25th percentile); the

square brackets [. . .] indicate that subset of values that

meet the specified criterion. In the instance of

lognormal simulations, the fences are calculated using

the log values in Eq. (1), and then anti-logged for use

in Eq. (2). Any values beyond these whiskers are

defined as data outliers and marked by an special

symbol (Fig. 1). At a value of the upper hinge plus 3

times the hinge width (lower hinge minus 3 times the

hinge width), the symbols used to represent outliers

change (e.g., from small squares to large crosses—

Fig. 1) to mark dfar outliersT, i.e. values that are very

unusual for the data set as a whole. Because the

construction of the box is based on quartiles, it is

resistant to up to 25% of data outliers at either end of

the distribution. In addition, it is not seriously

influenced by widely different data distributions

(Hoaglin et al., 2000).

This paper investigates how several different

threshold estimation methods perform with true

normal and lognormal data distributions. Outliers

derived from a second distribution are then super-

imposed upon these distributions and the tests

repeated. Graphical methods to gain better insight

into data distribution and the existence and number of

outliers in real data sets are presented. Based on the

results of these studies, guides for the detection of

outliers in geochemical data are proposed.

It should be noted that in the literature on robust

statistics, many other approaches for outlier detection

have been proposed (e.g., Huber, 1981; Hampel et al.,

1986; Rousseeuw and Leroy, 1987; Barnett and

Lewis, 1994; Dutter et al., 2003). In this paper we

focus on the performance of the methods that are, or

have been, routinely used in geochemistry: [meanF2
sdev] rule and the boxplot inner fence. We have added

the [medianF2 MAD] procedure because, in addition

to the boxplot, this is the most easily understood

robust approach, is a direct analogy to [meanF2

sdev], and the estimators are usually offered in widely

available statistical software packages.
2. Performance of different outlier detection

methods

When analysing real data and estimating the limits

of background variation using different procedures,

the [medianF2 MAD] method will usually deliver the

lowest threshold and thus identify the highest number

of outliers, followed by the boxplot. The boxplot-

defined threshold, the inner fence, is in most cases

close to, but lower than, the threshold obtained from

log-transformed data (Table 1) using the [meanF2

sdev] rule. The examples in Table 1 demonstrate the

wide range of thresholds that can be estimated

depending on the method and transformation chosen.

The question is bwhich (if any) of these estimates is

the most credible?Q This question cannot be answered

at this point, because the true statistical and spatial

distribution of the dreal worldT data is unknown.

However, the question is significant because such

statistically derived, and maybe questionable, esti-

mates are used, for example, to guide mineral

exploration expenditures and establish criteria for

environmental regulation.

To gain insight into the behaviour of the different

threshold estimation procedures simulated data from a

known distribution were used. For simulated normal

distributions (here we considered standard normal

distributions with mean 0 and standard deviation 1)

with sample sizes 10, 50, 100, 500, 1000, 5000 and

10000, the percentage of detected outliers for each of

the three suggested methods ([meanF2 sdev],

[medianF2 MAD] and boxplot inner fence) were

computed. This was replicated for each sample size

1000 times. (For the simulation, the statistics software

package R was used, which is freely available at

http://cran.r-project.org/). Fig. 2A shows that the

classical method, [meanF2 sdev], detects 4.6%

extreme values for large N—as expected from theory.

However, for smaller N (Nb50), the percentage

declines towards less than 3%. The [medianF2

http://cran.r%1Eproject.org/


Table 1

Mean, standard deviation (sdev), median, median absolute deviation (MAD), (log-transformed data) and results of the definition of an upper threshold via: [meanF2 sdev],

[medianF2 MAD], the boxplot (Tukey, 1977) and cumulative probability plots (see Fig. 7) for selected variables for three example data sets: BSS data, agricultural soils from

Northern Europe, ploughed (TOP) 0–20 cm layer, b2 mm fraction, N=750, 1,800,000 km2 (Reimann et al., 2003); Kola, O-horizon of podzol profiles, b2 mm fraction, N=617,

180,000 km2 (14); and Walchen, B-horizon of forest soils, b0.18 mm fraction, 100 km2 (Reimann, 1989)

Mean sdev Median MAD [Mean+2 sdev] [Median+2 MAD] Upper whisker 98th Outer limit

Natural Log10 Natural Log10 Natural Log10 Natural Log10 Natural Anti-log Natural Anti-log Natural Anti-log
percentile CDF

BSS TOP

As 2.6 0.293 2.4 0.325 1.9 0.279 1.2 0.294 7.4 8.8 4.3 7.4 5.8 11 9 8 (11)

Cu 13 1.01 11 0.307 9.8 0.992 6.6 0.306 36 42 23 40 31 64 43 38 (51)

Ni 11 0.907 8.1 0.301 8 0.904 5.3 0.316 27 35 19 34 36 53 34 45

Pb 18 1.22 8.1 0.172 17 1.22 5.7 0.152 34 37 28 34 32 42 38 37

Zn 42 1.53 30 0.293 33 1.52 20 0.291 101 129 74 128 100 200 121 155

Kola O-horizon

As 1.6 0.094 2.5 0.245 1.2 0.065 0.46 0.174 6.6 3.8 2.1 2.6 2.5 3.4 6.4 2.1 (9)

Cu 44 1.12 245 0.432 9.7 0.986 5.1 0.267 535 96 20 33 35 76 241 13 (1000)

Ni 51 1.12 119 0.565 9.2 0.963 7.7 0.455 450 177 25 75 54 258 395 10 (500)

Pb 24 1.29 49 0.208 19 1.27 7.4 0.185 122 52 34 44 43 55 48 44 (70)

Zn 48 1.66 18 0.157 46 1.66 15 0.143 84 93 76 89 88 107 93 85

Walchen B-horizon

As 46 1.47 83 0.368 30 1.48 19 0.294 211 163 69 116 87 179 207 90 (160)

Cu 32 1.42 23 0.291 28 1.45 15 0.23 79 101 58 81 69 110 84 (40) 80

Ni 34 1.43 23 0.291 30 1.48 19 0.294 81 120 69 116 80 153 104 (42) 90

Pb 39 1.41 53 0.368 23 1.36 16 0.32 145 139 56 100 81 202 200 90 (350)

Zn 74 1.81 34 0.253 73 1.86 30 0.171 141 209 132 160 152 200 139 145 (175)
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Fig. 2. Average percentage of outliers detected by the rules [meanF2 sdev], [medianF2 MAD], and the boxplot method. For several different

sample sizes (N=10 to 10000), the percentages were computed based on 1000 replications of simulated normally distributed data (A) and of

simulated lognormally distributed data (B).
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MAD] procedure shows the same behaviour for large

N (NN500). For smaller N, the percentage is higher

and increases dramatically for Nb50. The boxplot

inner fence detects about 3% extreme values for small

sample sizes (Nb50), and at larger sample sizes less

than 1% of the extremes (Fig. 2A).

Geochemical data rarely follow a normal distribu-

tion (Reimann and Filzmoser, 2000) and many

authors claim that they are close to a lognormal

distribution (see discussion and references in Reimann

and Filzmoser, 2000). Thus the whole exercise was

repeated for a lognormal distribution, i.e. the loga-

rithm of the generated values is normally distributed

(we considered standard normal distribution). Fig. 2B

shows that the classical rule identifies about the same

percentage of extreme values as for a normal

distribution. The reason for this is that both the mean

and standard deviation are inflated due to the presence

of high values in the lognormal data, thus resulting in

inflated fence values. However, the classical rule

identifies a higher number of extreme values for small

N (Nb50). The [medianF2 MAD] procedure delivers

a completely different outcome. Here about 15.5% of

extremes were identified for all sample sizes. The

boxplot finds around 7% extreme values, with a slight

decline for small sample sizes (Nb50). The reason for

the large proportion of extreme values identified is

that the robust estimates of location (median) and
scale (MAD or hinge width) are relatively unin-

fluenced by the extreme values of the lognormal data

distribution. Both location and scale are low relative

to the mean and standard deviation, resulting in lower

fence values and higher percentages of identified

extreme values.

Results from these two simulation exercises

explain the empirical observations in Table 1. The

[medianF2 MAD] procedure always results in the

lowest threshold value, the boxplot in the second

lowest, and the classical rule in the highest threshold.

Because geochemical data are in general right-skewed

and often closely resemble a lognormal distribution,

the second simulation provides the explanation for the

observed behaviour.

Based on the results of the two simulation

exercises, one can conclude that the data should

approach a symmetrical distribution before any

threshold estimation methods are applied. A graphical

inspection of geochemical data is thus necessary as an

initial step in data analysis. In the case of lognormally

distributed data, log-transformation results in a sym-

metric normal distribution (see discussion above). The

percentages of detected extreme values using

[meanF2 sdev] or [medianF2 MAD] are unrealisti-

cally high without a symmetrical distribution. Only

percentiles (recommendation (2) of Hawkes and

Webb, 1962) will always deliver the same number
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of outliers. In the above simulations data were

sampled from just one (normal or lognormal) distri-

bution. True outliers, rather than extreme values, will

be derived from a different process and not from the

normal distributions comprising the majority of the

data in these simulations. In the case of a sampled

normal distribution, the percentage of outliers should

thus approach zero and is independent of the number

of extreme values. In this respect, the boxplot

performs best as the fences are based on the properties

of the middle 50% of the data.

How do the outlier identification procedures

perform when a second, outlier, distribution is super-

imposed on an underlying normal (or lognormal)

distribution? To test this more realistic case a fixed

sample size of N=500 was used, of which different

percentages (0–40%) were outliers drawn from a

different population (Fig. 3). Note that the cases with

high percentages of outliers (N5–10% outliers) are

typical for a situation where an orientation survey was

suggested as the only realistic solution (Hawkes and

Webb, 1962). For the first simulation, both the

background data and outlier (contaminating) distribu-

tions were normal, with means of 0 and 10 and

standard deviation 1. Thus the outliers were clearly

divided from the simulated background normal dis-

tribution. Such a clear separation is an over-simplifi-
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Fig. 3. Average percentage of outliers detected by the rules [meanF2 sde

normally distributed data (A) and simulated standard lognormally distribu

outliers with mean 10 and variance 1, where the percentage of outliers w

computed percentages are based on 1000 replications of the simulation.
cation for the purpose of demonstration. For each

percentage of superimposed outliers, the simulation

was replicated 1000 times, and the average percentage

of detected outliers for the three methods was

computed.

In Fig. 3A, the average percentage of detected

outliers should follow the 1:1 line through the plot,

indicating equality to the percentage of superimposed

outliers. The [meanF2 sdev] rule overestimates the

number of outliers for very small (b2%) percentages

of superimposed outliers, detects the expected number

of outliers to about 10%, and then seriously under-

estimates the number of outliers. The [medianF2

MAD] procedure overestimates the number of outliers

to almost 20% and finds the expected number of

outliers above this value—theoretically up to 50%

superimposed outliers. The boxplot performs best up

to 25% contamination, and then breaks down.

Fig. 3B shows the results if lognormal distributions

are simulated with means of 0 and 10 and standard

deviation 1. Here the [meanF2 sdev] rule performs

extremely poorly. The [medianF2 MAD] procedure

strongly overestimates the number of outliers and

approaches correct estimates of contamination only at

a very high percentage of outliers (above 35%). The

boxplot inner fence increasingly overestimates the

number of outliers at low contamination, approaches
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v], [medianF2 MAD], and the boxplot method. Simulated standard

ted data (B) were both contaminated with (log)normally distributed

as varied from 0 to 40% for a constant sample size of 500. The
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the expected number at around 20% and breaks down

at 25%.

In a further experiment, both the background data

and outlier (contaminating) distributions were normal,

with means of 0 and 5, respectively, and standard

deviations of 1. Hence, there is no longer a clear

separation between background and outliers. The

percentage of outliers relative to the 500 background

data values was again varied from 0 to 40%, and each

simulation was replicated 1000 times. Fig. 4 demon-

strates that in this case the results of the [meanF2

sdev] rule are no longer useful. Not surprisingly, only

at around 5% of outliers does it give reliable results.

The boxplot can be used up to at most 15% outliers.

The [medianF2 MAD] procedure increasingly over-

estimates the number of outliers for small percentages

and approaches the correct number at 15%, but breaks

down at 25%.

Results of the simulations suggest that the boxplot

performs best if the percentage of outliers is in the

range of 0–10 (max. 15)%; above this value the

[medianF2 MAD] procedure can be applied. The

classical [meanF2 sdev] rule only yields reliable

results if no outliers exist and the task really lies in the

definition of extreme values (i.e. almost never for
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Fig. 4. Average percentage of outliers detected by the rules

[meanF2 sdev], [medianF2 MAD], and the boxplot method.

Simulated standard normally distributed data with mean zero and

variance 1 were contaminated with normally distributed outliers

with mean 5 and variance 1, where the percentage of outliers was

varied from 0 to 40% for a constant sample size of 500. The

computed percentages are based on 1000 replications of the

simulation.
geochemical data). It is thus necessary to study the

empirical distribution of the data to gain a better

understanding of the possible existence and number of

outliers before any particular procedure is applied. An

important difference between the boxplot and the

other two procedures is the fact that the outlier limits

(fences) of the boxplot are not necessarily symmetric

around the centre (median). They are only symmetric

if the median is exactly midway between the hinges,

the upper and lower quartiles. This difference is more

realistic for geochemical data than the assumption of

symmetry.
3. Data distribution

There has been a long discussion in geochemistry

whether or not data from exploration and environ-

mental geochemistry follow a normal or lognormal

distribution (see Reimann and Filzmoser, 2000). The

discussion was fuelled by the fact that the [meanF2

sdev] rule was extensively used to define the range of

background concentrations and differentiate back-

ground from anomalies. Recently, it was again

demonstrated that the majority of such data follow

neither a normal nor a lognormal distribution (Reim-

ann and Filzmoser, 2000).

In the majority of cases, geochemical distributions

for minor and trace elements are closer to lognormal

(strong right-skewness) than to normal. When plotting

histograms of log-transformed data, they often

approach the bell shape of a Gaussian distribution,

which is then taken as a sufficient proof of lognor-

mality. Statistical tests, however, indicate that in most

cases the data do not pass as drawn from a lognormal

distribution (Reimann and Filzmoser, 2000).

As demonstrated, the boxplot (Tukey, 1977) is

another possibility for graphically displaying the data

distribution (Fig. 1). It provides a graphical data

summary relying solely on the inherent data structure

and not on any assumptions about the distribution of

the data. Besides outliers it shows the centre, scale,

skewness and kurtosis of a given data set. It is thus

ideally suited to graphically compare different data

(sub)sets.

Fig. 5 shows that a combination of histogram,

density trace, one-dimensional scattergram and box-

plot give a much improved insight to the data
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Fig. 5. Combination of histogram, density trace, one-dimensional scattergram and boxplot for the study of the empirical data distribution (data

from Reimann et al., 1998).
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structure than the histogram alone. The one-dimen-

sional scattergram is a very simple tool where the

measured data are displayed as a small horizontal line

at an arbitrarily chosen y-scale position at the

appropriate position along the x-scale. In contrast to

histograms, a combination of density traces, scatter-

grams and boxplots will at once show any peculiar-

ities in the data, e.g., breaks in the data structure (Fig.

5, Pb) or data discretisation due to severe rounding of

analytical results in the laboratory (Fig. 5, Sc).

One of the best graphical displays of geochemical

distributions is a cumulative probability plot (CDF

diagram), originally introduced to geochemists by

Tennant and White (1959), Sinclair (1974, 1976) and

others. Fig. 6 shows four forms of such displays. The

best choice for the y-axis is often the normal

probability scale because it spreads the data out at

the extremes, which is where interest usually lies.

Also, it permits the direct detection of deviations from

normality or lognormality, as normal or lognormally

(logarithmic x-scale) distributed data plot as straight
lines. The use of a normal probability model can be

criticized, particularly after our criticism of the use of

normal models to estimate thresholds, i.e. [meanF2

sdev]. However, in general, geochemical data distri-

butions are symmetrical, or can be brought into

symmetry by the use of a logarithmic transform, and

the normal model provides a useful, widely known,

framework for data display. Alternatively, if interest is

in the central part of the data, the linear empirical

cumulative distribution function is often more infor-

mative as it does not compress the central part of the

data range as does a normal probability plot in order

to provide greater detail at the extremes (tails). One of

the main advantages of CDF diagrams is that each

single data value remains visible. The range covered

by the data is clearly visible, and extreme outliers are

detectable as single values. It is possible to directly

count the number of extreme outliers and observe

their distance from the core (main mass) of the data.

Some data quality issues can be detected, for example,

the presence of discontinuous data values at the lower



Fig. 6. Four different variations for plotting CDF diagrams. Upper row, empirical cumulative distribution plots; lower row, cumulative

probability plots. Left half, data without transformation; lower right, data plotted on a logarithmic scale equivalent to a logarithmic

transformation. Example data: Cu (mg/kg) in podzol O-horizons from the Kola area (Reimann et al., 1998).
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end of the distribution. Such discontinuous data are

often an indication of the method detection limit or

too severe rounding, discretisation, of the measured

values reported by the laboratory. Thus, values below

the detection limit set to some fixed value are visible

as a vertical line at the lower end of the plot and the

percentage of values below the detection limit can be

visually estimated. It should be noted that although

reporting of values below detection limit as one value

has been officially discouraged in favour or reporting

all measurements with their individual uncertainty

value (AMC, 2001; see also: http://www.rsc.org/lap/

rsccom/amc/amc_techbriefs.htm), most laboratories

are still unwilling to deliver values for those results

that they consider as bbelow detectionQ to their

customers. The presence of multiple populations

results in slope changes and breaks in the plot.

Identifying the threshold in the cumulative proba-

bility plot is, however, still not a trivial task. Fig. 7

displays these plots for selected elements from Table
1, the arrows indicating inflection or break points that

most likely reflect the presence of multiple popula-

tions and outliers. It is obvious that extreme outliers, if

present, can be detected without any problem. In Fig.

6, for example, it can be clearly seen in all the

versions of the diagram that the boundary dividing

these extreme outliers from the rest of the population

is 1000 mg/kg. Searching for breaks and inflection

points is largely a graphical task undertaken by the

investigator, and, as such, it is subjective and

experience plays a major role. However, algorithms

are available to partition linear (univariate) data, e.g.,

Garrett (1974) and Miesch (1981) who used linear

clustering and gap test procedures, respectively. In

cartography, a procedure known as dnatural breaksT
that identifies gaps in ordered data to aid isopleth

(contour interval) selection is available in some

Geographical Information Systems (Slocum, 1999).

However, often the features that need to be

investigated are subtle, and in the spirit of Explor-

http://www.rsc.org/lap/rsccom/amc/amc_techbriefs.htm


Fig. 7. Four selected cumulative probability plots for the example data from Table 1. Arrows mark some different possible thresholds (compare

with Table 1). Example data are taken from (Reimann et al., 1998, 2003; Reimann, 1989). The vertical lines in the lower left corner of the plots

for the Baltic Soil Survey (Reimann et al., 2003) data are caused by data below the detection limit (set to half the detection limit for

representation).
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atory Data Analysis (EDA) the trained eye is often

the best tool. On closer inspection of Fig. 6, it is

evident that a subtle inflection exists at 13 mg/kg

Cu, the 66th percentile, best seen in the empirical

cumulative distribution function (upper right). About

34% of all samples are identified as doutliersT if we
accept this value as the threshold. This may appear

unreasonable at first glance. However, when the data

are plotted as a geochemical map (Fig. 8 presents a

Tukey boxplot based map for the data in Fig. 6), it

becomes clear that values above 18 mg/kg Cu, the

3rd quartile, originate from a second process (con-

tamination from the Kola smelters). The challenge of

objectively extracting an outlier boundary or thresh-

old from these plots is probably the reason that they

are not more widely used. However, as can be seen

in the above example, when they are coupled with

maps they become a powerful tool for helping to

understand the data.
Results in Table 1 demonstrate that in practice the

[meanF2 sdev] rule often delivers surprisingly

comparable estimates to the graphical inspection of

cumulative probability plots. The reasons for this are

discussed later. In most cases, however, all methods

still deliver quite different estimates—an unaccept-

able situation upon which to base environmental

regulation.

The uppermost 2%, 2O% or 5% of the data (the

uppermost extreme values) are, adapting recommen-

dation (2) of Hawkes and Webb (1962), sometimes

arbitrarily defined as doutliersT for further inspection.
This will result in the same percentage of outliers for

all variables. This approach is not necessarily valid,

because the real percentage of outliers could be very

different. In a data distribution derived from natural

processes there may be no outliers at all, or, in the

case of multiple natural background processes, there

may appear to be outliers in the context of the main
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mass of the data. However, in practice the percentile

approach delivers a number of samples for further

inspection that can easily be handled. In some cases,

environmental legislators have used the 98th percen-

tile of background data as a more sensible inspection

level (threshold) than values calculated by the

[meanF2 sdev] rule (e.g., Ontario Ministry of

Environment and Energy, 1993).

The cumulative probability, and equivalent Q–Q or

Q–Normal plots (quantiles of the data distribution are

plotted against the quantiles of a hypothetical distribu-

tion like the normal distribution) present in many

statistical data analysis packages, delivers a clear and

detailed visualisation of the quality and distribution of

the data. Deviations from normal or lognormal

distributions, and the likely presence of multiple

populations, can be easily observed, together with the

presence of obvious data outliers. In such instances,

which are not rare, these simple diagrams demonstrate
that the [meanF2 sdev] rule is inappropriate for

estimating the limits of background (thresholds).

Exploration geochemists have always been inter-

ested in the regional spatial distribution of data

outliers. One of the main reasons for trying to define

a threshold is to be able to map the regional

distribution of such outliers because they may indicate

the presence of ore deposits. Environmental geo-

chemists may wish to define an inspection or action

level, or clean-up goal, in a similar way to geo-

chemical threshold. However, in other instances,

regulatory levels for environmental purposes are set

externally from geochemical data on the basis of

ecotoxicological studies and their extrapolation from

the laboratory to the field environment (Janssen et al.,

2000). In some instances, this has resulted in regulated

levels being set down into the natural background

range. This has posed problems when mandatory

clean-up is required, and arises from the fact that most
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ecotoxicological studies are carried out with soluble

salts, whereas geochemical data are often the result

near-total strong acid extractions that remove far more

of an element from a sample material than is actually

bioavailable (see, for example, Chapman and Wang,

2000; Allen, 2002). In addition to the problems cited

above, a further problem with defining dbackgroundT
or dthresholdT values is that, independent of the

method used, different estimates will result when

different regions are mapped or when the size of the

area investigated is changed. Thus the main task

should always be to first understand the process(es)

causing high (or low) values. For this purpose,

displaying the spatial data structure on a suitable

map is essential.

When mapping the distribution of data outliers

they are often displayed as one of the classes on a

symbol map. However, the problems of selecting and

graphically identifying background levels, thresholds

and outliers have led many geochemists to avoid

using classes in geochemical mapping. Rather, a

continuously variable symbol size, e.g., a dot (black

and white mapping), or a continuous colour scale may

be used (e.g., Björklund and Gustavsson, 1987).

To display the data structure successfully in a

regional map, it is very important to define symbolic

or colour classes via a suitable procedure that transfers

the data structure into a spatial context. Percentiles, or

the boxplot–as proposed almost 20 years ago (Kürzl,

1988)–fulfil this requirement, not, however, arbitrarily

chosen classes or a continuously growing symbol. The

map displayed in Fig. 8 is based on boxplot classes.

An alternate procedure to identify spatial structure

and scale in geochemical maps and to help identify

thresholds has been described by Cheng et al. (1994,

1996) and Cheng (1999). In this procedure, the scale

of spatial structures is investigated using fractal and

multi-fractal models. The procedure is not discussed

further here as tools for its application are not

generally available; however, those with an interest

in this approach are referred to the above citations.

When plotting such maps for large areas (see

Reimann et al., 1998, 2003), it becomes obvious that

the concepts of dbackgroundT and dthresholdT are

illusive. A number of quite different processes can

cause high (or low) data values, not only mineralisa-

tion (exploration geochemistry) or contamination

(environmental geochemistry). It is thus important to
prepare and inspect these regional distribution maps

rather than just defining dlevelsT via statistical

exercises, possibly based on assumptions not suited

for geochemical data.

In terms of environmental geochemistry, it would

be most interesting to compare such geochemical

distributions directly with indicator maps of ecosys-

tem or human health, or uptake into the human system

(e.g., the same element measured in blood, hair or

urine—Tristán et al., 2000).

Only the combination of statistical graphics with

appropriate maps will show where action may be

needed—independent of the concentration. The var-

iation in regional distribution is probably the most

important message geochemical survey data sets

contain, more important than the ability to define

dbackgroundT, dthresholdT or dinspection levelsT. Such
properties will be automatically visible in well-

constructed maps.
4. Conclusions

Of the three investigated procedures, the boxplot

function is most informative if the true number of

outliers is below 10%. In practice, the use of the

boxplot for preliminary class selection to display

spatial data structure in a map has proven to be a

powerful tool for identifying the key geochemical

processes behind a data distribution. If the proportion

of outliers is above 15%, only the [medianF2 MAD]

procedure will perform adequately, and then up to the

point where the outlier population starts to dominate

the data set (50%). The continued use of the [meanF2

sdev] rule is based on a misunderstanding. Geo-

chemists want to identify data outliers and not the

extreme values of normal (or lognormal) distributions

that statisticians are often interested in. Geochemical

outliers are not these extreme values for background

populations but values that originate from different,

often superimposed, distributions associated with

processes that are rare in the environment. They can,

and often will, be the dextreme valuesT for the whole

data set. This is the reason that the [meanF2 sdev] rule

appears to function adequately in some real instances,

but breaks down when the proportion of outliers in the

data set is large relative to the background population

size. The derived values, however, have no statistical
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validity. As a consequence, the boxplot inner fences

and [medianF2MAD] are all better suited for assisting

in the estimation of the background range than

[meanF2 sdev]. Where percentiles are employed, the

use of the 98th has becomewidespread as a 2%, 1 in 50,

rate is deemed acceptable, and it distances the method

from the 97.5 percentile, 2O%, 1 in 40 rate associated

with the [meanF2 sdev] rule. However, all these

procedures usually lead to different estimates of back-

ground range. The use of the [meanF2 sdev] rule

should be finally discontinued—it was originally

suggested to provide a dfilterT that would identify

approximately 2O%of the data for further inspection at

a time when computers to do the drudgery of numerical

operations were not widely available and no other

practical methods existed. It is definitely not suited to

calculate any action levels or clean-up goals in

environmental legislation.

The graphical inspection of the empirical data

distribution in a cumulative probability (or Q–Q) plot

prior to defining the range of background levels or

thresholds is an absolute necessity. The extraction of

thresholds from such plots, however, involves an

element of subjectivity and is based on a priori

geochemical knowledge and practical experience.

Having extracted these potential population limits

and thresholds their regional/spatial data structure must

be investigated and their relationship to known natural

and anthropogenic processes determined. Only cumu-

lative probability (or Q–Q) plots in combination with

spatial representation will provide a clearer answer to

the background and threshold question. Given today’s

powerful PCs, the construction of these diagrams and

maps poses no problems, whatever the size of the data

set, and their use should be encouraged.
Appendix A

The following is one heuristic for data inspection

and selection of the limits of background variation that

has proved to be informative in past studies. The

following assumes that the data are in a computer

processable form and have been checked for any

obvious errors, e.g., in the analytical and locational

data; and that the investigator has access to data

analysis software. Maps suitable for data inspection

can be displayed with data analysis software; however,
availability of a Geographic Information System (GIS)

permits the use of such procedures as dnaturalT breaks,
and the preparation of more elaborate displays.

1. Display Empirical Cumulative Distribution Func-

tions (ECDFs) on linear and normal probability

scales, and Tukey boxplots. Inspect these for

evidence of multiple populations (polymodality),

and extreme or outlying values. If there are a few

extremely high or low values widely separated

from the main mass of the data prepare a subset

with these values omitted. Seek an explanation for

the presence of these anomalous individuals;

2. Compute the mean and standard deviation (sdev)

of the data (sub)set, and then the coefficient of

variation (CV%), i.e. 100*sdev/mean%. The CV is

a useful guide to non-normality (Koch and Link,

1971). Alternately, the data skewness can be

estimated;

3. If the CVN100% plots on a logarithmic scale

should be prepared. If the CV is between 70% and

100%, the inspection of logarithmically scaled

plots will likely be informative. Another useful

guide to deciding on the advisability of inspecting

logarithmically scale plots is the ratio of maximum

to minimum value, i.e. max/min. If the ratio

exceeds 2 orders of magnitude, logarithmic plots

will be informative, if the ratio is between 1.5 and

2 orders of magnitude, logarithmically scaled plots

will likely be informative;

4. Calculate trial upper dfencesT, [median+2 MAD]

and Tukey inner fence, see Eqs. (1) and (2). If Step

3 indicates that logarithimic displays would be

informative, log-transform the data, repeat the

calculations, and anti-log the results to return them

to natural numbers;

5. Prepare maps using these fence values, and such

dnaturalT properties of the data such as the medians

and quartiles (50th, 25th and 75th percentiles), and

if the data are polymodal, boundaries (symbol

changes or isopleths) may be set at these natural

breaks. Inspect the maps in the light of known

natural and anthropogenic processes, e.g., different

geological and soil units, and the presence of

industrial sites. See if concentration ranges can be

linked to different processes;

6. It may be informative to experiment with tentative

fence values on the basis of the ECDF plots from
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Step 1. Eventually, software will become more

widely available to prepare concentration–area

plots (Cheng, 1999; Cheng et al., 1994, 1996).

These can be informative and assist is selecting

data based fences;

7. On the basis of the investigation, propose an upper

limit of background variation; and

8. If Step 1 indicates the data are polymodal, a

considerable amount of expert judgment and

knowledge may be necessary in arriving at a useful

upper limit of background variation and under-

standing what processes are giving rise to the

observed data distribution. If the survey area is

large or naturally geochemically complex, there

may be multiple discrete background populations,

in such instances the presentation of the data as

maps, i.e. in a spatial context, is essential.

The above heuristic is applicable where the majority

of the data reflect natural processes. In some environ-

mental studies, the sampling may focus on a contami-

nated site, and as a result there is little data representing

natural processes. In such cases, the sample sites

representing natural background will be at the lower

end of the data distribution, and focus of attention and

interpretation will be there. In the context of these kinds

of investigation, this stresses the importance of

extending a survey or study sufficiently far away from

the contaminating site to be able to establish the range

of natural background. In this respect, the area into

which the background survey is extended must be

biogeochemically similar to the contaminated site (pre-

industrialization) for the background data to be valid.

Thus such factors as similarity of soil parent material

(geology), soil forming processes, climate and vegeta-

tion cover are critical criteria.
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