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Outlier detection based on the Mahalanobis distance (MD) requires an appropriate

transformation in case of compositional data. For the family of logratio

transformations (additive, centered and isometric logratio transformation) it is

shown that the MDs based on classical estimates are invariant to these

transformations, and that the MDs based on affine equivariant estimators of

location and covariance are the same for additive and isometric logratio

transformation. Moreover, for 3-dimensional compositions the data structure can

be visualized by contour lines, and in higher dimension the MDs of closed and

opened data give an impression of the multivariate data behavior.
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INTRODUCTION

Outlier detection is one of the most important tasks in multivariate data analysis.

The outliers give valuable information on data quality, and they are indicative of

atypical phenomena. Although a comprehensive literature exists on outlier

detection (e.g. Rousseeuw and Leroy, 2003; Maronna, Martin, and Yohai, 2006),

also in the context of geochemical data (e.g. Filzmoser, Garett, and Reimann,

2005), further research is needed for outlier detection in the context of

compositional data (e.g. Barceló, Pawlowsky, and Grunsky, 1996). Compositional

or closed data sum up to a constant value (Aitchison, 1986). This constraint

makes it necessary to first transform the data to an unconstrained space where

standard statistical methods can be used. One of the most convenient

transformations is the family of logratio transformations (see Aitchison, 1986).
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However, it is not clear if different transformations will lead to different answers

for identifying outliers. In this paper we will consider three well known

transformations, the additive, the centered, and the isometric logratio

transformation. The next section will provide a brief overview about their formal

definitions, and the definitions of the inverse transformations. Furthermore, we will

discuss multivariate outlier detection methods, as they are used for unconstrained

multivariate data. Our focus here is on “standard” methods for outlier detection

that are widely used and implemented in statistical software packages. The link

between outlier detection and the different types of logratio transformations is

made in the section afterwards. In contrast to Barceló, Pawlowsky, and Grunsky

(1996) where only the additive logratio transformation is considered for outlier

detection, this section provides theoretical results on the equivalence of the

additive, the centered, and the isometric logratio transformation in the context of

outlier identification. In the case of 3-dimensional compositional data we show how

the multivariate data structure can be viewed in the ternary diagram and how

multivariate outliers are highlighted. For higher dimensional compositions a plot is

introduced that is useful for revealing multivariate outliers.

COMPOSITIONAL DATA AND TRANSFORMATIONS

Compositional or closed data are multivariate data with positive values that sum

up to a constant, usually chosen as 1, i.e.

x = (x1, . . . , xD)′, xi > 0,
D∑

i=1

xi = 1.

The set of all closed observations, denoted as SD, forms a simplex sample space, a

subset of RD. Convenient operations on the simplex and their properties for

dealing with compositions were summarized in Aitchison and Egozcue (2005). In

practice, standard statistical methods can lead to questionable results if they are

directly applied to the original, closed data. For this reason, the family of logratio

one-to-one transformations from SD to the real space was introduced (Aitchison,

1986). We will briefly review these transformations as well as their inverse

counterparts:

Additive logratio (alr) transformation: This is a transformation from SD to

RD−1, and the result for an observation x ∈ SD are the transformed data
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The index j ∈ {1, . . . , D} refers to the variable that is chosen as ratioing variable

in the transformation. This choice usually depends on the context, but also on the

suitability of the results for visualization and data exploration. The main

advantage of the alr transformation is that it opens compositional data into an

unconstrained form in the real space. The inverse alr transformation from RD−1

to SD, also called additive logistic transformation, is defined as
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for j ∈ {1, . . . , D}.

Centered logratio (clr) transformation: Compositions x ∈ SD are

transformed to data y ∈ RD, with

y = (y1, . . . , yD)′ =


log

x1

D

√∏D
i=1 xi

, . . . , log
xD

D

√∏D
i=1 xi



′

. (3)

It is easy to see that this transformation results in collinear data because
∑D

i=1 yi = 0. On the other hand, the clr transformation treats all components

symmetrically by dividing by the geometric mean. The interpretation of the

resulting values might thus be easier. The inverse clr transformation is

xi =
exp(yi)

exp(y1) + . . . + exp(yD)
for i = 1, . . . , D. (4)

Isometric logratio (ilr) transformation: This transformation solves the

problem of data collinearity resulting from the clr transformation, while preserving

all its advantageous properties (Egozcue and others, 2003). It is based on the

choice of an orthonormal basis on the hyperplane in RD that is formed by the clr

transformation, so that the compositions x ∈ SD result in noncollinear data

z ∈ RD−1. The explicit transformation formulas for one such chosen basis are

z = (z1, . . . , zD−1)
′, zi =

√
i

i + 1
log

i

√∏i
j=1 xj

xi+1

for i = 1, . . . , D − 1. (5)
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The inverse ilr transformation is then obtained using (4) in which the terms

yi =
D∑

j=i

zj√
j(j + 1)

−
√

i− 1

i
zi−1 with z0 = zD = 0 for i = 1, . . . , D (6)

are substituted.

For all logratio transformations, the problem of values xi = 0 is solvable in many

ways, e.g. Mart́ın-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2003).

OUTLIER DETECTION METHODS

In contrast to univariate outliers, multivariate outliers are not necessarily extreme

along single coordinates. Rather, they could deviate from the multivariate data

structure formed by the majority of observations. Basically, there are two different

procedures to identify multivariate outliers: (a) methods based on projection

pursuit and (b) methods based on the estimation of the covariance structure. The

idea of (a) is to repeatedly project the multivariate data to the univariate space,

because univariate outlier detection is much simpler (Gnanadesikan and

Kettenring, 1972; Peña and Prieto, 2001; Maronna and Zamar, 2002). Such

methods are usually computationally intensive, but they are particularly useful for

high-dimensional data with low sample size. We will focus here on (b). The

estimated covariance structure is used to assign a distance to each observation

indicating how far the observation is from the center of the data cloud with respect

to the covariance structure. This distance measure is the well-known Mahalanobis

distance, defined for a sample x1, . . . ,xn of n observations in the d-dimensional

real space Rd as

MD(xi) =
[
(xi − T )′C−1(xi − T )

]1/2
for i = 1, . . . , n. (7)

Here, T and C are location and covariance estimators, respectively.

The choice of the estimators T and C in (7) is crucial. In the case of multivariate

normally distributed data, the arithmetic mean and the sample covariance matrix

are the best choices, leading to the best statistical efficiency. In this case, the

squared Mahalanobis distances approximate a chi-square distribution χ2
d with d

degrees of freedom. A certain cut-off value like the 97.5% quantile of χ2
d can be

taken as an indication of extremeness: data points with higher (squared)

Mahalanobis distance than the cut-off value are considered as potential outliers

(Rousseeuw and Van Zomeren, 1990).
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Both the arithmetic mean and the sample covariance matrix are highly sensitive to

outlying observations (Maronna, Martin, and Yohai, 2006). Therefore, using these

estimators for outlier detection leads to questionable results. A number of robust

counterparts have been proposed in the literature, like the MCD or S estimator

(see Maronna, Martin, and Yohai, 2006). The resulting estimates of location and

covariance also lead to robust estimates of the Mahalanobis distance (7). It is

common to use the same cut-off value from the χ2
d distribution (Rousseeuw and

Van Zomeren, 1990), although other approximations could lead to more accurate

cut-off values (Filzmoser, Garrett, and Reimann, 2005; Hardin and Rocke, 2005).

Besides robustness properties the property of affine equivariance of the estimators

T and C is important. The location estimator T and the covariance estimator C

are called affine equivariant, if for any nonsingular d× d matrix A and for any

vector b ∈ Rd the conditions

T (Ax1 + b, . . . ,Axn + b) = AT (x1, . . . ,xn) + b,

C(Ax1 + b, . . . ,Axn + b) = AC(x1, . . . ,xn)A′

are fulfilled. Thus, the estimators transform accordingly, and it can be easily seen

that the Mahalanobis distances remain unchanged under regular affine

transformations, i.e.

MD(Axi + b) = MD(xi) for i = 1, . . . , n. (8)

The identified outliers will thus be the same, independent of the choice of A and b

for the transformation. The above mentioned robust MCD and S estimators share

the property of affine equivariance.

PROPERTIES OF THE LOGRATIO TRANSFORMATIONS

IN THE CONTEXT OF OUTLIER DETECTION

The usefulness of robust Mahalanobis distances for multivariate outlier detection

has been demonstrated in the literature and in many applications (Maronna,

Martin, and Yohai, 2006). However, this tool would not be appropriate for closed

data but only for the data after transformation. Here the problem arises, which

logratio transformation from the simplex to the real space is most suitable. An

answer concerning the alr transformation is given by the following theorem. The
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proof to this theorem as well as the proofs to subsequent theorems can be found in

the appendix.

Theorem 1 The Mahalanobis distances (MDs) for alr transformed data are

invariant with respect to the choice of the ratioing variable if the location

estimator T and the scatter estimator C are affine equivariant.

Theorem 1 thus guarantees that the identified outliers will not depend on the

ratioing variable that has been chosen for the alr transformation, as long as the

location and scatter estimators are taken to be affine equivariant.

A result for the clr transformation is given in the following theorem.

Theorem 2 The MDs for clr and alr transformed data are the same if the location

estimator T is the arithmetic mean and the covariance estimator C is the sample

covariance matrix.

The result of Theorem 2 is unsatisfactory from a robustness point of view, because

the equality of the Mahalanobis distances is only valid for the non-robust

estimators arithmetic mean and sample covariance matrix, but not for robust

estimators like the MCD or S estimators which are not even computable for the clr

transformed data. It should be noted that relations between the sample covariance

matrices of alr and clr transformed data were already investigated in Aitchison

(1986, Property 5.7), Aitchison (1992), Bohling and others (1998), and

Barceló-Vidal, Mart́ın-Fernández, and Pawlowsky-Glahn (1999). However, the

results in the proof of this theorem are valuable also for finding the link to the ilr

transformation, shown in the next theorem.

Theorem 3 The MDs for ilr transformed data are the same as in the case of alr

transformation if the location estimator T and the covariance estimator C are

affine equivariant.

This theorem completes the relations between the three mentioned

transformations. In case of using the classical estimators arithmetic mean and

sample covariance matrix, all three transformations lead to the same MDs. Since

outlier detection is only reliable with robust estimates of location and covariance,

the resulting robust MDs are the same for alr and ilr transformed data, if affine

equivariant estimators are used. In the following we will use the MCD estimator

for this purpose, because of the good robustness properties, and because of the fast

algorithm for its computation (Rousseeuw and Van Driessen, 1999). The MCD

(Minimum Covariance Determinant) estimator looks for a subset h out of n
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observations with the smallest determinant of their sample covariance matrix. A

robust estimator of location is the arithmetic mean of these observations, and a

robust estimator of covariance is the sample covariance matrix of the h

observations, multiplied by a factor for consistency at normal distribution. The

subset size h can vary between half the sample size and n, and it will determine

the robustness of the estimates, but also their efficiency. The clr transformation

will not be considered in the following, since there exist no affine equivariant

robust estimators of location and covariance that could be applied to the opened

singular data.

NUMERICAL EXAMPLES

In this section we apply the theoretical results to real data examples. The first two

examples are taken from Barceló, Pawlowsky, and Grunsky (1996), who applied

outlier detection based on different additive logratio transformations combined

with Box-Cox transformation. Since the closed data have 3 parts or components,

we can even plot them in the ternary diagram. We additionally visualize the

Mahalanobis distances in the ternary diagram which gives a better impression of

the multivariate data structure.

Visualizing Mahalanobis distances in the ternary diagram

Let p1, . . . ,pn be the opened (alr or ilr) transformed data in the 2-dimensional real

space (i.e. the original closed data were in the space S3). Using an estimation of

location T and covariance C based on the data p1, . . . ,pn, the Mahalanobis

distances can be computed. Moreover, any other point p ∈ R2 can be assigned a

Mahalanobis distance using the same estimates T and C, i.e.

MD(p) = [(p− T )′C−1(p− T )]
1/2

. Now we are interested in those points pc ∈ R2

that have the same constant Mahalanobis distance c, i.e. MD(pc) = c. Using polar

coordinates, it is easy to see that

pc = Γ



√

a1 0

0
√

a2





 c · cos(2π ·m)

c · sin(2π ·m)


 + T, (9)

where Γ = (γ1,γ2) is the matrix with the eigenvectors of C, a1 and a2 are the

associated eigenvalues, and m is any number in the interval [0, 1). In particular,

distances c =
√

χ2
2;q will be of interest, for certain quantiles q, like the quantile

97.5% indicating the outlier cut-off value.
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The points pc can be back-transformed to the original space S3 by applying the

corresponding inverse transformation, i.e. formula (2) if an alr transformation has

been applied, or formulas (4) and (6) in case of a clr and ilr transformation. The

resulting back-transformed points can be drawn as contours in the ternary

diagram.

Example 1 (Arctic Lake Sediment data)

This data set from Aitchison (1986, p. 359) describes 39 sediment samples of sand,

silt and clay compositions in an Arctic lake, and comes originally from Coakley

and Rust (1968). The ternary diagram shown in Figure 1 (lower left and right)

reveals deviating data points. However, in this display it is not clear which data

points belong to a joint data structure and which points are deviating from this

structure. We open the data with alr transformation, using the second variable as

ratioing variable (Figure 1, upper left and right). Now the real bivariate data

structure is immediately visible. We compute the classical MDs using sample mean

and covariance, and the robust MDs using the MCD estimator. The plots are

overlaid using (9) with the ellipses corresponding to quantiles 0.75, 0.9, and 0.975

of
√

χ2
2 for the classical (left) and robust (right) estimators. While classical

estimation only reveals two observations as outliers, robust estimation discovers

the data structure of the majority of the data points in a much better way and

thus highlights additional points as potential outliers. Back-transformation of the

ellipses to the original data space results in the contours shown in Figure 1 lower

left (classical) and lower right (robust). Of course, the same data points as in the

above plots are flagged as outliers. Additionally, the robust contours make the

main data structure visible (right ternary diagram). Note that the contours would

be exactly the same if another variable had been used as ratio variable (Theorem

1), or if an ilr transformation had been used (Theorem 3), or if a clr

transformation had been used for the classical case (Theorem 2).

Figure 1 about here

Barceló, Pawlowsky, and Grunsky (1996) also used these data for outlier detection.

The authors used a very different procedure (alr and different Box-Cox

transformations), and the observations 6, 7, 12 and 14 were identified as potential

outliers. Our approach flagged the same observations as atypical, but also some

additional data points. The visual impression in the transformed space (Figure 1,
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upper right) confirms our findings. It should be noted that the representation of

the alr transformed data with orthogonal coordinates in Figure 1 (upper left and

right) is not coherent with the Aitchison geometry of the simplex (Egozcue and

others, 2003). Nevertheless, the results concerning outlier detection are correct.

Example 2 (Aphyric Skye Lavas data)

The data in Aitchison (1986, p. 360), adapted from Thompson, Esson, and Duncan

(1972), represent percentages of Na2O + K2O (A), Fe2O3 (F) and MgO (M) in 23

aphyric Skye lavas and define compositions with sum 100%. Here we apply the ilr

transformation and compute classical and robust MDs. The graphical

representation of the results is analogous to Figure 1: The upper row of Figure 2

shows the ilr transformed data with ellipses corresponding to classical (left) and

robust (right) MDs, and the lower row of Figure 2 shows the original data in the

ternary diagram, with the ellipses (classical: left; robust: right) back-transformed.

Only the robust analysis identifies two potential outliers: the observations 2 and 3.

Figure 2 about here

For this data set, Barceló, Pawlowsky, and Grunsky (1996) did not report any

outliers. Note that the two observations 2 and 3 identified as potential outliers

with our method are really on the boundary. If another outlier cut-off value would

be used, these observations could fall inside the boundary. In practice, a more

detailed inspection of the two atypical data points is recomended.

Example 3 (Kola data)

This data set comes from a large geochemical mapping project, carried out from

1992 to 1998 by the Geological Surveys of Finland and Norway, and the Central

Kola Expedition, Russia. An area covering 188000 km2 at the peninsula Kola in

Northern Europe was sampled. In total, around 600 samples of soil were taken in 4

different layers (moss, humus, B-horizon, C-horizon), and subsequently analyzed by

a number of different techniques for more than 50 chemical elements. The project

was primarily designed to reveal the environmental conditions in the area. More

details can be found in Reimann and others (1998) which also includes maps of the

single element distributions. The data are available in the library “mvoutlier” of

the statistical software package R (R development core team, 2006). Here we use

the 10 major elements Al, Ca, Fe, K, Mg, Mn, Na, P, Si and Ti of the C-horizon for

multivariate outlier detection. We apply the ilr transformation to open the data.
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For this example it is no longer possible to use ternary diagrams for graphical

inspection. However, we still can compute the Mahalanobis distances and show

them graphically, together with an outlier cut-off value. It could be interesting to

see the effect of robust versus classical estimation of the Mahalanobis distances.

Figure 3 shows the distance-distance plot introduced in Rousseeuw and Van

Driessen (1999), comparing both measures. The robust Mahalanobis distances are

based on MCD estimates. The outlier cut-off values are the quantiles 0.975 of√
χ2

9, and are shown as the horizontal and vertical line. The dashed line indicates

equal distance measures.

Using the outlier cut-off values, the plot can be subdivided into 4 quadrants:

regular observations (lower left; symbol grey dot), outliers (upper right; symbol

“+”), outliers only identified with the classical MD (empty), and outliers only

identified with the robust MD (symbol triangle). Figure 3 (right) shows the map of

the survey area. The same symbols as used on the left plot are plotted at the

sample locations. The multivariate outliers marked with “+” are in the northern

costal area and in the east around Monchegorsk, a big industrial center, and

Apatity (compare Filzmoser, Garrett, and Reimann, 2005). However, the

additional multivariate outliers identified with the robust method (symbol

triangle) emphasize the atypical regions in a much clearer way, and additionally

highlight an area left from the center of the survey area. This area is characterized

by a felsic/mafic granulite belt (compare Reimann and others, 1998) which

obviously has deviating multivariate data behavior.

Figure 3 about here

Figure 3 makes the necessity of robust estimation clear. Besides robust estimation

it could also be interesting to see the effect of opening the data for outlier

detection. Figure 4 is a modification of the distance-distance plot, we plot the

robust Mahalanobis distances of the closed original data against the robust

Mahalanobis distances of the ilr transformed data. The horizontal lines are the

outlier cut-off values, namely the quantiles 0.975 of
√

χ2
10 and

√
χ2

9, respectively.

As before we can split the plot into 4 quadrants, and we use different symbols in

each quadrant. Additionally, for the observations identified as multivariate outliers

by both distance measures (upper right; symbol “+”) we use black and gray

symbols, depending on which distance measure is larger.
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Figure 4 (right) shows the same symbols in the map. We see that the multivariate

outliers characterize much the same areas as in Figure 3, but the measure based on

the closed data would miss many outliers in the center of the survey area (symbol

triangle). The outliers only identified with the closed data (symbol open circle)

seem to make no sense at all, because they form no spatial pattern in the map.

Interestingly, the distinction in size of the outliers identified with both measures

(symbol “+”, black and gray) allows also a geographical distinction. The gray

symbols are mainly around Monchegorsk and Apatity in the east, and they are

over-emphasized by resulting in too large distances, if the data are not opened.

Figure 4 about here

CONCLUSIONS

Robust Mahalanobis distances are a very common tool for multivariate outlier

detection. However, in case of compositional data the application of this tool to

the closed data can lead to unrealistic results. As a way out, different data

transformations like the alr, clr, or ilr transformation should be applied first. We

have shown that all three transformations result in the same Mahalanobis

distances if classical estimates are used. If a robust affine equivariant estimator

(like the MCD estimator) is used, the Mahalanobis distances are the same for alr

and ilr transformed data. The data used in Examples 1 and 2 allow a visualization

of the Mahalanobis distances in the ternary plot as contour lines, making the

multivariate data structure clearer visible. For data of higher dimension the

visualization can be done by comparing Mahalanobis distances of the original

(closed) and the opened data.

It should be noted that outlier detection based on robust Mahalanobis distances

implicitly assumes that the majority of data points is elliptically symmetric. If the

transformation for opening the data does not approach this elliptical symmetry, an

additional data transformation should be applied. In fact, this was proposed in

Barceló, Pawlowsky, and Grunsky (1996) who used a Box-Cox transformation of

the data. However, nice theoretical properties are then lost, and it will again

depend on the type of transformation which observations are identified as potential

outliers. A way out of this situation is to use covariance estimators which are less

sensitive to deviations from elliptical symmetry, like estimators based on spatial
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signs or ranks (Visuri, Koivunen, and Oja, 2000). For 3-dimensional compositional

data the elliptical symmetry can be graphically inspected by visualizing the

Mahalanobis distances in the transformed data space (Figures 1 and 2, upper

right).

Finally, we would like to point out that the critical outlier cut-off value used in

this paper only indicates potential outliers, but it should not be used to

automatically declare these observations as outliers. These observations are

different from the majority of data points. The reason for this difference could be a

different process influencing the data (another data distribution), or atypically

high or low values causing “extreme” observations (same data distribution).

Filzmoser, Garrett, and Reimann (2005) discussed this issue, and introduced

modified cut-off values to distinguish between these types of outliers.

ACKNOWLEDGEMENTS

The authors are grateful to the referees for helpful comments and suggestions.
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APPENDIX

Proof of Theorem 1 Let Xn,D be a data matrix with closed observations

xi = (xi1, . . . , xiD)′ with
∑D

j=1 xij = 1 and xij > 0 for i = 1, . . . , n, i.e. xi ∈ SD. Let

X
(l)
n,D−1 be matrix resulting from alr transformation of X using column l, i.e. the

rows of X(l) are

x
(l)
i =

(
log

xi1

xil

, . . . , log
xi,l−1

xil

, log
xi,l+1

xil

, . . . , log
xiD

xil

)′
(10)

(compare with (1)). Similarly, let X(k) be the alr transformed data matrix from X

using column k, with k 6= l. Then, using log xij

xil
= log xij − log xil, it can be easily

shown that X(l) = X(k)Bkl or x
(l)
i = B′

klx
(k)
i with the (D − 1)× (D − 1) matrix

Bkl =




1 0
. . .

...

1 0

−1 . . . −1 −1 −1 . . . −1 . . . −1

1 0 0
. . . . . .

...

1 0

0 1
...

. . .

0 1




.

The undisplayed entries in this matrix are zero. The l-th row includes only entries

of −1. The main diagonal is 1, except for entry l where it is −1 and the entries

l + 1 to k − 1 which are 0. Finally, all entries to the left of the main diagonal zeros

are 1. An example of such a matrix for D = 7, k = 5 and l = 2 is

B5,2 =




1 0 0 0 0 0

−1 −1 −1 −1 −1 −1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




.

The matrix Bkl is evidently nonsingular, so its inverse B−1
kl and the inverse of the

transposed matrix (B′
kl)

−1 exist. Thus, for T and C affine equivariant, we have

T (x
(l)
1 , . . . ,x(l)

n ) = T (B′
klx

(k)
1 , . . . ,B′

klx
(k)
n ) = B′

klT (x
(k)
1 , . . . ,x(k)

n ),
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C(x
(l)
1 , . . . ,x(l)

n ) = C(B′
klx

(k)
1 , . . . ,B′

klx
(k)
n ) = B′

klC(x
(k)
1 , . . . ,x(k)

n )Bkl,

and consequently MD2(x
(l)
i ) =

= [x
(l)
i − T (x

(l)
1 , . . . ,x(l)

n )]′[C(x
(l)
1 , . . . ,x(l)

n )]−1[x
(l)
i − T (x

(l)
1 , . . . ,x(l)

n )] =

= [B′
klx

(k)
i −B′

klT (x
(k)
1 , . . . ,x(k)

n )]′[B′
klC(x

(k)
1 , . . . ,x(k)

n )Bkl]
−1

[B′
klx

(k)
i −B′

klT (x
(k)
1 , . . . ,x(k)

n )] =

= [x
(k)
i − T (x

(k)
1 , . . . ,x(k)

n )]′BklB
−1
kl [C(x

(k)
1 , . . . ,x(k)

n )]−1(B′
kl)

−1

B′
kl[x

(k)
i − T (x

(k)
1 , . . . ,x(k)

n )] = MD2(x
(k)
i ). 2

Proof of Theorem 2 Let the composition x = (x1, . . . , xD)′ ∈ SD, i.e.
∑D

i=1 xi = 1, xi > 0, be given. First we provide a matrix transformation between

alr and clr transformations of x. Without loss of generality, the last variable D is

used for the alr transformation. Using an alternative representation of (1),

x(D) = (log x1 − log xD, . . . , log xD−1 − log xD)′,

and another presentation of (3),

y = (y1, . . . , yD)′, yi =
D − 1

D
log xi − 1

D

D∑

j=1,j 6=i

log xj, i = 1, . . . , D,

it is easy to show that x(D) = Fy and y = F∗x(D), where

FD−1,D =




1 −1
. . .

...

1 −1


 and F∗D,D−1 =




D−1
D

− 1
D

. . . − 1
D

− 1
D

D−1
D

. . .
...

...
. . . . . . − 1

D
...

. . . D−1
D

− 1
D

. . . . . . − 1
D




(see also Aitchison, 1986, Section 5.1). Moreover, FF∗ = ID−1 (identity matrix of

order D − 1), F∗F is symmetric, FF∗F = F, and F∗FF∗ = F∗. Thus, F∗ fulfills all

properties of the Moore–Penrose inverse matrix F+ of F, i.e.

FF+F = F, F+FF+ = F+, (FF+)′ = FF+, (F+F)′ = F+F,

and in our case additionally FF+ = I. Analogous conclusions can be obtained also

for other choices of the ratioing variable for the alr transformation, but the

structures of the matrices are different.
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Let us consider now alr and clr transformed data matrices X
(D)
n,D−1 and Yn,D with

rows x
(D)
i and yi, for i = 1, . . . , n, respectively. We use the notations x̄(D) and ȳ

for the corresponding arithmetic mean vectors, and Sx(D) and Sy for the sample

covariance matrices. For the latter we find the relation

Sy =
1

n

n∑

i=1

(yi − ȳ)(yi − ȳ)′ =
1

n

n∑

i=1

(F+x
(D)
i − F+x̄(D))(F+x

(D)
i − F+x̄(D))′

= F+ 1

n

n∑

i=1

(x
(D)
i − x̄(D))(x

(D)
i − x̄(D))′(F+)′ = F+Sx(D)(F+)′.

Furthermore, MD2(x
(D)
i ) =

= (x
(D)
i − x̄(D))′S−1

x(D)(x
(D)
i − x̄(D)) = (Fyi − Fȳ)′S−1

x(D)(Fyi − Fȳ)

= (yi − ȳ)′F′S−1
x(D)F(yi − ȳ), i = 1, . . . , n.

We denote S∗y = F′S−1
x(D)F. Then, using the above mentioned properties of the

Moore–Penrose inverse, property FF+ = I, and basic matrix algebra, we can

compute

SyS
∗
ySy = F+Sx(D)(F+)′F′S−1

x(D)FF+Sx(D)(F+)′ = F+Sx(D)(F+)′ = Sy,

S∗ySyS
∗
y = F′S−1

x(D)FF+Sx(D)(F+)′F′S−1
x(D)F = F′S−1

x(D)F = S∗y,

(SyS
∗
y)′ = [F+Sx(D)(F+)′F′S−1

x(D)F]′ = (F+F)′ = F+F =

= F+Sx(D)(F+)′F′S−1
x(D)F = SyS

∗
y,

(S∗ySy)′ = [F′S−1
x(D)FF+Sx(D)(F+)′]′ = [(F+F)′]′ = (F+F)′ =

= F′S−1
x(D)FF+Sx(D)(F+)′ = S∗ySy.

This shows that S∗y = S+
y is the Moore–Penrose inverse of Sy, and consequently

MD2(x
(D)
i ) = (yi − ȳ)′F′S−1

x(D)F(yi − ȳ) = (yi − ȳ)′S+
y (yi − ȳ) = MD2(yi)

for i = 1, . . . , n. Here we have directly used the Moore-Penrose inverse matrix S+
y

in the expression of MD2(yi) since in most statistical software packages it is

directly computable. Another equivalent possibility to prove above mentioned

property is presented in Aitchison (1986, Property 5.6). Using Theorem 1 and the

notation of (10), we obtain

MD2(x
(l)
i ) = MD2(x

(D)
i ) = MD2(yi) for l = 1, . . . , D − 1,

which completes the proof. 2
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Proof of Theorem 3 Let x(D), y, and z be alr (last variable is chosen as ratio

variable), clr and ilr transformations, respectively, for composition x ∈ SD, see (1),

(3), and (5). Then, from the proof of Theorem 2, x(D) = Fy and y = F+x(D). The

relations y = Vz, V′V = ID−1 for a D × (D − 1) matrix V with orthogonal basis

vectors in its columns, follow immediately from the properties of isometric logratio

transformation. Consequently,

x(D) = FVz and z = V′F+x(D)

are relations between alr and ilr transformations, with (D − 1)× (D − 1) matrices

FV and V′F+. The second relation was derived from y = F+x(D), multiplied with

V′ from the left and using the above described properties. By substitution into the

first relation we obtain

x(D) = FVV′F+x(D),

and comparing both sides it immediately follows that FVV′F+ = I. Thus, V′F+

is the inverse matrix of the nonsingular matrix FV (Harville, 1997, p. 80, Lemma

8.3.1). Using (8) and Theorem 1 results in

MD2(z) = MD2(V′F+x(D)) = MD2(x(j)) for j = 1, . . . , D.

2
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Figure Captions

Figure 1 ilr transformed Aphyric Skye Lavas data with classical (upper left) and

robust (upper right) MDs and their transformation into the ternary diagram

(classical: lower left; robust: lower right).

Figure 2 alr transformed Arctic Lake Sediment data with classical (upper left)

and robust (upper right) MDs and their transformation into the ternary diagram

(classical: lower left; robust: lower right).

Figure 3 Comparison of classical and robust Mahalanobis distances of the ilr

transformed Kola data (left) and presentation of the regular observations and

identified outliers in the map (right).

Figure 4 Comparison of robust Mahalanobis distances with original and ilr

transformed Kola data (left) and presentation of the regular observations and

identified outliers in the map (right).
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Figure 1: alr transformed Arctic Lake Sediment data with classical (upper left)

and robust (upper right) MDs and their transformation into the ternary diagram

(classical: lower left; robust: lower right).
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Figure 2: ilr transformed Aphyric Skye Lavas data with classical (upper left) and ro-

bust (upper right) MDs and their transformation into the ternary diagram (classical:

lower left; robust: lower right).
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Figure 3: Comparison of classical and robust Mahalanobis distances of the ilr trans-

formed Kola data (left) and presentation of the regular observations and identified

outliers in the map (right).
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Figure 4: Comparison of robust Mahalanobis distances with original and ilr trans-

formed Kola data (left) and presentation of the regular observations and identified

outliers in the map (right).


