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(Abstract)

Repeated double cross validation (rdCV) is a strategy for (a) optimizing the 

complexity of regression models, and (b) for a realistic estimation of prediction 

errors when the model is applied to new cases (that are within the population of 

the data used). This strategy is suited for small data sets and is a 

complementary method to bootstrap methods. rdCV is a formal, partly new 

combination of known procedures and methods, and has been implemented in 

a function for the programming environment R, providing several types of plots 

for model evaluation. The current version of the software is dedicated to 

regression models obtained by PLS. The applied methods for repeated splits of 

the data into test sets and calibration sets, as well as for estimation of the 

optimum number of PLS components, are described. The relevance of some 

parameters (number of segments in CV, number of repetitions) is investigated. 

rdCV is applied to two data sets from chemistry: (1) determination of glucose 

concentrations from NIR data in mash samples from bioethanol production; (2) 

modeling the gas chromatographic retention indices of polycyclic aromatic 

compounds from molecular descriptors. Models using all original variables and 

models using a small subset of the variables, selected by a genetic algorithm, 

are compared by rdCV. 

Keywords: prediction performance; optimum complexity of linear PLS models; 

cross validation; bootstrap; R
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1.  INTRODUCTION

Modeling a property y by several variables x is a fundamental task in 

chemometrics. Widely used are empirical linear models of the form

y  =  b0 + b1x1 + b2x2 + ... + bjxj + … + bmxm + e (1)

with b0 for the intercept, b1 to bm the regressions coefficients, m the number of 

variables, and e the error term. For mean-centered data, b0 becomes zero. The 

model parameters b0 and b1 to bm are estimated from a calibration set 

containing nCALIB objects (samples) with the observed values of the x-variables 

and of y. Principal aim of creating a model is a good prediction performance of 

the model for new objects, for which an optimum complexity of the model is 

necessary. In the most used regression method in chemometrics, partial least-

squares, PLS [1-3], the complexity is controlled by the number of PLS 

components, a. An optimum number of components, aOPT, avoids underfitting (if 

a is too small, the model is too simple) and overfitting (if a is too big, the model 

is too much adapted to the calibration data). The resulting model has to be 

evaluated with a test set with observed values for x and y, containing nTEST 

objects that were not used in generation and optimization of the model. 

This implies the necessity of splitting all available objects into a calibration set, 

which is used for model building, and a test set for model evaluation. For small 

values of n, as it is often the case with chemometric data sets, resampling 
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techniques are useful for this task. The (frequently random) split can be 

performed several times to obtain a reasonable estimation of the optimum 

model complexity as well as of the range of the prediction errors for new 

objects. 

Widely used for this purpose are traditional versions of cross validation (CV) [4], 

but also Monte Carlo cross validation [5-7], and moving window cross validation 

[8], as well as bootstrap techniques [9,10]. It is important, however, to note that 

CV-based methods are not always optimal, particularly when dealing with data 

obtained by experimental design [11]. Some evaluation strategies allow 

estimating the variability of the optimum model complexity and the variability of 

the prediction performance, and thus point out fundamental limits for model 

generation, if only small data sets are available.

This contribution focuses on the strategy repeated double cross validation 

(rdCV), suited for small data sets for optimizing the complexity of regression 

models, and for estimating the prediction errors to be expected for new cases 

(that are within the population of the data used). rdCV is a formal combination of 

known procedures and is a complementary method to bootstrap. 

This strategy dates back to an early study by Stone [12] . Similar approaches 

have been described for a binary classification problem in proteomics [13,14], 

for a discrimination of human sweat samples [15] as well as for principal 

component analysis [16].
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We have implemented rdCV (using PLS regression) in a function for the 

programming environment R [17], and have created several types of plots for 

model evaluation [2]. In this paper the algorithm of rdCV, and the standard error 

method [18] for an estimation of the optimum number of components are 

described in detail. The rdCV strategy is applied to model the glucose 

concentration in mashes by NIR data, and an example of quantitative structure-

property relationships. 

2.  METHODS

2.1.  Overview

Here we give an outline of the following sections, which are organized in a 

modular system. As appropriate performance criteria are essential for empirical 

regression models, they will be defined first. Based on the introduced criteria, 

we present a statistical approach for finding the optimum complexity of a 

regression model, that is the optimum number of PLS components (Section 

2.3). The so called "standard error method" is then integrated as a vital part in 

the "repeated double cross validation" (rdCV). Eventually, Section 2.4 focuses 

on a comprehensive description of the rdCV method as a whole. The main 

distinguishing characteristics of rdCV to simple methods are: Accidental 

performance results are avoided by – typically 100 – repeated random splits of 

the data into calibration sets and test sets. The model’s complexity is optimized 

by inner k-fold cross validation with each available calibration set.  For 
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estimation of the prediction performance when applying the model to new 

samples, each model is validated with an independent test set. Depending on 

the number of repetitions, rdCV yields a large number of residuals from 

“independent” test sets, which are the basis for measuring the prediction 

performance. To compare the rdCV method with standard validation 

approaches, a k-fold cross validation as well as a bootstrap technique is 

described in Section 2.5. 

2.2.  Performance criteria

A statistical estimation of the prediction performance of a model is based on the 

prediction errors (residuals) 

ei = yi - ŷi (2)

with yi for the given (experimental) value and ŷi the predicted (modeled) value of 

an object i. The predicted y-values are from a test set or obtained with CV or 

bootstrap. If a rather large number of residuals is available – as it is the case 

with rdCV or bootstrap - the distribution of the prediction errors gives a 

comprehensive picture of the model performance. In many cases, the 

distribution is similar to a normal distribution and has a mean of approximately 

zero. Such a distribution can be well described by a single parameter that 

measures the spread. Other types of distributions can, for instance, be 
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characterized by a tolerance interval comprising 95% of the residuals [19,20]. 

The criteria used here are defined as follows. 

The standard deviation of the prediction errors (in short: standard error of 

prediction, SEP) is defined by
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The number of used ŷ-values, nSEP, is for simple strategies the number of 

objects in a single test set or the total number of objects; in rdCV it is the 

number of objects times the number of repetitions. The bias is the arithmetic 

mean of the prediction errors; it is near zero (especially for large nSEP ) for 

objects drawn as a random sample as done in rdCV. The bias may be different 

from zero for data obtained in a different experiment or with a different 

instrument; in this case, the data do not belong to the population of the data 

used for model generation and a test set bias (a systematic deviation) has to be 

considered. The SEP is the standard deviation of the residuals, and thus it is 

expressed in the same unit as the y-variable. We use SEP only for test-set 

predicted ŷi (equivalent to SEPTEST). 

JChem09.doc.doc 7



The mean squared error (MSE) obtained from CV within a calibration set is 

used to optimize the number of PLS components by the standard error method 

([18], see Section 2.3) and is defined as
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The number of values considered, nMSE , is the number of objects in the used 

validation set (see Section 2.3). 

The tolerance interval TI95 is defined by the difference of the 2.5% and 97.5% 

percentiles, q0.025, and q0.975, of the empirical residual distribution; this measure 

of residual spread is less influenced by extreme outliers and is independent 

from the shape of the distribution.

2.3.  Optimum model complexity

In PLS the model complexity is controlled by the number, a, of used PLS 

components (linear combinations of the variables). Many different evaluation 

methods have been proposed for estimating the optimum number of 

components, aOPT, and almost all of these techniques are based on CV or 

bootstrap [4,18]. Randomization tests have been applied to assess the 

statistical significance of adding further components [11,21]. Different 

approaches for the estimation of the optimum model complexity have been 

compared for PLS [22] and PCA [23]. 
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The simplest form of CV is to split the data (randomly) into k segments 

(typically, k is chosen between 5 and 10), to fit regression models for a range of 

numbers of PLS components to all but one segment, and to evaluate the 

models on the omitted segment. Since each segment serves once for 

evaluation, the optimum number of PLS components can be determined. A 

simple bootstrap version is to generate new data sets of the same size as the 

original data by randomly sampling objects with replacement from the original 

data. Regression models for different numbers of PLS components are fit to the 

data, and afterwards evaluated on objects that were not used in the bootstrap 

data set. This strategy allows estimating the optimal model complexity; 

however, the resulting prediction performance is often too optimistic. It is thus 

recommended to split the data into calibration and test data and to base the 

final choice of the model complexity solely on results from the calibration data, 

whereas the prediction performance is based on the test data. However, 

another random split into calibration and test data could yield a different value 

for the prediction performance. 

The selection of aOPT is based on an error criterion, for instance MSE, obtained 

by CV for the validation sets (see Section 2.4). MSE usually decreases with 

increasing a; after a more or less distinct minimum it increases because of 

overfitting. In a single CV, for each object in the used calibration set an 

estimation ŷ is obtained, and MSE is usually computed from all nCALIB residuals; 

that means we have one MSE for each value of a. The global minimum of MSE 
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is in general considered to give a too large value for aOPT, and various heuristic 

schemes are used to select a somewhat smaller value avoiding overfitting 

[23,24]. 

With the rdCV approach as well as with bootstrap we have several values of 

MSE for each a (1, ..., aMAX) and thus we can apply the statistically based 

standard error method for an estimation of the optimum number of components. 

This method is briefly described as "one standard error rule" in Figure 3.6 of 

[18], and we give a detailed description here (Figure 1). In this method for each 

number of components a, the mean of the MSE values, mMSE, resulting from the 

validation sets is calculated. In rdCV the number of validation sets is equal to 

the number of segments in the inner CV loop (Figure 2). Assume the global 

minimum of the means, MIN m MSE, is at aMIN components. For this number of 

components the standard deviation s( MIN m MSE) of MIN m MSE  is calculated; it is the 

standard deviation of a mean (standard error) and therefore given by

h

s
ms MSE

EMSMIN =)(

(6)

with sMSE for the standard deviation of the MSE-values at aMIN components, and 

h for the number of MSE-values at aMIN. According to the one standard error 

rule, the optimum, aOPT, is given by the most parsimonious model with 

)( MSEMINEMSMINMSE msmm +< . Thus, we consider that the MSE-means have 
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errors and we take a conservative model to avoid overfitting. The number, h, of 

MSE values must not be too small, say at least four; in the pseudo code below 

h corresponds to SEGCALIB.

The standard error method is applied within rdCV as follows (in pseudo 

programming code):

(1)  Use a calibration set with nCALIB objects. 

(2)  Split the calibration set randomly into SEGCALIB (≥ 4) segments. 

(3)  FOR  κ = 1 TO SEGCALIB  (loop through all segments)

(3.1)  Validation set = objects in segment κ (nVAL objects)

(3.2)  Training set = other objects (nTRAIN  =  nCALIB - nVAL objects)

(3.3)  Make PLS models from the training set, varying the number of 

components a = 1, ..., aMAX.

(3.4)  Apply the models to the objects of the validation set, resulting in 

CV-predicted values ŷCV (i ) , i = 1, ..., nVAL

(3.5)  Compute MSE(κ, a), which are the MSE-values for segment κ for 

a = 1, ..., aMAX.

      NEXT  κ 

(4)  Estimate the optimum number of components, aOPT,  by the standard error 

method

(4.1)  We have the values MSE(κ, a), κ = 1, ..., SEGCALIB; a = 1, ..., aMAX 

(4.2)  Compute the means, mMSE, of the MSE-values for each a.
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(4.3)  Search the global minimum, MIN m MSE , of mMSE; it appears at aMIN 

components.

(4.4)  Compute the standard deviation sMSE of the MSE-values at aMIN .

(4.5)  The optimum number of components, aOPT, for the calibration set is 

the smallest number of components fitting the inequality (7)

CALIBSEG
 MSE

EMSMINMSE
s

mm
⋅+< π

(7)

The parsimony factor π controls the selection of the optimum number of 

components. A value of zero would chose the global minimum of MSE; π = 1 

gives the one standard error rule; π = 2 gives a two standard error rule and 

considers a 95% confidence interval of the minimum MSE, resulting in a model 

with a very small number of components. Mostly, π = 1 gives best results; for 

atypical shapes of the relation mMSE versus a, various additional heuristics may 

be necessary to avoid useless results for aOPT.

2.4.  Repeated double cross validation (rdCV)

Double cross validation consists of two nested loops. In the outer loop the 

objects are split randomly into test sets and calibration sets (one segment as 

test set, and the others as calibration set); it is used to estimate the prediction 

performance by application of models made solely from calibration set data to 

the test sets. After finishing the outer loop, for each object a test set predicted y-
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value is available. The inner loop works with a calibration set as defined in the 

outer loop. The inner loop again consists of a CV for finding the optimum 

complexity of the model (for PLS the optimum number of components, applying 

the standard error method described in Section 2.3). In repeated double cross 

validation (rdCV), a double CV is repeated many times (typically 100 times) in 

an additional repetition loop with different random splits into test sets and 

calibrations sets. Thus, the number of available test set predicted y-values is 

increased; the prediction performance can be better estimated, as well as its 

variability. Furthermore, the variability of the optimum number of components 

can be estimated from the results and a final optimum number of components 

can be derived for a final model from all objects. 

Here, rdCV is applied to calibration models created by PLS; a modification for 

classification problems would be straightforward. Furthermore, diagnostic plots - 

based on rdCV results - are presented to evaluate the model complexity and 

model performance. Our implementation of rdCV in R-functions makes this 

method available to all interested persons.

The rdCV strategy, written here in pseudo programming code, has been 

realized as follows (see also Figure 2). For the repetition loop we use index ρ 

(1, ... , nREP), for the outer loop (test sets) index τ  (1, ..., SEGTEST); and for the 

inner loop (calibration sets) index κ (1, ... SEGCALIB). 

Repetition loop: FOR ρ  = 1 TO nREP 
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(1)  Split all n objects randomly into SEGTEST segments (typ. 3-10) of 

approximately equal size.

(2)  Outer loop: FOR τ  = 1 TO SEGTEST 

(a)  Test set = segment with number τ  (nTEST objects)

(b)  Calibration set = other SEGTEST - 1 segments (nCALIB objects)

(c)  Split calibration set into SEGCALIB segments (typ. 4-10) of 

approximately equal size.

(d)  Inner loop: FOR κ = 1 TO SEGCALIB

(i)  Validation set = segment with number κ (nVAL objects)

(ii)  Training set = other SEGCALIB - 1 segments (nTRAIN 

objects)

(iii)  Make PLS models from the training set, with a = 1, ..., 

aMAX  components

(iiii)   Apply the PLS models to the validation set, resulting in 

ŷCV  for the objects in segment κ for a = 1, ..., aMAX

       NEXT κ 

(e)  Estimate optimum number of components, aOPT, from ŷCV of 

the calibration set by the standard error method (Section 2.3), 

giving aOPT (τ ) for this outer loop.

(f)  Make a PLS model from the whole calibration set using aOPT (τ ) 

components

(g)  Apply the model to the current test set, resulting in test-set 

predicted ŷ for nTEST  test set objects.

      NEXT τ
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(3)  After completing the outer loop, we have one test-set predicted ŷ for 

each of the n objects

NEXT π 

After a complete rdCV run, a variety of numbers is available that can be 

exploited for model diagnostics and characterization. In each repetition, we 

have SEGTEST different test sets and the same number of (partly overlapping) 

calibration sets. From each calibration set an optimum number of PLS 

components, aOPT, has been estimated. In total SEGTEST times nREP values for 

aOPT have been estimated from which a final optimum number of PLS 

components, aFINAL, is derived. In this work, we simply choose the value with the 

highest frequency (in the case of equal frequencies, the lower value); see 

Figure 3. If the frequency distribution of the aOPT values does not show a clear 

maximum, a heuristic algorithm or a selection by the user is necessary to obtain 

a parsimonious but good model complexity. 

A 3-dimensional data array E contains the residuals (prediction errors) e (i, a, ρ) 

for objects i (i = 1, ..., n), obtained from models with a (a = 1, ... aMAX) 

components, in repetitions ρ  (ρ  = 1, ... , nREP), see Figure 4. A corresponding 

array with the same dimensions contains the predicted values ŷ  (i, a, ρ). 

Of special interest are the data in the slice for a = aFINAL. The standard deviation 

of the n times nREP residuals gives a final performance measure SEPFINAL. The 

distribution of these residuals gives a picture of the model performance, and the 
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2.5% and 97.5% percentiles define the tolerance interval TI95. For each 

repetition a separate SEP value can be computed from n residuals; the 

distribution of these nREP SEP values - for instance presented in a boxplot (see 

Section 4.3) - describes the variation of this performance measure. For each 

object nREP residuals are available; a scatter plot of these residual versus y or 

the object number indicates objects that give often erroneous ŷ, and indicates a 

potential dependence of the residuals on y (see Section 4.4). 

The data in array E for a selected repetition ρ  can be used to display the SEP 

as a function of the number of components. Aggregating the graphs for all 

repetitions in one plot shows the fluctuations of SEP; in particular at too large 

values of a, which indicates overfitting (see Section 4.3). 

2.5.  Other strategies

We already mentioned that the simplest forms of CV and bootstrap are usually 

too optimistic. Thus, another strategy to apply these techniques is to split the 

data randomly into calibration and test set, to build the regression models with 

the calibration data, and to evaluate on the test data. This heuristic is frequently 

applied, and we will use it for comparing the results with rdCV.

More specifically, a test set of a quarter of the n objects is randomly selected. 

This will allow for a more consistent comparison with rdCV where we proposed 

to use four segments in the outer loop. Thus, the calibration set with nCALIB 
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objects consists of the remaining three quarters of the data. Using these 

calibration data, optimized PLS models have been created by two different 

approaches:

• Seven-fold CV: Using seven segments for CV makes this evaluation 

better comparable with the proposed rdCV procedure, where we will also 

use seven segments in the inner loop. By omitting each segment in turn, 

PLS models with a = 1, ..., aMAX components are fitted, and applied to the 

omitted segment. This yields residuals for each sample in the calibration 

set. The one standard error rule (Section 2.3) is used by summarizing the 

MSEs of each segment with mean and standard error; the result is the 

optimal number aOPT of PLS components. A model with aOPT components 

is computed from the whole calibration set and is applied to the test set 

samples. From these results, the prediction performance (SEP) is 

computed.

• Bootstrap: By random sampling with replacement from the calibration 

data a bootstrap sample (training set) of the same size as the calibration 

set is generated, and PLS models with a = 1, ..., aMAX components are 

fitted. The models are then applied to those samples from the calibration 

set that have not been used in the training set, and the MSE is 

computed. Repeating this procedure 100 times gives 100 MSEs for each 

model complexity, and aOPT is chosen by applying the one standard error 

rule. A model with aOPT components is computed from the whole 

calibration set and is applied to the test set; from the test set predictions 

SEP is computed.
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Although calibration set and test set have been selected randomly, the resulting 

SEPTEST values could be (just by chance) too optimistic or too pessimistic, 

depending on how representative this separation was. Therefore, each of the 

four quarters of the data serves once as a test set, and the remaining three 

quarters as calibration set. This finally gives four values of aOPT and SEPTEST for 

CV and bootstrap, which can be compared with results from rdCV.

3.  DATA AND SOFTWARE

3.1.  Data

For a demonstration of the use of rdCV and a comparison of different validation 

strategies two data sets from chemistry were investigated in this work. 

GLC: The first data set is from 120 mash samples from bioethanol production 

with different concentrations of glucose [25]. Sample variations are not only 

related to glucose concentration, but also to enzymatic pretreatment and type of 

feedstock (wheat or rye) in the fermentation process. The first derivatives of 

near infrared (NIR) absorbance spectra in the wavelength range of 1100 to 

2300 nm provided the x-variables, while glucose concentrations in g/l (y-

variable) were determined by HPLC. In the model building and evaluation 

process three different variable sets were used: (1) The first variable set 

contains all 235 x-variables available; (2) a subset of 15 features has been 
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selected by a genetic algorithm (GA) using software MobyDigs [26] on the entire 

data set; (3) furthermore, 15 variables have been randomly selected from all but 

the GA selected ones. 

PAC: The second data set, which is available in the R-package “chemometrics”, 

is from 209 polycyclic aromatic compounds with their gas chromatographic 

retention indices as dependent y-variable [27]. A set of 467 molecular 

descriptors [28] was used as x-variables to model the retention indices. The 

descriptors have been calculated by the software Dragon [29] from 3-

dimensional chemical structures with all hydrogen atoms explicitly encoded 

(created by the software Corina [30]). The original 1630 descriptors were 

treated by a simple variable selection in two steps resulting in 467 variables: (a) 

elimination of constant or almost constant variables (all but a maximum of five 

values constant); (b) elimination of variables with a correlation coefficient >0.95 

to another variable. Again three different variable sets were used: (1) The first 

variable set contains all 467 x-variables available; (2) a subset of 13 features 

has been selected by a genetic algorithm (GA) using the software MobyDigs 

[26] on the entire data set; (3) furthermore, 15 variables have been randomly 

selected from all but the GA selected ones. 

3.2.  Software

R is a language and environment for statistical computing and graphics [17]. It 

is free software licensed under the GNU General Public License (GPL) and 
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available from the Comprehensive R Archive Network (CRAN). R provides 

many statistical techniques and graphical facilities. Most importantly, it can be 

extended easily by packages such as “pls” for principal component regression 

(PCR) and partial least-squares regression (PLS) [31]. For this work the newly 

developed R-package “chemometrics” [2] has been used; it provides the 

function “mvr_dcv” for rdCV. This function handles the data as well as settings 

for the nested loops in rdCV, e. g. number of segments for creation of test, 

calibration and validation sets. For generation of PLS models, the function "mvr" 

of the mentioned "pls" package is used with method "simpls". A typical call of 

“mvr_dcv” is:

library(chemometrics)      # load package “chemometrics”

data(PAC)                  # load PAC dataset

result <- mvr_dcv(y~X, data=PAC, ncomp=50, method="simpls")

                           # call rdCV function

By default, no scaling of the data is provided; the number of repetitions is 100; 

the data set is split into four segments in the outer and ten segments in the 

inner loop. This call will consider models up to 50 PLS components. Further 

parameters of "mvr_dcv" are explained in the help file of the function.

Several diagnostic plots can be generated from the "mvr_dcv" result for visual 

inspection of validation results (see Section 2.4). The function “plotSEPmvr” 

creates a plot with the SEP-values of all repetitions versus the number of PLS 

JChem09.doc.doc 20



components; function "plotpredmvr" plots the predicted versus the experimental 

y-values; function "plotresmvr" displays the frequency distribution of residuals.

For variable selection by a genetic algorithm (GA) [32] the software MobyDigs 

[26] has been used. It performs ordinary least-squares regression (OLS) with a 

leave-one-out (LOO) cross validation for testing variable subsets created by the 

GA. As fitness criterion the squared adjusted correlation coefficient, R2
ADJ, [2] 

between experimental and LOO-predicted values was chosen. After more than 

a million iterations (with a computation time of some hours on a standard 

personal computer), the variables included in the best model were selected for 

further analysis. The long computation time of GA prohibits its use within the 

loops of rdCV. Therefore, variable selection has been performed with the entire 

data set, knowing that models obtained from variables selected in this way may 

show an overestimated performance. An alternative would be to use a fast - and 

much less powerful - variable selection for each calibration set. It is out of scope 

of this work to compare the advantages and drawbacks of different strategies 

for variables selection, we aim on comparing the performances of models 

obtained from given data, regardless of the origin of the variables.  

Chemical structures were handled in Molfile format. Approximate 3-dimensional 

structures with all hydrogen atoms explicitly given have been created by the 

software Corina [30]. Molecular descriptors have been generated by the 

software Dragon [29]; the output file of Dragon has been imported by an R-

function for further use within R. 
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4.  RESULTS

4.1.  Number of segments

In rdCV the size of test and validation sets can be manipulated by user-defined 

parameters, that is the number of segments in the outer loop and in the inner 

loop, respectively. To ensure realistic results for the optimum number of 

components, aOPT, with the standard error method (Section 2.3), the number of 

segments in the inner loop, SEGCALIB, should be at least four. Two contrary 

effects influence the stability of aOPT. On one hand, an increase of SEGCALIB 

increases the number of values for computation of the mean and the standard 

deviation, which are required in the standard error method. On the other hand, 

increasing SEGCALIB lowers the number of values in each segment from which 

MSE is calculated. 

The more segments in the outer loop, the more values aOPT are obtainable for 

the frequency distribution, from which a single final optimum number of 

components, aFINAL, is derived. Note that additional segments always implicate 

longer computing time. For example, an rdCV run with the PAC data takes 

about seven minutes (on a standard personal computer) with SEGTEST and 

SEGCAL set both to four, but 40 minutes if the number of segments is increased 

to 10 for both segmentations. Therefore, a trade-off between computing time 

and segmentation is inevitable. 
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We studied the influence of different segmentations on the stability of two 

measures for PLS regression models, aFINAL and SEPFINAL, for the GLC and PAC 

data (Figure 5). Since both values exhibit only slight variations for each data 

set, it stands to reason that the number of outer and inner segments is 

secondary; in particular for smaller sets of variables. Interestingly, a random 

selection of x-variables also yields stable results. For randomly selected 

variables, the final standard errors of prediction are two to three times higher 

than for all variables, whereas the optimum number of PLS components for 

these models with randomly selected variables is lower than for models with all 

variables or GA-selected variables. Thus, overfitting is avoided by the rdCV 

approach.

Remarkable is one result for the final number of components, aFINAL, for the PAC 

data using all x-variables and four segments in both loops. In this case, the 

frequency distribution of the obtained 400 values for aOPT shows three maxima 

of almost equal heights at 11, 19, and 24 components; selecting the value 11, 

which has maximum frequency, is somewhat arbitrary. Anyway, it may be 

instructive to learn from the frequency plot that the optimum number of 

components is not unique in this example. For such cases, a heuristics has to 

be added to the algorithm including a user-definable parameter that controls the 

desired parsimony.
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The influence of the number of segments on the shape of the frequency 

distribution of the optimum number of components is presented in Figure 6 for 

the GLC data. In the left hand side plot the number of segments in the outer 

loop, SEGTEST, is fixed to four; in the right hand side plot to 10. In both plots, the 

number of segments in the inner loop, SEGCALIB, is varied with the values 4, 5, 7, 

and 10. Most noticeably, all distributions have distinct maxima at almost the 

same horizontal position (aOPT), indicating the minor influence of the number of 

segments on the optimum number of components. The more segments in the 

inner loop (SEGCALIB), the narrower the distribution becomes. This small effect 

can be explained with more stable results yielded by the one standard error rule 

for a larger number of MSE values used for mean and standard deviation. 

Because of this investigation, we suggest to use SEGTEST = 4, and SEGCALIB = 7 

for rdCV calculations as a sensitive compromise between computational effort 

and validation results. 

4.2.  Number of repetitions

The repetition loop in rdCV with nREP passes provides the large number of 

values for the optimum number of components (aOPT) and the residuals from test 

set objects, necessary for a reasonable evaluation of models from the used 

data set. The computing time is proportional to nREP, for instance for 100 

repetitions, SEGTEST = 4, and SEGCALIB = 7 with the GLC data set (235 variables) 

4 minutes and with the PAC data set (467 variables) 10 minutes. Thus, the 

JChem09.doc.doc 24



influence of the number of repetitions on the stability of the result is of interest. 

For nREP = 5, 20, and 100 the rdCV was repeated 100 times. The variations of 

the 100 values for final measures aFINAL and SEPFINAL (see Figures 3 and 4) have 

been expressed as relative standard deviations in percent of the means (Table 

I). As expected, the variations decrease with increasing number of repetitions. 

With only 5 or 20 repetitions, the variations are considerably higher than with 

100 repetitions; therefore, the latter value is recommended. 

4.3.  Variation of model performance

The performance of a model is measured by SEP, the standard deviation of the 

prediction errors (residuals) obtained from objects in test sets (Section 2.2). 

This measure depends on the random split of the n available objects into test 

sets and calibration sets (outer loop in rdCV). The results from the nREP 

repetitions in rdCV allow estimating how much SEP varies for different random 

splits. The distribution of the nREP SEP values for a model complexity with aFINAL 

components can be represented in a boxplot. Figure 7 compares the 

distributions of SEP for different variable sets in the data GLC and PAC. The 

number of repetitions was 100, and the number of segments four in the outer 

loop and seven in the inner loop. Variable subsets selected by GA gave the 

smallest SEP values for both data sets, whereas the 15 randomly selected 

variables yielded the highest SEP values. The results for the GA-selected 

variables may be too optimistic because variable selection has been performed 

with the entire data set.
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The graphical impression of a difference in SEP values resulting from two 

models (e.g. using all variables or a selection of the variables) could also be 

confirmed by a statistical test, like the Mann-Whitney U-test for comparing the 

medians. Hence, rdCV also supports model selection because the performance 

measure corresponding to a model is not one value but a distribution. In 

addition, rdCV also provides the value SEPFINAL that is usually located close to 

the median of the SEP values.

For comparison, the SEP values obtained by the simpler strategies described in 

Section 2.5 are included in the plots. The n objects have been split into four 

parts, and each served as a test set. Consequently, we obtain four values for 

SEP, either using 7-fold CV or bootstrap in the calibration sets for estimating the 

optimum number of components. For both data sets and all variable sets, these 

eight values for SEP show a much larger variation than the rdCV results. One 

can conclude that a single split into a test set and a calibration set may yield 

very misleading results. 

For the GLC data, Figure 8 presents the SEP values as a function of the 

number of components for 100 repetitions (left), and a scatter plot with the 

corresponding predicted versus the experimental y-values (right). Two facts are 

clearly visible in the left plot: (a) A slightly increasing variation of the SEP with 

increasing number of components; and (b) an outlying curve for one of the 

repetitions. Actually, in this repetition six outlying objects were by chance put 
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into one of the test sets, which gave high values for SEP. The predicted y-

values resulting from this repetition are considerably lower than the 

experimentally determined values, as can be seen in the plot on the right hand 

side. It is an advantage of rdCV’s repeated random sample selection that a few 

extremely pessimistic test sets do not deteriorate the final regression result. 

4.4.  Residual plots

The rdCV procedure yields test set predicted y-values for each object, each 

repetition, and all considered numbers of components, which gives an array 

with n times nREP, times aMAX data (see Figure 4) with usually some thousand 

values. Likewise, an array comprising the corresponding residuals (prediction 

errors for test set objects) is available.

Of special interest are the residuals for the final model complexity with aFINAL 

components. In Figure 9 probability density functions of prediction errors are 

given for the GLC data set, using all 235 variables (left) and 15 variables 

selected by GA (right), respectively. rdCV was applied with SEGTEST = 4; 

SEGCALIB = 7; nREP = 100. The data are from models with aFINAL components, that 

is 14 for the data set with all variables, and 15 for the 15 selected variables. In 

the latter case the variable selection by GA yielded less correlated variables 

[25], and of course the PLS model is equivalent to an OLS model. The black 

lines are for the distributions calculated from all 12,000 available residuals; the 

gray lines show the distribution for each repetition. As these residual 
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distributions do not differ markedly from normal distributions, they can be 

characterized by the standard deviation of the residuals, equivalent to SEP. The 

plots evidently show that the distributions from models with all variables are 

wider and more varying than the distributions from models using the selected 15 

variables. Furthermore, models with all variables give some very large negative 

prediction errors, illustrated by the tailing of the curves in the left figure. 

Residual plots are very common as diagnostic tools for regression models; 

often the residuals are plotted versus the experimental y. In Figure 10 residuals 

are plotted versus the sample number for the PAC data set, using models with 

13 GA-selected variables, and rdCV applied with SEGTEST = 4, SEGCALIB = 7, and 

nREP = 100; data are from models with aFINAL = 9 components and refer to objects 

in test sets. The gray symbols are the 100 predicted y for the 100 repetitions; 

the black symbols are their means; the dashed horizontal lines show the 

approximate 95% tolerance interval ±  2 SEPFINAL. In general, no systematic 

dependence of the residuals on sample number or experimental y (the objects 

are sorted here by increasing y) is visible. However, some compounds show 

many large prediction errors. Particularly, for object numbers 12 and 102 all 

residuals are below the lower tolerance boundary; these two compounds can be 

considered as structural outliers because they do not contain condensed 

aromatic rings. Number 12 is azulene (with a 7-ring condensed to a 5- ring); 

number 102 is thianthrene (two benzene rings connected by two S-bridges). 

Two structures have large positive prediction errors: number 140 is dimethyl-

pyrene and 143 is 1,1'-binaphthyl; both are not structural outliers. For the 
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identification of "difficult to predict" objects the many (nREP) residuals for each 

object are very helpful.

4.5.  Summary

The recommended way for creation of a final PLS regression model from given 

data X and y by using the rdCV approach can be summarized as follows: 

Perform rdCV with SEGTEST = 4 and SEGCALIB = 7 and 100 repetitions; for a first 

test one may use only 20 repetitions. The results from rdCV give the optimum 

number of components for the final model, aFINAL, and the standard deviation of 

prediction errors, SEPFINAL, when applied to new samples from the same 

population. A tolerance interval for the prediction errors can be deduced from 

the distribution of the residuals.  If this distribution is similar to the normal 

distribution, an interval of ±  2 SEPFINAL gives the range for 95% of the prediction 

errors; otherwise the 2.5% and 97.5% percentiles define the 95 % tolerance 

interval. Finally, a model from all objects with aFINAL components is built for future 

use. Assuming that all new samples are from the same data population as the 

samples used for model creation, the prediction errors can be expected in the 

same range as estimated by rdCV. 

Table II summarizes parameters and performance measures for the PLS 

models created for the GLC and PAC data set. All results have been obtained 

with SEGTEST = 4 and SEGCALIB = 7 and 100 repetitions. The final PLS models 

have been created from all objects with aFINAL components using the GA 
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selected variables. By application of these models to the samples used for 

model creation, a standard error of calibration (SEC) of 1.7 for the GLC data 

and 7.3 for the PAC data, respectively, is computed. These values are within 

the range of SEP as estimated by rdCV.

5.  CONCLUSIONS

Model evaluation is of utmost importance in chemometrics. This study is 

devoted to the problem of choosing the optimal number of components for 

partial least squares (PLS) regression, although the strategy is also applicable 

to other regression methods with a tunable parameter. The optimal model aims 

at maximizing the prediction performance for new test data. In many papers 

only a single number, for instance the standard error of prediction (SEP), is 

presented as a measure of prediction performance. Depending on the 

evaluation method, this number can reflect the reality, but it can also be too 

optimistic, or sometimes even too pessimistic. To overcome this problem, we 

presented a strategy based on repeated double cross validation (rdCV). It 

includes a statistically based method to find the optimum number of PLS 

components as well as a careful estimation of the range of prediction errors to 

be expected for new cases. 

This paper provides a comprehensive description of the rdCV procedure. 

Furthermore, we specify the “standard error method” [18], which is used for 

determining the optimal number of PLS components. Using two real data sets 
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from chemistry, the stability of rdCV with respect to the number of repetitions 

and the number of segments in the inner and outer CV is investigated. As a 

result, we propose to use 100 repetitions, four segments in the outer CV and 

seven segments in the inner CV. This choice requires moderate computational 

effort, and leads to stable results for a final SEP value and for a final number of 

PLS components. 

In addition to these final model parameters, each repetition of the rdCV strategy 

returns residuals, which can be summarized by a separate SEP value. A 

graphical presentation of the SEP values from all repetitions provides detailed 

information on the distribution of the prediction performance measure and the 

distribution of the number of PLS components. Further diagnostic plots reveal 

not only the overall prediction quality, but they give insight into the prediction 

quality of individual objects. 

Also the bootstrap technique produces a large number of residuals, but the 

number of predicted values is in general not equal for the objects; the same 

holds for Monte Carlo CV. If the residuals have a distribution similar to a normal 

distribution, the model performance can be approximated by a single number, 

for instance the standard deviation of the residuals (SEP); otherwise a tolerance 

interval can be defined for the expected prediction errors by the 2.5% and 

97.5% percentiles. These measures for the prediction performance are realistic 

estimations, as long as new objects are from the same statistical population as 

the objects used in rdCV. 
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The rdCV procedure has been implemented by the function “mvr_dcv” in the 

freely available R package “chemometrics”. Applications to data sets with up to 

about 200 objects and up to about 500 variables require a computation time of a 

few minutes on a standard personal computer. The resulting performance 

measures and data arrays can be simply exported for use by other software.

Acknowledgements

This work was partly funded by the Austrian Research Promotion Agency 

(FFG), BRIDGE program, project no. 812097/11126.

REFERENCES

1. Martens H, Naes T. Multivariate calibration. Wiley: Chichester, United 

Kingdom, 1989.

2. Varmuza K, Filzmoser P. Introduction to multivariate statistical analysis in 

chemometrics. Francis & Taylor, CRC Press: Boca Raton, FL, USA, 

2009.

3. Wold S, Ruhe A, Wold H, Dunn WJI. The collinearity problem in linear 

regression. The partial least squares approach to generalized inverses. 

SIAM J. Sci. Stat. Comput. 1984; 5: 735-743.

JChem09.doc.doc 32



4. Vandeginste BGM, Massart DL, Buydens LCM, De Jong S, Smeyers-

Verbeke J. Handbook of chemometrics and qualimetrics: Part B. 

Elsevier: Amsterdam, The Netherlands, 1998.

5. Boulesteix AL. WilcoxCV: a R package for fast variable selection in 

cross-validation. Bioinformatics 2007; 23: 1702-1704.

6. Konovalov DA, Sim N, Deconinck E, Vander Heyden Y, Coomans D. 

Statistical confidence for variable selection in QSAR models via Monte 

Carlo cross-validation. J. Chem. Inf. Model. 2008; 48: 370-383.

7. Xu QS, Liang YZ, Du YP. Monte Carlo cross-validation for selecting a 

model and estimating the prediction error in multivariate calibration. J. 

Chemometr. 2004; 18: 112-120.

8. Kasemsumran S, Du YP, Li BY, Maruo K, Ozaki Y. Moving window cross 

validation: a new cross validation method for the selection of a rational 

number of components in a partial least squares calibration model. 

Analyst 2006; 131: 529-537.

9. Efron B, Tibshirani RJ. An introduction to the bootstrap. Chapman & Hall: 

London, United Kingdom, 1993.

10. Wehrens R, Putter H, Buydens LMC. The bootstrap: a tutorial. 

Chemometr. Intell. Lab. Syst. 2000; 54: 35-52.

11. Faber NM, Rajko R. How to avoid over-fitting in multivariate calibration - 

The conventional validation approach and an alternative. Anal. Chim. 

Acta 2007; 595: 98-106.

12. Stone M. Cross-validatory choice and assessment of statistical 

predictions. J. R. Statist. Soc. B 1974; 36: 111-147.

JChem09.doc.doc 33



13. Smit S, Hoefsloot HCJ, Smilde AK. Statistical data processing in clinical 

proteomics. J. Chromatogr. B 2008; 866: 77-88.

14. Smit S, van Breemen MJ, Hoefsloot HCJ, Smilde AK, Aerts JMFG, de 

Koster CG. Assessing the statistical validity of proteomics based 

biomarkers. Anal. Chim. Acta 2007; 592: 210-217.

15. Dixon SJ, Xu Y, Brereton RG, Soini HA, Novotny MV, Oberzaucher E, 

Grammer K, Penn DJ. Pattern recognition of gas chromatography mass 

spectrometry of human volatiles in sweat to distinguish the sex of 

subjects and determine potential discriminatory marker peaks. 

Chemometr. Intell. Lab. Syst. 2007; 87: 161-172.

16. Forina M, Lanteri S, Boggia R, Bertran E. Double cross full validation. 

Quimica Analitica (Barcelona, Spain) 1993; 12: 128-135.

17. R. A language and environment for statistical computing. R Development 

Core Team, Foundation for Statistical Computing, www.r-project.org: 

Vienna, Austria, 2008.

18. Hastie T, Tibshirani RJ, Friedman J. The elements of statistical learning. 

Springer: New York, NY, USA, 2001.

19. Naes T, Ellekjaer MR. The relation between SEP and confidence 

intervals. NIR news 1992; 3(6): 6-7.

20. Naes T, Isaksson T, Fearn T, Davies T. A user-friendly guide to 

multivariate calibration and classification. NIR Publications: Chichester, 

United Kingdom, 2004.

JChem09.doc.doc 34



21. Wiklund S, Nilsson D, Eriksson L, Sjöström M, Wold H, Faber K. A 

randomization test for PLS component selection. J. Chemometr. 2008; 

21: 427-439.

22. Gomez-Carracedo MP, Andrade JM, Rutledge DN, Faber NM. Selecting 

the optimum number of partial least squares components for the 

calibration of attenuated total reflectance-mid-infrared spectra of 

undesigned kerosene samples. Anal. Chim. Acta 2007; 585: 253-265.

23. Bro R, Kjeldahl K, Smilde AK, Kiers HAL. Cross-validation of component 

models: A critical look at current methods. Anal. Bioanal. Chem. 2008; 

390: 1241-1251.

24. Martens HA, Dardenne P. Validation and verification of regression in 

small data sets. Chemometr. Intell. Lab. Syst. 1998; 44: 99-121.

25. Liebmann B, Friedl A, Varmuza K. Determination of glucose and ethanol 

in bioethanol production by near infrared spectroscopy and 

chemometrics. Anal. Chim. Acta 2009: in print.

26. MobyDigs. Software. Talete srl, www.talete.it: Milan, Italy, 2004.

27. Lee ML, Vassilaros DL, White CM, Novotny M. Retention indices for 

programmed-temperature capillary-column gas chromatography of 

polycyclic aromatic hydrocarbons. Anal. Chem. 1979; 51: 768-773.

28. Todeschini R, Consonni V. Handbook of molecular descriptors. Wiley-

VCH: Weinheim, Germany, 2000.

29. Dragon. Software for calculation of molecular descriptors, by Todeschini 

R., Consonni V., Mauri A., Pavan M. Talete srl, www.talete.mi.it: Milan, 

Italy, 2004.

JChem09.doc.doc 35



30. Corina. Software for the generation of high-quality three-dimensional 

molecular models. Molecular Networks GmbH Computerchemie, 

www.mol-net.de: Erlangen, Germany, 2004.

31. Mevik BH, Wehrens R. The pls package: Principal component and partial 

least squares regression in R. J. Stat. Software 2007; 18(2): 1-24.

32. Leardi R, Boggia R, Terrile M. Genetic algorithms as a strategy for 

feature selection. J. Chemometr. 1992; 6: 267-281.

JChem09.doc.doc 36



Figure 1. Determination of the optimum number of components by the standard 

error method (schematically) [9].The calibration set is split into SEGCALIB 

segments, and CV is applied with each segment being a validation set once, 

and the others the training set. For each segment the error measure MSE is 

computed for each number of components a (1, ..., aMAX). The means of the 

MSE values, mMSE are plotted versus a; the minimum is at aMIN. Depending on 

the size of a parsimony parameter, π, the optimum number of components, aOPT 

is obtained by Equation (7).

Figure 2. Repeated double cross validation (rdCV).

Figure 3. Determination of the final optimum number of PLS components, aFINAL. 

rdCV gives SEGTEST times nREP values for the optimum number of components. 

The distribution of these values shows a distinct maximum and the value with 

the highest frequency is taken as aFINAL.   

Figure 4. Data from rdCV for diagnostics and evaluation of PLS regression 

models. 

Figure 5. Influence of the number of segments on the optimum number of 

components, aFINAL, and the final standard error of prediction, SEPFINAL, for the 

GLC and PAC data with each three different variable sets used.
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Figure 6. Frequency distribution of the optimum number of components, aOPT, 

for varying segmentation in the inner and outer loop of rdCV, using the GLC 

data. Left, SEGTEST = 4; right, SEGTEST = 10. For SEGCALIB the values 4 (solid 

line), 5 (dashed line), 7 (dotted line), and 10 (dotdashed line) have been used. 

Figure 7. Distribution of SEP values obtained by rdCV in nREP = 100 repetitions. 

For comparison, the values obtained with four test sets are displayed (with 

estimation of the number of components either by 7-fold CV or by bootstrap).

Figure 8. Left: SEP as a function of the number of PLS components for nREP = 

100 repetitions (gray lines). The horizontal dashed line indicates SEPFINAL, the 

vertical dashed line aFINAL. The black line is the mean of the 100 gray lines. One 

repetition shows extraordinarily high SEP values arising from an accidentally 

created test set with samples giving high prediction errors. Right: Predicted y for 

all 100 repetitions versus experimental y (gray symbols). The mentioned 

outlying samples show large negative residuals (in the y-range 0 to 8, and 

around 34). The black symbols are the means of 100 predicted values. The 

GLC data have been used with all variables; the number of segments was 5 in 

both rdCV loops.

Figure 9. Distributions of prediction errors for modeling the glucose 

concentration in mash samples by using NIR data (GLC data). Results for all 

235 variables (left) and a subset of 15 variables (right), selected by GA, are 
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compared. rdCV was applied with SEGTEST = 4, SEGCALIB = 7, and nREP = 100. 

The gray curves are from the 100 repetitions; the black curves are the 

distributions for all 12,000 (n times nREP) residuals. 

Figure 10. Residuals for modeling the GC retention index from molecular 

descriptors (PAC data). A set of 13 variables, selected by GA, has been used. 

rdCV was applied with SEGTEST = 4; SEGCALIB = 7; nREP = 100. The gray symbols 

are the 100 predicted y for the 100 repetitions; the black symbols are their 

means. Some compounds show large prediction errors. The dashed horizontal 

lines indicate the tolerance interval ±  2 SEPFINAL.
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PLS-mvr-dcv1 results 081103.xls | result Matrix (3) 05.11.2008

10 14 15 14 14 3.0 2.9 2.9 3.0 10 24 24 23 22 9.2 9.3 9.6 9.9

7 14 15 14 14 3.0 2.9 3.0 3.0 7 24 24 23 23 9.5 9.6 9.7 9.9

5 14 15 14 14 3.1 3.0 3.1 3.1 5 24 24 23 23 9.7 9.7 9.9 9.8

4 14 14 14 14 3.1 3.1 3.1 3.2 4 11 23 20 23 12.4 10.2 10.7 10.4

10 15 15 15 15 1.9 1.9 1.9 1.9 10 9 9 9 9 7.9 7.9 7.9 8.0

7 15 15 15 15 2.0 2.0 2.0 2.0 7 9 9 9 9 8.0 8.0 8.0 8.0

5 15 15 15 15 2.0 2.0 2.0 2.0 5 9 10 9 9 8.0 8.0 8.1 8.1

4 15 15 15 15 2.0 2.0 2.0 2.0 4 10 10 9 9 8.0 8.0 8.2 8.1
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