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SUMMARY

Compositional data (almost all data in geochemistry) are closed data, i.e. they sum up

to a constant (e.g. 100 weight percent). Thus the correlation structure of compositional data

is strongly biased and results of many multivariate techniques become doubtful without a

proper transformation of the data. The centered logratio transformation (clr) is often used

to open closed data. However the transformed data do not have full rank following a logratio

transformation and cannot be used for robust multivariate techniques like principal com-

ponent analysis (PCA). Here we propose to use the isometric logratio transformation (ilr)

instead. However, the ilr transformation has the disadvantage that the resulting new vari-

ables are no longer directly interpretable in terms of the originally entered variables. Here

we propose a technique how the resulting scores and loadings of a robust PCA on ilr trans-

formed data can be back-transformed and interpreted. The procedure is demonstrated using

a real data set from regional geochemistry and compared to results from non-transformed

and non-robust versions of PCA. It turns out that the procedure using ilr transformed data

and robust PCA delivers superior results to all other approaches. The examples demonstrate

that due to the compositional nature of geochemical data PCA should not be carried out

without an appropriate transformation. Furthermore a robust approach is preferable if the

dataset contains outliers.

KEY WORDS: robust statistics; compositional data; isometric logratio transformation; prin-

cipal component analysis
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1. INTRODUCTION

The statistical analysis of compositional multivariate data is a much dis-

cussed topic in the field of multivariate statistics. The data values of compo-

sitional data consist of proportions that sum up to a constant (e.g. to 100%)

for each sample. If not all variables or components have been analyzed, this

constant sum property is not directly visible in the data, but the relation be-

tween the variables is still not the real relation but a forced one. For example,

if the concentrations of chemical elements are measured in soil samples, and if

a variable like SiO2 has a big proportion of, say, 70%, then automatically the

sum of the remaining concentrations can at most be 30%. Increasing values of

SiO2 automatically lead to decreasing values of the other compounds, and even

if not all constituents of the soil have been measured, the correlations will be

mainly driven by the constant sum constraint. This restriction also leads to a

geometrical artefact of the multivariate data because the data are in fact in a

sub-space, the so called simplex sample space. The new view of this problem,

as stated in Aitchison (1986), allowed a possibility to use standard statistical

methods for the inspection of compositional data. It is based on transforma-

tions (from the family of so-called logratio transformations) of compositional

data from the simplex to the usual real space. The statistical methods are

applied to the transformed data and the results are back-transformed to the

original space.

Beginning with papers by Aitchison (1983, 1984), a lot of research was de-

voted to finding a useful transformation for compositional data in the context

of principal component analysis (PCA). The centered logratio (clr) transfor-

mation turned out to be a preferable option (Aitchison and Greenacre, 2002).

It is based on dividing each sample by the geometric mean of its values, and

taking the logarithm. The principal components (PCs) are then aimed at sum-

marizing the multivariate data structure, and subsequently they can be used

for dimension reduction. The goal of keeping the most important data infor-

mation with only few PCs can fail for data containing outliers because these

can spoil the estimation of the PCs (see, e.g., Maronna et al., 2006). This arte-
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fact arises for classical PCA where the estimation of the PCs is based on the

classical sample covariance matrix. As a solution, robust PCA uses a robust

estimation of the covariance matrix, and the PCs will still point in directions

of the main variability of the bulk of data (see, e.g., Filzmoser, 1999). This

procedure, however, does not work with clr transformed data because robust

covariance estimators usually need a full rank data matrix.

In this paper we will solve this problem by taking the isometric logratio

(ilr) transformation rather than the clr transformation (Section 2) where robust

covariance estimation is again possible (Section 3). The resulting scores and

loadings have to be back-transformed, and it is another purpose of this article

to show how this is done (Section 4). Moreover, we demonstrate at a real

data example from geochemistry how the results of classical and robust PCA,

as well as appropriately transformed or just log-transformed data can differ

(Section 5).

2. LOGRATIO TRANSFORMATIONS OF COMPOSITIONAL

DATA

As stated in Aitchison (1986), compositional or closed data are multivariate

data with positive values that sum up to a constant, usually chosen as 1. The

sample space of compositional data is thus the simplex

SD = {x = (x1, . . . , xD)′, xi > 0,
D∑

i=1

xi = 1}

where the prime stands for transpose and the simplex sample space is a D− 1

dimensional subset of RD.

Standard statistical methods can lead to useless results if they are directly

applied to original closed data. For this reason, the family of logratio transfor-

mations was introduced. It includes the additive logratio (alr) and the centered

logratio (clr) transformation (Aitchison, 1986), as well as the isometric logratio

(ilr) transformation (Egozcue et al., 2003). Since the alr transformation di-

vides the data values by a reference variable (and uses the logarithm thereof),
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the choice of this reference variable will mainly determine the results, and thus

this transformation is rather subjective.

The clr transformation is a transformation from SD to RD, and the result

for an observation x ∈ SD are the transformed data y ∈ RD with

y = (y1, . . . , yD)′ =


log

x1

D

√∏D
i=1 xi

, . . . , log
xD

D

√∏D
i=1 xi



′

, (1)

or, written in matrix notation,

y = F log(x), (2)

where

F = ID − 1

D
JD, with ID =




1 0
. . .

0 1


 , JD =




1 . . . 1
...

. . .
...

1 . . . 1


 . (3)

The matrices F , ID, and JD are all of dimension D×D. The clr transforma-

tion treats all components symmetrically by dividing by the geometric mean.

Thus it is possible to use the original variable names for the interpretation of

statistical results based on clr transformed data. The main disadvantage of

this transformation is that the resulting data are collinear because
∑D

i=1 yi = 0.

Methods that rely on full rank data matrices, like standard robust covariance

estimators (Maronna et al., 2006), will thus not be applicable.

The isometric logratio (ilr) transformation solves the problem of data collinear-

ity resulting from the clr transformation, while preserving all its advantageous

properties like isometry between the simplex and the real space (Egozcue et al.,

2003). It is based on the choice of an orthonormal basis (in the well known Eu-

clidean sense) on the hyperplane H : y1 + . . .+ yD = 0 in RD that is formed by

the clr transformation so that the compositions x ∈ SD result in non-collinear

ilr transformed data z ∈ RD−1. Egozcue et al. (2003) suggested to use the

basis

vi =

√
i

i + 1

(
1

i
, . . . ,

1

i
,−1, 0, . . . , 0

)′
for i = 1, . . . , D − 1, (4)
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resulting in the ilr transformed data z = (z1, . . . , zD−1)
′ with

zi =

√
i

i + 1
log

i

√∏i
j=1 xj

xi+1

for i = 1, . . . , D − 1. (5)

Clearly, another chosen orthonormal basis of H leads to orthogonal transfor-

mation of both the resulting data and the original data on the simplex (here in

the sense of the corresponding simplicial, so called Aitchison inner product),

see Egozcue et al. (2003).

Equations (1) and (5) can be used to express the relation between clr and

ilr transformed data in matrix notation by

y = V z (6)

where V = (v1, . . . , vD−1) is the D × (D − 1) matrix with orthonormal basis

vectors from (4) on the hyperplane H. Multiplying equation (6) from the

left-hand side with V ′ and utilizing that V ′V = ID−1 results in the inverse

relation

z = V ′y, (7)

see also Egozcue et al. (2003). This notation will be useful later on in the

context of PCA.

It is easy to see that the interpretation of the ilr transformed data is not

possible because the new D − 1 variables have no direct connection to the

original variables but they are only combinations thereof. Hence, for an inter-

pretation results like loadings and scores from PCA based on ilr transformed

data have to be back-transformed to the clr space.

3. PRINCIPAL COMPONENT ANALYSIS AND ITS

ROBUSTIFICATION

Principal component analysis (PCA) is one of the most important multivariate

statistical methods. It is widely applied for data pre-processing and dimension
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reduction, and the resulting PCs are then used for plotting or for subsequent

multivariate analyses (see, e.g., Johnson and Wichern, 2007).

The PCs are usually derived from the composition of the covariance matrix

of the n×D data matrix X with multivariate observations x′i, i = 1, . . . , n in

its rows. Hence, for the PCA transformation the location estimator T (X) and

the scatter estimator C(X) are needed. After singular value decomposition

C(X) = GxLG′
x with the diagonal matrix L of eigenvalues and the matrix

Gx of eigenvectors of C(X) we can define the PCA transformation as

X∗ = (X − 1T (X)′)Gx, (8)

where 1 denotes a vector of n ones. The matrix X∗ has obviously the same di-

mension as X. Its columns are called the scores of the j-th PC (j = 1, . . . , D).

The columns of Gx are called loadings of the j-th PC, and they represent

the influence of the original variables on the new PCs. For dimension reduc-

tion only the first few PCs are considered that cover the most important data

information.

It is crucial which estimators are used for the PCA transformation (8). For

classical PCA the location estimator T (X) is the arithmetic mean vector, and

the scatter estimator C(X) is the sample covariance matrix. Both estimators

are sensible with respect to outliers, and thus more robust counterparts can

be used, like the MCD or S estimators (see Maronna et al., 2006). In case

of the MCD (minimum covariance determinant) estimator, the location and

scatter estimators are obtained by looking for a subset of at least h observations

with the smallest determinant of their sample covariance matrix. The robust

location estimator is then the arithmetic mean of this subset, and the scatter

estimator is the sample covariance matrix of the subset, multiplied by a factor

for consistency (Rousseeuw and Van Driessen, 1999). The choice of the number

h determines both the robustness and the efficiency of the estimators. h should

at least be taken as half of the total sample size n which results in the best

resistance to outlying observations, but in a poorer efficiency. On the other

hand, if h is large, e.g. close to n, the robustness of the MCD location and

scatter estimators is poor, but the efficiency increases. A compromise is thus
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to take h approximately as 3
4
n. This choice would tolerate an outlier fraction

of about n−h
n

= 1
4

of the observations. Thus, practically one has to take care

that n−h
n

is larger than the fraction of outliers in the data, since otherwise the

estimators can become unreliable.

Since the MCD estimator is based on minimizing the determinant of the

covariance matrix of subsets of observations, it is only computable for non-

singular data with rank equal to the number of variables. There are similar

problems with other robust estimators for location and covariance. Thus, if

non-classical PCA should be undertaken for compositional data, the clr trans-

formation is not appropriate but the ilr transformation can be considered.

It should be noted that MCD or S estimators are based on elliptical sym-

metry of the data. Usually one even assumes that the data majority follows a

multivariate normal distribution. Hence, prior to applying the ilr transforma-

tion for computing robust principal components, the raw data are supposed

to follow a multivariate normal distribution on the simplex sample space (for

details, see Pawlowsky-Glahn et al., 2007).

4. ROBUST PCA FOR ISOMETRIC LOGRATIO

TRANSFORMED DATA

Given an n×D data matrix Xn,D with n compositions x′i, i = 1, . . . , n, in its

rows. Applying (2) to each row results in the clr transformed matrix

Y = log(X) F ′.

The relation

Z = Y V (9)

for the ilr transformed data matrix Z of dimension n× (D− 1) follows imme-

diately from (6) using V ′V = ID−1 (identity matrix of order D− 1) and basic

properties of matrix transposition, see e.g. Harville (1997). Using the location

estimator T (Z) and the covariance estimator C(Z) for the ilr transformed

data, the PCA transformation is defined as

Z∗ = [Z − 1T (Z)′]Gz (10)
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(compare to (8)). The (D− 1)× (D− 1) matrix Gz results from the singular

value decomposition of

C(Z) = GzLzG′
z . (11)

If the original data matrix has full rank D, the matrix Z will also have

full rank D − 1, and the MCD estimator can be used for T (Z) and C(Z),

resulting in robust principal component scores Z∗ and loadings Gz . However,

since these are no longer interpretable, we have to back-transform the results

to the clr space. Using (9) we obtain the back-transformed scores

Y ∗ = Z∗V ′. (12)

For obtaining the back-transformed loading matrix we can use again relation

(9). For an affine equivariant scatter estimator we have

C(Y ) = C(ZV ′) = V C(Z) V ′ = V GzLzG′
z V ′.

The MCD scatter estimator has the property of affine equivariance (see, e.g.,

Maronna et al., 2006), and thus the matrix

Gy = V Gz (13)

represents the matrix of eigenvectors to the nonzero eigenvalues of C(Y ) (with

the property G′
yGy = ID−1). The nonzero eigenvalues of C(Y ) are the same

as for C(Z) and consequently the explained variance with the chosen number

of principal components remains unchanged.

It is useful to display the loadings and scores together in biplots (Gabriel,

1971). The interpretation of the biplot depends on the chosen scale for loadings

and scores. For the special interpretation of biplots for compositional data in

the clr space we refer to the results of Aitchison and Greenacre (2002) and

Pawlowsky-Glahn et al. (2007).

5. EXAMPLE
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As an example for robust PCA with compositional data we use the so-called

Baltic Soil Survey (BSS) data (Reimann et al., 2003). This data set originates

from a large-scale geochemistry project carried out in northern Europe, in an

area of about 1 800 000 km2. On an irregular grid 769 samples of agricultural

soils have been collected. The samples came from two different layers, the top

layer (0-25 cm) and the bottom layer (50-75 cm). All samples were analyzed for

the concentration of more than 40 chemical compounds. The data sets of the

top and bottom layer are available in the R package mvoutlier (R development

core team, 2008) as data files bsstop and bssbot, respectively, both including

44 variables as well as x and y coordinates of the survey area.

This project was carried out to document element concentrations and spa-

tial variation in agricultural soils from northern Europe. The element distribu-

tions will not only be influenced by the underlying lithology but also by other

factors like climate, the input of marine aerosols, agricultural practice and con-

tamination. For our example we use the major elements (Al2O3, Fe2O3, K2O,

MgO, MnO, CaO, TiO2, Na2O, P2O5 and SiO2), plus LOI (Loss on ignition).

A PCA inspection of this data set should allow to better understand the re-

lations between the variables and thus the geochemical processes dominating

the element distribution in the survey area. A visualization of the results in

biplots should allow an interpretation of the relations among the compounds,

and maps of the first view PCs should show the regions where certain concen-

trations are higher or lower due to some key geochemical processes.

In geochemistry it is most often wrongly argued that the variables follow

a lognormal distribution and thus they are simply log-transformed (Reimann

and Filzmoser, 2000). Here we want to compare the PCA results of the log-

transformed data with those of the ilr transformed data, back-transformed to

the clr space (in order to be able to use compositional biplots). Moreover, a

comparison is made for classical and robust PCA. The results of these combi-

nations will be denoted by log-classical, ilr-classical, log-robust, and ilr-robust,

respectively.

Figure 1 shows the biplots of the first 2 PCs for the four considered com-
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binations classical and robust PCA for log-transformed and ilr transformed

data. The biplot for log-transformed data and classical PCA (upper left)

shows clearly the typical data closure problem because either SiO2 is high in

quartz-rich samples or LOI is very high in the organic samples from northern

Finland. Thus all other concentrations must decline and plot towards negative

loadings of PC1. Also the curve-shape configuration of the scores is typical for

data closure problems. The plot for the log-transformed robust PCA (upper

right) shows again the closure problem. Samples with very high SiO2 must

have low concentrations of the other compounds. The influence of the organic

samples is downweighted because there are much fewer samples with high LOI

(only in northern Finland) than with high SiO2. Although the plot is dom-

inated by many outliers in the scores, the PCA axes are derived in a robust

way and not essentially influenced by these outliers caused by the organic

samples. The biplot for classical PCA for the ilr transformed data (lower left)

shows that the data are now opened because the bias due to data closure has

disappeared. However, outliers can still play an important role and spoil the

correlation structure. This is no longer the case when robust PCA is applied

to the ilr transformed data (Figure 1, lower right) where the true geochemical

correlations become clearly visible. For example, K2O and SiO2 indicate the

coarse grained sediments in the southern project area with high amounts of

quartz and potassium feldspar, LOI and P2O5 an organic association (sam-

ples from northern Finland), Al2O3, CaO, and Na2O a plagioglace association,

MgO and Fe2O3 a mafic association.

In contrast to the biplots presented in Figure 1, the maps of the corre-

sponding first PCs do not differ drastically (Figure 2). The map for classical

PCA of the log-transformed data (upper left) combines the samples with high

SiO2 and the samples with high LOI against the samples that have high con-

centrations with all the other compounds. In the robust version (upper right)

the organic-rich samples play a less dominant role, they are downweighted.

The map for classical PCA on the ilr transformed data (lower left) is rather

noisy, but the robust version (lower right) shows a clear separation between
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Figure 1: Biplots of the first two PCs for the log-transformed (upper row) and

ilr transformed (lower row) BSS data using classical (left column) and robust

(right column) PCA.
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the samples from the southern and northern half of the survey area.

The maps of the second principal components (see Figure 3) show a much

clearer difference. They are straightforward to interpret using the biplots from

Figure 1. The map for PC2 (log-classical, upper left) is dominated by the

outliers in LOI (see biplot) and shows in general the location of the samples

with much organic material due to climatic (wet and cold) conditions. The

information as such is interesting, but would not need a PCA to detect. The

map for the log-robust case (upper right) shows even less structure, because

the information from the “outliers”, that provides interesting information in

the non-robust map is now also lost, only the samples in Finland with very

high organic content are still clearly marked, the coastal pattern in Norway is,

however, almost lost due to the down-weighing of the outliers. The map for

the ilr-classical case (lower left) contains much more detailed information on

“organic rich samples” in the northern countries versus coarser grained glacial

sediments in the southern project area. Finally, the map for the ilr-robust

case (lower right) shows more detail (e.g. S-tip of Norway, southern border of

Poland) than any of the other maps and actually contains really new, valuable

information for the geochemist.

The above analysis has demonstrated that robust PCA for ilr transformed

data gave the most useful and interpretable results. It is often argued that

instead of a robust statistical analysis the outliers could be removed and the

classical procedure could be applied. However, multivariate outlier detection

in case of compositional data is again not trivial (see Filzmoser and Hron,

2008), and thus an approach that is robust by itself is preferable.

Geochemical data are by definition compositional data because if all con-

stituents of a soil sample have been analyzed they must sum up to 100%. Also

in the above example the sum of the 11 compounds considered was nearly 100%

for each sample (Figure 4, left). However, even if the row sums of the data are

not constant the same problems with closure are present. Suppose that the

variable SiO2 had not been measured or included in the above example data

set. SiO2 has a median of about 70 wt.-% (weight-percent) and is thus very
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Figure 2: Maps for the first principal component scores for the log-transformed

(upper row) and ilr transformed (lower row) BSS data using classical (left

column) and robust (right column) PCA.



FILZMOSER, HRON AND REIMANN 14

PC2 (log−classical)

9.0
1.6
0.6
0.2
0.0

−0.3

Legend

PC2 (ilr−classical)

7.3
1.7
0.9
0.5
0.2

−0.1

Legend

PC2 (log−robust)

13.8
2.3
1.3
0.8
0.4
0.2

Legend

PC2 (ilr−robust)

5.2
2.2
1.5
1.0
0.5
0.1

Legend

Figure 3: Maps for the second principal component scores for the log-

transformed (upper row) and ilr transformed (lower row) BSS data using clas-

sical (left column) and robust (right column) PCA.
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Figure 4: Row sums for each observation of the original data (left) and the

original data without SiO2 (right).

dominant in most samples. When taking the reduced data matrix without

SiO2, the new row sums vary in the range 5-99 wt.-% and are far from being

constant or nearly constant (Figure 4, right). Here the same problems arise

when multivariate methods like PCA are applied. Figure 5 shows the biplots

of the first two robust PCs for the log-transformed (left) and the ilr trans-

formed (right) data. When comparing them with Figure 1 (right column)

where SiO2 was still included, more or less the same picture appears. The

closure effect is clearly visible for the analysis based on the log-transformed

data whereas the ilr transformation allows a meaningful variable configura-

tion. This demonstrates the problem of so-called subcompositions (Aitchison,

1986) which still require an appropriate transformation but where the closure

effect is not visible when inspecting row sums. This situation where the user

is not able to check (using e.g. row sums) whether the data are closed or not

is rather unfortunate. Geochemists often hoped that the problem of closure

just disappears if the major elements – or at least compounds like SiO2 (or
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Figure 5: Biplots of the first two PCs for the log-transformed (left) and ilr

transformed (right) reduced (without SiO2) BSS data using robust PCA.

LOI), that can completely dominate the composition are simply not analyzed

or not used in data analysis. Our example demonstrates that closure is an

inherent problem of geochemical data that cannot be simply overcome, it is

more a philosophical than a geochemical problem. Closure will always influ-

ence compositional data no matter how many of the elements are used or not

and independent of high or low element concentrations. Thus whenever the

data are of compositional nature (i.e. practically always in geochemistry and

environmental sciences) appropriate data transformations are recommended

prior to multivariate analysis.

6. CONCLUSIONS

Robust PCA for compositional data is not possible for the clr transformed

data if robust PCA is based on a robust covariance estimator like the MCD. A

solution is to take ilr transformed data which do not result in singularity prob-

lems for robust covariance estimation. The resulting loadings and scores have
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to be back-transformed to the clr space in order to allow for an interpretation

in terms of the original variable names.

We need to conclude that the closure problem is inherent in geochemical

data, it cannot be overcome by not including some major element in the data

analysis (or not analyzing them). It is thus suggested to always use appropriate

transformations prior to any multivariate analysis of compositional data.
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