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Abstract

Compositional data need a special treatment prior to correlation analysis. In this

paper we argue why standard transformations for compositional data are not suit-

able for computing correlations, and why the use of raw or log-transformed data is

neither meaningful. As a solution, a procedure based on balances is outlined, leading

to sensible correlation measures. The construction of the balances is demonstrated

using a real data example from geochemistry. It is shown that the considered cor-

relation measures are invariant with respect to the choice of the binary partitions

forming the balances. Robust counterparts to the classical, non-robust correlation

measures are introduced and applied. By using appropriate graphical representa-

tions it is shown how the resulting correlation coefficients can be interpreted.

Keywords Correlation analysis; ilr transformation; log-ratio transformation; Com-

positional data; Balances; Subcompositions; Amalgamation; Robust statistics

1 Introduction

Correlation analysis is popular in many applications because it is a quantitative

way to evaluate whether two or more variables are related or not. Thus, correlation

analysis allows to reduce the information contained in n observations that have

been measured on pairs or groups of data to a single number falling into a normed

interval. It is then convenient to proceed with the derived correlation coefficients

for interpreting the relations. On the other hand, depending on the data structure

and data quality, the correlation measure can be quite misleading because it can be

influenced by the skewness of the data distributions or by outliers. Transformations

of the variables, or nonparametric (Conover 1998) or robust (Maronna, Martin and

Yohai 2006) correlation measures can avoid such problems.

Great care is necessary when attempting any correlation analysis with composi-

tional data (Aitchison 1986). Compositional data are data that carry only relative
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information (Pawlowsky-Glahn, Egozcue and Tolosana-Delgado 2007), and in the

most common situation they sum up to a constant. For example, if soil samples

are completely analyzed, the concentrations of the chemical elements per sample

sum up to 1,000,000 mg/kg. More formally, a compositional vector that describes a

sample consisting of D compositions or parts is defined as

x = (x1, . . . , xD)t, xi > 0, i = 1, . . . , D

where the relevant information is contained only in the ratios between the parts

(Pawlowsky-Glahn, Egozcue and Tolosana-Delgado 2007). From this definition it

follows that (x1, . . . , xn)t and (ax1, . . . , axn)t include essentially the same informa-

tion, for any non-zero number a. A way to simplify the use of compositions is to

represent them as positive vectors, the parts of which sum up to a positive constant

value κ (usually chosen as 1 or 100 when dealing with percentages), namely as

x = (x1, . . . , xD)t, xi > 0, i = 1, . . . , D,
D∑

i=1

xi = κ.

Due to this constraint, the set of all D-parts form a simplex sample space SD, a

(D − 1)-dimensional subset of the real space RD.

The above mentioned indicates that the closure constant κ is not the key aspect,

but that the scale is important, what makes the problem when using standard

correlation measures. These are based on variances and covariances that are defined

for the Euclidean space and not for the simplex. For instance, the mean minimizes

the expected squared distance and the variance the expected squared distance from

the mean. A further problem is the presence of negative bias in the covariance

structure on the simplex (Aitchison 1986), represented by the relation

cov(x1, x2) + cov(x1, x3) + . . . + cov(x1, xD) = −var(x1).

This artifact was already noted by Pearson (1897). Using standard correlation anal-

ysis for compositional data thus leads to such undesirable properties like scale de-

pendence and subcompositional incoherence. The latter means that if not all parts

of the compositional data are available but only a subcomposition, the correlation

between compositional parts depends on the subcomposition used. So, if two teams

have measured only some parts out of all available compositions, then the correla-

tion matrices computed from the common parts of the data are in general different

(Aitchison 1986).

It can be concluded at this point that prior to applying correlation analysis,

compositional data first need to be transformed into an appropriate sample space.

In geochemistry the distribution of element concentrations are often very skewed,

and it is argued that a logarithmic transformation symmetrizes or even normalizes
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the distribution, a requirement that is not a “must” but a recommendation for

computing and interpreting Pearson correlation coefficients (Reimann and Filzmoser

2000). However, even after log-transformation the compositional nature remains

inherent in the data, and the derived correlation coefficients could thus be severely

misleading.

A family of transformations, the so-called logratio transformations (= logarithms

of ratios) has been introduced to transform compositional data to an unconstrained

real space (Aitchison 1986). The alr (additive logratio) transformation builds on

logratios to a single reference variable. Unfortunately, the alr transformation is not

isometric, which means that distances are not preserved. The clr (centered logratio)

transformation is an isometric transformation and is defined by the logratio to the

geometric mean of all variables. This avoids the selection of a ratio variable like for

alr, and simplifies the interpretation of the transformed variables, because one could

think in terms of the original variables. However, also here problems arise in the

context of correlation analysis, because correlations between them cannot be inter-

preted as correlations between the original variables. There are further arguments

against the use of the clr transformation: the transformed data are singular and

subcompositionally incoherent. The former property is a result from the definition

of clr (Aitchison 1986).

The ilr (isometric logratio) transformation (Egozcue et al. 2003) solves the prob-

lem of data collinearity resulting from the clr transformation, while preserving all

its advantageous properties like isometry. It is based on the choice of an orthonor-

mal basis (in the well known Euclidean sense) in the hyperplane formed by the clr

transformation. For an appropriate choice of the basis also the problem of sub-

compositional incoherence can be avoided (Egozcue and Pawlowsky-Glahn 2005).

Correlations computed from the ilr transformed data can, however, not be inter-

preted in the sense of the original variables, because the ilr variables (basis vectors)

are related to the original variables only through non-linear functions (Egozcue et

al. 2003). In general, there is also no way to transform the correlations back to

the original space. One can, however, choose different bases by considering non-

overlapping groups of the original variables (Egozcue and Pawlowsky-Glahn 2005).

The results of the procedure to construct such a new basis are called sequential bi-

nary partitions, and the constructed basis vectors are called balances. The balances

can be viewed as new variables with the property that they represent both groups

of parts and relations between the groups. Additionally, the relative information

contained in the non-overlapping groups is separated from the relations between the

groups. Correlation analysis can then be applied to the balances representing the

separated groups.

In this paper we will follow the ideas of Egozcue and Pawlowsky-Glahn (2005) by
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using balances for computing correlations, which seems to be the only sensible way

of applying correlation analysis to compositional data. For choosing the balances,

either expert knowledge or the compositional biplot (Pawlowsky-Glahn, Egozcue

and Tolosana-Delgado 2007) can be used. We extend the use of correlations for

pairs of balances to multiple correlations, relating single balances with groups of

balances, and to group correlations, relating two groups of balances. Moreover, we

will present robust versions of these correlation measures.

The paper is organized as follows. In Section 2 the idea of sequential binary

partitioning to construct balances is explained in more detail by using a real data

example. Section 3 reminds the reader about the different correlation measures

and robustified versions thereof. A result is presented that proofs the invariance of

the correlation measures to different choices of the sequential binary partitions. In

Section 4 applications to real data are presented, and the final Section 5 concludes.

2 Balances and compositional data

We want to define correlation coefficients between the balances by using a well-

known data set from geochemistry, the so-called Kola data (Reimann et al. 1998).

These data contain the concentrations of more than 50 chemical elements in about

600 soil samples taken at the Peninsula Kola. At each sample site four different

layers of soil have been analyzed. The complete data set is available in the R library

StatDA (R Development Core Team 2008). Here we use the analytical results from

the O-horizon.

Considering the arguments of Section 1, correlation analysis is only possible

for groups of at least two parts. Interesting groups are parts reflecting effects like

pollution, seaspray, bioproductivity, etc. Various statistical analyses of these data

(see, e.g., Reimann et al. (2008)) have been indicative for the group assignments

shown in Table 1. The group reflecting bioproductivity (B) consists of the elements

forming contamination (C) and mineralization (M), all other groups consist of non-

overlapping elements.

Table 1 about here.

Table 1 contains 12 different elements or parts in the simplex, and this informa-

tion can be expressed with 11 dimensions that will form the balances. Additionally,

since the groups of parts should be separated for correlation analysis, we need to

construct balances describing each group. A group consisting of k parts can be

described by k − 1 balances. So, for group P we need two balances, for group S

two balances, for C three balances, and for group M one balance is required. The

remaining three balances contain the information that are linking the groups, like

one balance that links groups C and M to form group B.
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The above procedure to construct the balances is described in detail in Pawlowsky-

Glahn, Egozcue and Tolosana-Delgado (2007). It is possible to present the sequential

binary partitions and the resulting balances in table form (see Table 2).

Table 2 about here.

The main idea for the construction of sequential binary partitions is as follows.

We start with all parts of the composition (here 12 parts), and at each order of the

partition a group in the previous level is subdivided into two subgroups: those with

label + and the other ones with label −. In Table 2 the balance z11 separates all

parts into two groups. The group with labels + is separated in the next level by

balance z10 into two further subgroups, and so on. The empty entries in Table 2

have the meaning that these parts are not involved in the partition at this order.

The resulting balances z1 and z2 describe the relative information within group P ,

z3 and z4 are for group S, group C is described by the balances z6, z7, and z8, and

balance z9 is for mineralization (group M). Bioproductivity (B) which combines

groups C and M is formed by balances z5 to z9. The remaining balances z10 and z11

contain relative information about the relation between the groups, and they will

not be of interest for the correlation analysis of the groups.

The symbols used in Table 2 refer to the rules for computing the balances. The

general formula is

zi =

√
rs

r + s
ln

(
∏

+ xj)
1
r

(
∏
− xk)

1
s

for i = 1, . . . , D − 1, (1)

where the products
∏

+ and
∏
− only include parts coded with + and −, and r and

s are the numbers of positive and negative signs (parts) in the i-th order partition,

respectively (see Egozcue and Pawlowsky-Glahn (2006) for details). Using this gen-

eral formula, the formulas for our balances z1 to z9 of interest can be derived directly

from Table 2 and are shown in Table 3.

Table 3 about here.

The sequential binary partitions always describe separated groups of parts. How-

ever, the construction procedure suggests the use of parts rather than groups of parts

and to find a correlation-like measure for two chosen parts xi and xj, 1 ≤ i, j ≤
D, i 6= j. According to (1) the resulting balance is 1√

2
ln xi

xj
. Since the balance is uni-

variate, a sensible “correlation measure” is the variance, called normalized variation

(Pawlowsky-Glahn, Egozcue and Tolosana-Delgado 2007),

τij = var

(
1√
2
ln

xi

xj

)
. (2)
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This measure does not depend on the scale of the data. A small value of (2) is

obtained if the ratio xi/xj is nearly constant. This indicates a strong relationship

between i-th and j-th part, because samples with high values at xi will also have high

values at xj and vice versa (for regional data this will result in very similar maps for

the two parts). On the other hand, the measure τij gets larger the more dissimilar

xi and xj are (maps show different patterns). The measure in general increases even

more if there is an opposite behavior of the parts, meaning that samples with high

values at xi will have low values at xj and vice versa (one map is the “negative” of

the other map). For this reason, τij is not working like a usual correlation measure.

Also the normalized version exp(−τij) which transforms the values to the interval

[0,1] (Buccianti and Pawlowsky-Glahn, 2005) does not give the results we would

expect from “correlation analysis”.

3 Correlation measures and robust estimation

With the procedure of Section 2 we obtain G separated groups of parts, where

each group consists of g1, g2, . . . , gG ilr variables. Let p denote the number of these

balances, i.e. p = g1 + . . . + gG, and z = (z1, . . . , zp)
t the corresponding random

variables. Moreover, the groups of parts are denoted by the random variables zk =

(zg1 , . . . , zgk
)t, for k = 1, . . . , G.

The population covariance matrix of all balances describing the groups is the

p × p matrix Σ = cov(z). The covariance between two balances zi and zj is the

value cov(zi, zj), and the covariance between a balance zi and a group zk is the

vector cov(zi,zk) of length gk.

For correlation analysis we distinguish among three different cases (see, e.g.,

Johnson and Wichern (2007)):

Correlation between two balances: A measure of linear dependency of two ran-

dom variables zi and zj (for 1 ≤ i, j ≤ p) is the well known correlation coeffi-

cient, defined as

ρzi,zj
=

cov(zi, zj)√
var(zi) var(zj)

.

This measure is normed to the interval [-1,1], with 0 indicating no linear rela-

tion, and 1 (-1) for perfect positive (negative) linear relation. We can express

the squared correlation coefficient as

ρ2
zi,zj

= 1− |Σ∗|
var(zi) var(zj)

with Σ∗ =


 var(zi) cov(zi, zj)

cov(zj, zi) var(zj)




where |Σ∗| denotes the determinant of Σ∗.
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Correlation between a balance and a group: A measure of linear relationship

between a random variable zi and a group of random variables zk is the multiple

correlation coefficient ρzi,zk
. This measure falls into the range [0,1] where 0

indicates no linear relationship and 1 perfect linear relation. The square of

the multiple correlation coefficient is defined as

ρ2
zi,zk

=
cov(zi,zk)Σ

−1
k cov(zk, zi)

var(zi)
,

where Σk = cov(zk). An equivalent formulation is

ρ2
zi,zk

= 1− |Σ∗|
|Σk| var(zi)

with Σ∗ =


 var(zi) cov(zi, zk)

cov(zk, zi) cov(zk)


 .

Correlation between two groups: The definition of the multiple correlation co-

efficient can be extended to the group correlation coefficient ρzk,zl
for two

random vectors zk and zl by defining its square as

ρ2
zk,zl

= 1− |Σ∗|
|Σk| |Σl| with Σ∗ =


 cov(zk) cov(zk, zl)

cov(zl,zk) cov(zl)


 ,

where Σk = cov(zk) and Σl = cov(zl) (see Anděl (1978), p. 309, and Anderson

(1958)). This straightforward extension is less well-known, but there is a link to

the more frequently used canonical correlation analysis (CCA). CCA not only

measures the linear relation between two multivariate data sets, but searches

for latent variables – so-called canonical variates – in each of the data groups

such that the scores on the latent variables have maximal correlation (see, e.g.,

Johnson and Wichern (2007)). There exists a subspace of solutions which has

dimension r = min(gk, gl). The results are r pairs of uncorrelated score vectors

for both groups, each leading to a maximal correlation ρf , for f = 1, . . . , r.

These correlations are called canonical correlation coefficients, and there exists

the relation

ρ2
z1,z2

= 1− (1− ρ2
1)(1− ρ2

2) · · · (1− ρ2
r).

So, the group correlation summarizes all canonical correlation coefficients by

one number in the interval [0,1]. Note that this summary measure is also

closely related to the form of the test statistic used for testing uncorrelatedness

between two groups of data (Johnson and Wichern 2007).

An important question in this context is whether the choice of the sequential

binary partition will alter the resulting correlation coefficients or not. For example,

in Table 2 the groups of parts could have been defined differently by choosing the ilr

vectors in a different way (e.g. exchange “−” and “+”). Consequently, the formulas
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for computing the balances (Table 3) would change. The following theorems state

that the resulting correlations will remain the same, and the proofs are given in the

Appendix.

Theorem 1: The correlation coefficient, the multiple correlation coefficient, and the

group correlation coefficient are invariant with respect to the choice of the sequential

binary partition for the representation of given groups of parts.

Theorem 2: The canonical correlation coefficients are invariant with respect to the

choice of the sequential binary partition for the representation of given groups of

parts.

For given data, all three correlation measures can immediately be computed once

the covariance matrix Σ∗ has been estimated, because the correlation measures use

sub-matrices of Σ∗ in their definition. The classical way of estimating the covariance

matrix of q-dimensional observations yi, i = 1, . . . , n, is the sample covariance ma-

trix, given by 1
n−1

∑n
i=1(yi−ȳ)(yi−ȳ)t, where ȳ is the arithmetic mean vector of the

observations yi. For many practical situations, the quality of this estimation can be

poor, especially in case of outlying observations or inhomogeneous data. There are

several proposals for a robust estimation of the covariance with the common idea

that outliers are downweighted in the estimation procedure (Maronna, Martin and

Yohai 2006). A frequently used method for this purpose is the minimum covariance

determinant (MCD) estimator (Rousseeuw and Van Driessen 1999). The MCD es-

timator looks for a subset h out of n observations with the smallest determinant

of their sample covariance matrix. A robust estimator of covariance is the sample

covariance matrix of these h observations, multiplied by a factor for consistency at

normal distribution. The subset size h can vary between half the sample size and

n, and it will determine the robustness of the estimator, but also its efficiency.

From the robust estimator of Σ∗ the sub-matrices that are needed in the defini-

tion of the correlation measures can be extracted. The resulting correlation measures

are robust in a sense that they can resist a certain amount of outlying observations.

4 Application and results

In the following we will use the groups from the Kola O-horizon data (see Ta-

ble 1) to illustrate the use of the correlations measures and their robust versions.

The groups, resulting from expert knowledge, will be represented by the balances

constructed in Table 2 and computed according to the formulas of Table 3. It is

possible to choose the balances for the same groups differently, however, this would

leave the resulting correlation measures unchanged (see Theorems 1 and 2). The

balances represent
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• z1, z2 −→ pollution P ,

• z3, z4 −→ seaspray S,

• z6, z7, z8 −→ contamination C,

• z9 −→ mineralization M

and the groups C and M together form bioproductivity B. The results for the

classical (non-robust) and robust group correlations are displayed in Table 4 as well

as the first and second (classical and robust) canonical correlation coefficients. The

multiple correlation coefficient between the groups C and M is 0.17 if classically

estimated, and 0.09 if robustly estimated.

Table 4 about here.

Although it is convenient to obtain a single number that expresses the linear

relation, it is difficult to interpret these relations. For example, there is a relatively

strong linear relationship between the groups seaspray S and bioproductivity B,

and there is also an interesting difference between classical and robust estimation

(see Table 4). What is the meaning of the relation, and what is the reason for

this difference? The first question can be answered by inspecting the canonical

variates for both groups, i.e. the projection directions used within the first and

within the second group that were responsible for finding the best possible linear

relations between the groups. The first canonical variates are the following linear

combinations:

Group S: 2.6z3 −1.3z4 (classical)

2.9z3 +2.0z4 (robust)

Group B: −1.2z5 −0.5z6 +2.4z7 +1.4z8 −1.5z9 (classical)

−1.7z5 −1.8z6 +3.2z7 +0.7z8 −1.9z9 (robust)

Some balances have stronger, some have weaker influence to the projection direc-

tions, some have positive, and some have negative influence. There is also a cer-

tain change from classical to robust estimation. However, since the balances are

only mathematical constructions, it is impossible to find any interpretation for the

canonical variates.

Another possibility for gaining more insight into the results is the use of appropri-

ate plots. It is natural to visualize the projection of the data onto the first canonical

variates. This corresponds to one score vector in the first group and one in the sec-

ond group, which result in the maximum correlation among all possible projection

directions. This plot for the groups S and B is shown in Figure 1. The left plot

is for the classical analysis, the right for robust canonical correlation analysis based
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on robust covariance estimation using the MCD estimator. In the right plot we also

used different symbols (+) for the multivariate outliers that were identified with

the MCD estimator and downweighted for the analysis. Obviously, those observa-

tions are downweighted that are not following the joint covariance structure of both

groups, and this has the effect of a higher robust canonical correlation coefficient

(0.54 for the robust analysis compared to 0.44 for the classical analysis).

Figure 1 about here.

A sensible interpretation of the results can be obtained by presenting the results

in a geographical map. For this reason, we use different symbols for the plots shown

in Figure 1 in order to highlight the observations that are responsible for the linear

relation. The first classical canonical correlation coefficient between the groups

is the same as the usual Pearson correlation between the scores shown in Figure

1 (left) (and similar for the robust counterparts with the outliers downweighted).

We can thus partition the data points shown in the plots at the cooordinate-wise

medians into 4 quadrants: points in the upper right and lower left quadrant will

increase the correlation measure, and points in the other 2 quadrants will decrease

the measure. This fact comes from the definition of the covariance cov(x, y) =

E[(x−E(x))(y−E(y))]. We are interested in the points that allow for a high relation,

and thus these points obtain a special symbol in Figure 2, with the symbol size

according to the Mahalanobis distance from the center. In contrast to the Euclidean

distance, the Mahalanobis distance (Mahalanobis 1936) is a distance measure that

accounts for the covariance structure (see Filzmoser and Hron (2008) for its usage

in the context of compositional data), and points with high Mahalanobis distance

will be most influential to an increase of the correlation coefficient. Figure 2 (left)

shows the same picture as Figure 1, but with the modified symbols. These symbols

are also used in the right plot of Figure 2 representing the geographical map of the

Kola project area. Figure 3 shows the corresponding plots for the robust analysis,

with the outliers highlighted by the symbol “+”. In both analyses we can see high

influence for an increase of the correlation measure of observations located at the

coast in the north of the area. It is known that seaspray decreases from north to

south, and that bioproductivity increases from south to north. The industrial centers

around Monchegorsk and Zapoljarnij in the east, and around Nikel in the north are

disturbing this relation. The robust analysis finds many outliers in these regions (see

Figure 3, right) and thus leads to a more stable analysis. Also in the south-west we

can find (grey) points with high influence on the increase of the correlation measure.

This is an area where both factors, seaspray and bioproductivity, are very low.

Figure 2 about here.
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Figure 3 about here.

In a similar way we could present the results for the other groups in order to

gain more insight into their relations.

In the remaining part of this section we will compare the above approach based

on the balances with the results when the compositional nature of the considered

data would simply be ignored. In this case one would probably check the distribution

of the variables and apply a log-transformation because the variables are all right-

skewed. Canonical correlation analysis (classical and robust) can then be applied

to the log-transformed data. As a result one can expect a different value of the

correlation coefficient, and the practitioner has to decide which of the results makes

more sense. Besides a theoretical/mathematical argumentation it may be convincing

to inspect and compare biplots (Gabriel 1971) of the log-transformed data and of the

balances. Figure 4 (left) shows the biplot of the considered log-transformed Kola

O-horizon data. Although the relations between the variables reflect the groups

summarized in Table 1, the overall correlation structure is distorted, because all

arrows representing the variables in Figure 4 (left) are arranged in a half-plane.

This is the typical outcome when ignoring the compositional nature of the data, and

the correlation measures will be unrealistic in general. The biplot shown in Figure

4 (right) is based on a robust covariance estimation based on the MCD (see, e.g.,

Reimann et al. 2008), and it shows the same effect. Thus, robust estimation is not

helpful in this case, and one has to use an appropriate approach like the construction

of balances. Figure 5 presents the biplots (left plot for classical estimation, right

plot for robust estimation) for the balances constructed according to Table 2 and 3.

The effect of distorted variable relations is no longer visible. Because of the presence

of outliers, a robust treatment of the data will be more reliable.

Figure 4 about here.

Figure 5 about here.

5 Conclusions

Compositional data need a special treatment for correlation analysis. The appli-

cation of correlation measures to the raw data or to log-transformed data is inap-

propriate because of the geometry of compositional data. In this paper we presented

an approach based on balances. It was shown that the considered correlation mea-

sures are invariant with respect to the choice of the sequential binary partitions for

defining the balances. It is, however, important to use all balances of a group rather

than single balances for the computation of the correlation.
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One might argue that the groups that are described by the balances can not

always be clearly defined and separated from each other. For the Kola data ex-

ample used in this paper the groups were based on expert knowledge, but there

are probably also other influential elements for the groups, and there could even

be elements affecting two or more groups. This seems to be a weak point in the

concept of balances, and even if balances are constructed with compositional biplots

(Pawlowsky-Glahn, Egozcue and Tolosana-Delgado 2007), it will in general not be

possible to define the groups in a unique way.

Although the procedure for constructing the balances is more demanding than

other standard transformations, it is strictly defined and easy to program. The ex-

ample in Section 4 has shown that the use of log-transformed data for correlation

analysis – which is frequently done in geochemistry and other fields dealing with

compositional data – can lead to biased variable relations and thus to unrealistic

correlation measures. In contrast to the above mentioned procedure based on bal-

ances, a log-transformation does not respect the nature of compositional data. Thus

a statistical analysis for log-transformed data has no theoretical background and can

be completely misleading. But even an appropriate analysis based on balances can

be misleading in case of outliers. In this case a robust procedure will give a reliable

answer.
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Proof of Theorem 1: A different choice of the sequential binary partition corre-

sponds to orthogonal transformations of the balances representing nonoverlapping

groups. Let z1 and z2 be the random variables that represent two different nonover-

lapping groups with g1 and g2 balances, respectively. Denote their covariance ma-

trices by Σz1 = cov(z1) and Σz2 = cov(z2). Furthermore, let P i (i = 1, 2) be an

orthogonal matrix with gi, such that P iP
t
i = P t

iP i = I, where I is the identity

matrix. An orthogonal transformation of zi is then given by wi = P izi, and the

resulting covariance matrix is Σwi
= cov(wi). The determinant of this covariance

matrix is

|Σwi
| = |P iΣzi

P t
i| = |P i| |Σzi

| |P t
i| = |Σzi

|,
using the property that |P i| = ±1 and |P t

i| = ∓1 which comes from the orthogonal-

ity of the matrix P i (see, e.g., Harville (1997), Corollary 13.3.5). Now consider the

joint random vectors z = (zt
1,z

t
2)

t and w = (wt
1, w

t
2)

t and their covariance matrices

Σz = cov(z) and Σw = cov(w), respectively. From the sequential binary partition

procedure which constructs nonoverlapping groups it is clear that the covariance

matrix of w equals

Σw =


 P 1 0

0 P 2


 Σz


 P t

1 0

0, P t
2


 ,

with 0 being a matrix of zeros of the corresponding order. Since the matrix


 P 1 0

0 P 2




is orthogonal, we have again |Σw| = |Σz |. So, all quantities needed for the group

correlation coefficient remain unchanged.

The proof for the correlation coefficient and for the multiple correlation coeffi-

cient is analogous. 2

Proof of Theorem 2: We use the same notation as for the proof of Theorem 1.

Additionally, the covariance between the two random vectors z1 and z2 is denoted

by Σz1,z2 = cov(z1,z2) = Σt
z2,z1

. Then the covariance matrix of w can be written

as

Σw =


 Σw1 Σw1,w2

Σw2,w1 Σw2


 =


 P 1 0

0 P 2


×

×

 Σz1 Σz1,z2

Σz2,z1 Σz2





 P t

1 0

0 P t
2


 =


 P 1Σz1P

t
1 P 1Σz1,z2P

t
2

P 2Σz2,z1P
t
1 P 2Σz2P

t
2


 .

Since the canonical correlation coefficients are the square roots of the eigenvalues of

the matrix product Σ
−1/2
z1

Σz1,z2Σ
−1
z2

Σz2,z1Σ
−1/2
z1

, we have to show that the matrix
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product Σ
−1/2
w1

Σw1,w2Σ
−1
w2

Σw2,w1Σ
−1/2
w1

has the same eigenvalues (see, e.g., John-

son and Wichern (2007)). Using the properties P t
iP i = I and Σ−1

zi
= Σ

−1/2
zi

Σ
−1/2
zi

for i = 1, 2, the inverse of the covariance matrix of wi can be written as

Σ−1
wi

= (P iΣzi
P t

i)
−1 = P iΣ

−1
zi

P t
i = (P iΣ

−1/2
zi

P t
i)(P iΣ

−1/2
zi

P t
i) = Σ

−1/2
wi

Σ
−1/2
wi

.

It follows that

|Σ−1/2
w1

Σw1,w2Σ
−1
w2

Σw2,w1Σ
−1/2
w1

− λI| =
|P 1Σ

−1/2
z1

P t
1P 1Σz1,z2P

t
2P 2Σ

−1
z2

P t
2P 2Σz2,z1P

t
1P 1Σ

−1/2
z1

P t
1 − P 1λIP t

1| =
= |Σ−1/2

z1
Σz1,z2Σ

−1
z2

Σz2,z1Σ
−1/2
z1

− λI|
which completes the proof. 2
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Figure Captions

Figure 1 Data projected on the first canonical variates: horizontal axes for sea-

spray S, vertical axes for bioproductivity B; left plot for classical, and right plot

for robust canonical correlation analysis. The symbols “+” in the right plot refer to

multivariate outliers.

Figure 2 Data projected on the first classical canonical variates shown with

special symbols that emphasize the increase of the correlation coefficient (compare

Figure 1) (left), and map using the same symbols (right).

Figure 3 Data projected on the first robust canonical variates shown with special

symbols that emphasize the increase of the correlation coefficient (compare Figure

1) (left), and map using the same symbols (right).

Figure 4 Biplots of the log-transformed Kola O-horizon data. Left: biplot based

of classical covariance estimation; right: biplot based on robust covariance estima-

tion.

Figure 5 Biplots of the constructed balances for Kola O-horizon data. Left:

biplot based of classical covariance estimation; right: biplot based on robust covari-

ance estimation.
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Figure 1: Data projected on the first canonical variates: horizontal axes for seaspray

S, vertical axes for bioproductivity B; left plot for classical, and right plot for

robust canonical correlation analysis. The symbols “+” in the right plot refer to

multivariate outliers.
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Figure 2: Data projected on the first classical canonical variates shown with special

symbols that emphasize the increase of the correlation coefficient (compare Figure

1) (left), and map using the same symbols (right).
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Figure 3: Data projected on the first robust canonical variates shown with special

symbols that emphasize the increase of the correlation coefficient (compare Figure

1) (left), and map using the same symbols (right).
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Figure 4: Biplots of the log-transformed Kola O-horizon data. Left: biplot based of

classical covariance estimation; right: biplot based on robust covariance estimation.
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Figure 5: Biplots of the constructed balances for Kola O-horizon data. Left: biplot

based of classical covariance estimation; right: biplot based on robust covariance

estimation.
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Table 1: Group assignments for elements of the Kola O-horizon data

Group Elements

Pollution (P ) Co, Cu, Ni

Seaspray (S) Mg, Na, S

Contamination (C) As, Bi, Cd, Sb

Mineralization (M) Ag, Pb

Bioproductivity (B) As, Bi, Cd, Sb, Ag, Pb

Table 2: Sequential binary partitions and resulting balances of the elements of the

Kola O-horizon data.

balance Co Cu Ni Mg Na S As Bi Cd Sb Ag Pb

z1 + + −
z2 + −
z3 + + −
z4 + −
z5 + + + + − −
z6 + + − −
z7 + −
z8 + −
z9 + −

z10 + + + − − −
z11 + + + + + + − − − − − −

Table 3: Formulas for computing the balances describing the groups of the Kola

O-horizon data. These new “variables” will be used for correlation analysis.

balance z1 z2 z3 z4

formula
√

2√
3
ln (x1x2)

1
2

x3

1√
2
ln x1

x2

√
2√
3
ln (x4x5)

1
2

x6

1√
2
ln x4

x5

balance z5 z6 z7 z8

formula 2√
3
ln (x7x8x9x10)

1
4

(x11x12)
1
2

ln (x7x8)
1
2

(x9x10)
1
2

1√
2
ln x7

x8

1√
2
ln x9

x10

balance z9 z10 z11

formula 1√
2
ln x11

x12

√
3√
2
ln (x1x2x3)

1
3

(x4x5x6)
1
3

√
3 ln

∏6

i=1
x

1
6
i∏12

j=7
x

1
6
j
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Table 4: Group correlations, and first and second canonical correlation coefficients

for the groups of the Kola O-horizon data; robust correlations are provided in the

lower left parts, and classical correlations in the upper right parts.

Group corr. 1st can. corr. 2nd can. corr.

Group P S B P S B P S B

P − 0.24 0.59 − 0.24 0.50 − 0.05 0.37

S 0.32 − 0.46 0.34 − 0.44 0.18 − 0.14

B 0.67 0.56 − 0.55 0.54 − 0.48 0.24 −


