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Abstract

A new method for multivariate outlier detection able to distinguish between extreme values of a normal distribution

and values originating from a different distribution (outliers) is presented. To facilitate visualising multivariate outliers

spatially on a map, the multivariate outlier plot, is introduced. In this plot different symbols refer to a distance measure

from the centre of the distribution, taking into account the shape of the distribution, and different colours are used to

signify the magnitude of the values for each variable. The method is illustrated using a real geochemical data set from

far-northern Europe. It is demonstrated that important processes such as the input of metals from contamination

sources and the contribution of sea-salts via marine aerosols to the soil can be identified and separated.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The detection of data outliers and unusual data

structures is one of the main tasks in the statistical

analysis of geochemical data. Traditionally, despite the

fact that geochemistry data sets are almost always

multivariate, outliers are most frequently sought for

each single variable in a given data set (Reimann et al.,

2005). The search for outliers is usually based on

location and spread of the data. The higher (lower) the

analytical result of a sample, the greater is the distance

of the observation from the central location of all

observations; outliers thus, typically, have large dis-
e front matter r 2004 Elsevier Ltd. All rights reserve
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tances. The definition of an outlier limit or threshold,

dividing background data from outliers, has found

much attention in the geochemical literature and to date

no universally applicable method of identifying outliers

has been proposed (see discussion in Reimann et al.,

2005). In this context, background is defined by the

properties, location and spread, of geochemical samples

that represent the natural variation of the material being

studied in a specific area that are uninfluenced by

extraneous and exotic processes such as those related to

rare rock types, mineral deposit forming processes, or

anthropogenic contamination. In geochemistry, outliers

are generally observations resulting from a secondary

process and not extreme values from the background

distribution. Samples where the analytical values are

derived from a secondary process—be it mineralisation

or contamination—do not need to be especially high

(or low) in relation to all values of a variable in a data

set, and thus attempts to identify these samples with

classical univariate methods commonly fail. However,
d.
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this problem often may be overcome by utilising the

multivariate nature of most geochemical data sets.

In the multivariate case not only the distance of an

observation from the centroid of the data but also the

shape of the data have to be considered. To illustrate

this, two variables with normal distributions having a

defined correlation (Fig. 1) are simulated. The estimated

central location of each variable is indicated by dashed

lines (their intersection marks the multivariate centre or

centroid of the data).

In the absence of a prior threshold (Rose et al., 1979)

a common practice of geochemists is to identify some

fraction, often 2%, of the data at the upper and lower

extremes for further investigation. Today this is

achieved by direct estimation of the percentiles and

visual (EDA) inspection of the data. When computers

were not widely available an approximation of the

97.5th percentile was obtained by estimating the mean

and standard deviation (SD) for each variate and

computing the value of mean 72SD. The 2% limits

are indicated by dotted lines on Fig. 1. If candidates for

outliers are defined to be observations falling in the

extreme 2% fractions of the univariate data for each

variable, the rectangle visualised with bold dots sepa-

rates potential outliers from non-outliers. This proce-

dure ignores the elliptical shape of the bivariate data and

therefore it is not effective.

The shape and size of multivariate data are quantified

by the covariance matrix. A well-known distance
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Fig. 1. Simulated standard normally distributed data with a

predetermined correlation. Dashed lines mark locations

(means) of variates, ellipses correspond to 0.25, 0.50, 0.75 and

0.98 quantiles of chi-squared distribution, and bold dotted lines

to 2nd and 98th empirical percentiles for individual variables.

Hence, inner rectangular (bold dotted lines) can be considered

for univariate outlier recognition, outer ellipse for multivariate

outlier identification.
measure which takes into account the covariance matrix

is the Mahalanobis distance. For a p-dimensional

multivariate sample x1; . . . ; xn the Mahalanobis distance

is defined as:

MDi :¼ ððxi � tÞTC�1ðxi � tÞÞ1=2 for i ¼ 1; . . . ; n, (1)

where t is the estimated multivariate location and C the

estimated covariance matrix. Usually, t is the multivariate

arithmetic mean, the centroid, and C is the sample

covariance matrix. For multivariate normally distributed

data the values MD2
i are approximately chi-square

distributed with p degrees of freedom ðw2pÞ: By setting

the (squared) Mahalanobis distance equal to a certain

constant, i.e. to a certain quantile of w2p; it is possible to

define ellipsoids having the same Mahalanobis distance

from the centroid (e.g, Gnanadesikan, 1977).

Fig. 1 illustrates this for the bivariate normally

distributed data. The ellipses correspond to the quantiles

0.25, 0.50, 0.75 and 0.98 of w22: Points lying on an ellipse

thus have the same distance from the centroid. This

distance measure takes the shape of the data cloud into

account and has potential for more reliably identifying

extreme values.

Multivariate outliers can now simply be defined as

observations having a large (squared) Mahalanobis

distance. As noted above for the univariate case, when

no prior threshold is available a certain proportion of the

data or quantile of the normal distribution is selected for

identifying extreme samples for further study. Similarly,

in the multivariate case a quantile of the chi-squared

distribution (e.g., the 98% quantile w2p;0:98) could be

considered for this purpose. However, this approach has

several shortcomings that will be investigated in this

paper. The Mahalanobis distances need to be estimated

by a robust procedure in order to provide reliable

measures for the recognition of outliers. In the geochem-

ical context what is required is a reliable estimate of the

statistical properties of natural background. Using robust

estimates that remove (trim) or downweight extreme

values in a population is an effective, if conservative,

solution. It is conservative to the extent that if there are in

fact no outliers the only consequence is that the true

variability (variance–covariance) of the data will be

underestimated. Furthermore, by selecting a fixed quan-

tile for outlier identification there is no adjustment for

different sample sizes. To address this situation an

adaptive outlier identification method has been devel-

oped. Finally, the multivariate outlier plot is introduced as

a helpful tool for the interpretation of multivariate data.
2. The robust distance (RD)

The Mahalanobis distance is very sensitive to the

presence of outliers (Rousseeuw and Van Zomeren,
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Fig. 2. Scatterplot of loge(Be) and loge(Sr). Covariance is

visualised by tolerance ellipses. Non-robust estimation (dotted

ellipse) leads to a Pearson correlation coefficient of 0.66, robust

procedure (solid ellipse) estimates a Pearson correlation of 0.18

for core population, i.e. weight of 1, identified by MCD

procedure.
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1990). Single extreme observations, or groups of

observations, departing from the main data structure

can have a severe influence on this distance measure.

This is somewhat obscure because the Mahalanobis

distance should be able to detect outliers, but the same

outliers can heavily affect the Mahalanobis distance.

The reason is the sensitivity of arithmetic mean and

sample covariance matrix to outliers (Hampel et al.,

1986). A solution to this problem is well-known in

robust statistics: t and C in Eq. (1) have to be estimated

in a robust manner, where the expression ‘robust’ means

resistance against the influence of outlying observations.

Many robust estimators for location and covariance

have been introduced in the literature, for a review see

Maronna and Yohai (1998). The minimum covariance

determinant (MCD) estimator (Rousseeuw, 1985) is

probably most frequently used in practice, partly

because it is a computationally fast algorithm (Rous-

seeuw and Van Driessen, 1999).

The MCD estimator is determined by that subset of

observations of size h which minimises the determinant

of the sample covariance matrix, computed from only

these h points. The location estimator is the average of

these h points, whereas the scatter estimator is propor-

tional to their covariance matrix. As a compromise

between robustness and efficiency, a value of h � 0:75n

(n is the sample size) will be employed in this study.

The choice of h also determines the robustness of the

estimator. The breakdown value of the MCD estimator

is approximately ðn � hÞ=n; with h � 0:75n the break-

down is approximately 25%. The breakdown value is

the fraction of outliers that when exceeded will lead to

completely biased estimates (Hampel et al., 1986).

Using robust estimators of location and scatter in the

formula for the Mahalanobis distance Eq. (1) leads to

the so-called robust distances (RDs). Rousseeuw and

Van Zomeren (1990) used these RDs for multivariate

outlier detection. If the squared RD for an observation

is larger than, say, w22;0:98; it can be declared a candidate

outlier.

This procedure is illustrated using real data from the

Kola project (Reimann et al., 1998). Fig. 2 shows the

plot of Be and Sr determined in C-horizon soils. Using

the arithmetic mean and the sample covariance matrix in

Eq. (1) it is possible to construct the ellipse correspond-

ing to the squared Mahalanobis distance equal to w22;0:98:
This ellipse (often called a tolerance ellipse) is visualised

as a dotted line in Fig. 2. It identifies the extreme

members of the bivariate population and its shape

reflects the structure of the covariance matrix. By

computing the RDs with the MCD estimator another

tolerance ellipse (solid line in Fig. 2) can be constructed

using the same quantile, w22;0:98: It is clearly apparent that
many more points in the upper right of Fig. 2 are

identified as candidate outliers. These outliers cause the

elongated orientation and shape of the dotted ellipse
through their influence on the classical non-robust

computation. This influence is also reflected in the

resulting correlation coefficients. Whereas the Pearson

correlation based on the classical estimates is 0.66, the

robust correlation based on the MCD estimator is only

0.18. The next step would be an appropriate visualisa-

tion of the outliers in a map in order to support the

geochemical interpretation of the observations. This will

be demonstrated later for other examples. The high

correlation of Be and Sr in Fig. 2 is due to a few samples

of soil developed on alkaline rocks that display

unusually high concentrations of both these elements.

The high non-robust correlation coefficient is thus an

inappropriate estimate for the majority of the data as it

is unduly influenced by true outliers (due to completely

different geology).
3. Multivariate outliers or extremes?

In the univariate case, Reimann et al. (2005) pointed

out the difference between extremes of a distribution

and true outliers. Outliers are thought to be observa-

tions coming from one or more different distributions,

and extremes are values that are far away from the

centre but which belong to the same distribution. In an

exploratory univariate data analysis it is convenient to

start with simply identifying all extreme observations as

extreme. It is an important aim of data interpretation to
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identify the different geochemical processes that influence

the data. Only in doing so can the true outliers be

identified and differentiated from extreme members of the

one or more background populations in the data. This

distinction should also be made in the multivariate case.

In the previous section the assumption of multivariate

normality was implicitly used because this led to chi-

square distributed Mahalanobis distances. Also for the

RD this assumption was used, at least for the majority

of data (depending on the choice of h for the MCD

estimator). Defining outliers by using a fixed threshold

value (e.g., w2p;0:98) is rather subjective because
(1)
 If the data should indeed come from a single

multivariate normal distribution, the threshold

would be infinity because there are no observations

from a different distribution (only extremes);
(2)
 There is no reason why this fixed threshold should be

appropriate for every data set; and
(3)
 The threshold has to be adjusted to the sample size

(see Reimann et al., 2005; and simulations below).
A better procedure than using a fixed threshold is to

adjust the threshold to the data set at hand. Garrett

(1989) used the chi-square plot for this purpose, by

plotting the squared Mahalanobis distances (which have

to be computed on the basis of robust estimations of

location and scatter) against the quantiles of w2p; the most

extreme points are deleted until the remaining points

follow a straight line. The deleted points are the

identified outliers, the multivariate threshold corre-

sponds to the distance of the closest outlier, the farthest

background individual, or some intermediate distance.

Alternately, the cube root of the squared Mahalanobis

distances may be plotted against normal quantiles (e.g.,

Chork, 1990). This procedure (Garrett, 1989) is not

automatic, it needs user interaction and experience on

the part of the analyst. Moreover, especially for large

data sets, it can be time consuming, and also to some

extent it is subjective. In the next section a procedure

that does not require analyst intervention, is reprodu-

cible and therefore objective, and takes the above points,

(1)–(3), into consideration is introduced.
4. Adaptive outlier detection

The chi-square plot is useful for visualising the

deviation of the data distribution from multivariate

normality in the tails. This principle is used in the

following. Let Gn uð Þ denote the empirical distribution

function of the squared robust distances RD2
i ; and let

G uð Þ be the distribution function of w2p: For multivariate

normally distributed samples, Gn converges to G.

Therefore the tails of Gn and G can be compared to
detect outliers. The tails will be defined by d ¼ w2p;1�a for

a certain small a (e.g., a ¼ 0:02), and

pn dð Þ ¼ sup
uXd

G uð Þ � Gn uð Þð Þ
þ (2)

is considered, where + indicates the positive differences.

In this way, pn dð Þ measures the departure of the

empirical from the theoretical distribution only in the

tails, defined by the value of d: pn dð Þ can be considered as

a measure of outliers in the sample. Gervini (2003) used

this idea as a reweighting step for the robust estimation

of multivariate location and scatter. In this way, the

efficiency (in terms of statistical precision) of the

estimator could be improved considerably.

pn dð Þ will not be directly used as a measure of outliers.

As mentioned in the previous section, the threshold

should be infinity in case of multivariate normally

distributed background data. This means, that if the

data are coming from a multivariate normal distribu-

tion, no observation should be declared as an outlier.

Instead, observations with a large RD should be seen as

extremes of the distribution. Therefore a critical value

pcrit is introduced, which helps to distinguish between

outliers and extremes. The measure of outliers in the

sample is then defined as

anðdÞ ¼
0 if pnðdÞppcritðd; n; pÞ;

pnðdÞ if pnðdÞ4pcritðd; n; pÞ:

(
(3)

The threshold value is then determined as cn dð Þ ¼

G�1
n 1� an dð Þð Þ:
The critical value pcrit for distinguishing between

outliers and extremes can be derived by simulation. For

different sample sizes n and different dimensions (num-

bers of variables) p data from a multivariate normal

distribution are simulated. Then Eq. (2) is applied for

computing the value pn dð Þ for a fixed value d (in the

simulations d ¼ w2p;0:98 is used). The procedure is repeated
1000 times for every considered value of n and p.

To directly compute the limiting distribution of the

statistic defined by Eq. (2) would be a more elegant way

for determining the critical value. However, even for

related simpler problems Csörgo+ and Révész (1981,

Chapter 5) note that this is analytically extremely

difficult and they recommend simulation.

The resulting values give an indication of the

differences between the theoretical and the empirical

distributions, G uð Þ � Gn uð Þ; if the data are sampled from

multivariate normal distributions. To be on the safe side,

the 95% percentile of the 1000 simulated values can be

used for every n and p, and these percentiles are shown

for p ¼ 2; 4, 6, 8, 10 by different symbols in Fig. 3. By

transforming the x-axis by the inverse of
ffiffiffi
n

p
it can be

seen that—at least for larger sample size—the points lie

on a line (see Fig. 3). The lines in Fig. 3 are estimated by

least trimmed sum of squares (LTS) regression (Rous-

seeuw, 1984). Using LTS regression the less precise



ARTICLE IN PRESS
P. Filzmoser et al. / Computers & Geosciences 31 (2005) 579–587 583
simulation results for smaller sample sizes have less

influence. The slopes of the different lines (the intercept

is 0 because for n tending to infinity the difference

between empirical and theoretical distribution is 0) are

shown in Fig. 4. The resulting points can again be

approximated by a straight line, which allows definition

of the critical value as a function of n and p:

pcritðd; n; pÞ ¼
0:24� 0:003pffiffiffi

n
p for pp10. (4)

For larger dimension (p410) the same procedure can be

applied. The 95% percentiles of 1000 simulated values

for different sample sizes and dimensions are shown in

Fig. 5. The linear dependency becomes worse for high
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Fig. 3. Simulated critical values according to Eq. (2) for

multivariate normal distributions with different sample sizes (x-

axis) and dimensions p. Linear trends for dimensions plotted,

and increasing sample size, are indicated by lines.
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Fig. 4. Slopes of lines from Fig. 3 plotted against dimension p.

Line is an estimation of linear trend, and leads to Eq. (4).
dimension and low sample size. The estimated slopes

form a linear trend (Fig. 6) and the resulting approx-

imative formula is

pcritðd; n; pÞ ¼
0:252� 0:0018pffiffiffi

n
p for p410. (5)
5. Example

To test the procedure, data from the Kola project

(Reimann et al., 1998) are again used. The objective is to

identify outliers in the O-horizon (organic surface soil)
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Fig. 5. Simulated critical values analogous to Fig. 3, but for

higher dimensions (p410).
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data caused by industrial contamination from Ni-

smelters. A combination of two typical contaminant

elements (Co and Cu), three minor contaminants (As,

Cd and Pb) and two elements that are not part of the

emission spectrum of the Ni-smelters (Mg and Zn) are

used as a test data set. Magnesium is influenced by a

second major process in the study area, the steady input

of marine aerosols near the Arctic coast. This leads to a

build-up of Mg in the O-horizon, and this process can be

detected for more than 100 km inland (Reimann et al.,

2000). Thus the test-task is to detect outliers in the

seven-dimensional space at the basis of 617 observa-

tions. The procedure for adaptive outlier detection is

illustrated in Fig. 7. The solid line is the distribution

function of w27: Robust squared distances RD2
i on the

basis of the MCD estimator are computed, and their

empirical distribution function, Gn; is represented by

small circles. According to Eq. (2) the task is to find the

supremum of the difference between these two functions

in the tails. With d ¼ w27;0:98 ¼ 16:62 (dotted line in Fig.

7) a supremum of pnðdÞ ¼ 0:1026 is obtained. Eq. (4)

gives a critical value pcrit d; n; pð Þ ¼ 0:0088; which is

clearly lower than the above supremum. For this reason

it can be assumed that large RD come from at least one

different distribution. From Eq. (3) the measure of

outliers is 10.26%, corresponding to 65 outliers. The

resulting threshold value cn dð Þ ¼ 18:64 is slightly larger

than d; and presented in Fig. 7 as a dashed line. This new

threshold value is called the adjusted quantile.
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Fig. 7. Adaptive outlier detection rule for Kola O-horizon

data: In tails of distribution (chosen as w27;0:98 and indicated by a

dotted line) we search for supremum of positive differences

between distribution function of w27 (solid line) and empirical

distribution function of RD2
i (small circles). Resulting value is

adjusted quantile (dashed line) that separates outliers from non-

outliers.
6. Visualisation of multivariate outliers

An important issue is the visualisation of multivariate

outliers, in the simplest case it is possible to plot them on

a map. On a map, clusters of outliers would indicate that

some regions have a completely different data structure

than others. Fig. 8 shows the multivariate outliers for

the above example on such a map, using the symbol +

for outliers. Two clusters of outliers occur in Russia. As

expected, they mark the two large industrial centres at

Monchegorsk and Nikel with neighbouring Zapoljarnij.

There are a number of outliers in the northwestern,

Norwegian part of the region. This is an almost pristine

area with little industry and a low population density

(see Reimann et al., 1998). At a first glance it is perhaps

surprising to find outliers in this area. The detection of

outliers due to contamination was the prime objective of

the investigation. However, multivariate outliers are not

only observations with high values for every variable,

more importantly they are observations departing from

the dominant data structure. In the case of a data set of

contamination-related variables, outliers also could be

observations with very low values for the contamina-

tion-related elements, indicating extremely clean (less-

contaminated) regions. The reality is that Mg is highly

enriched in marine aerosols and thus enriched in the O-

horizon of podzols along the Norwegian coast, and in

this remote near-pristine area the levels of the contam-

ination related elements are within normal background

ranges or low. Thus the reason for the Norwegian coast

outliers is apparent, but Fig. 8 makes no distinction

between contamination and pristine coastal multivariate

outliers.
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Fig. 8. Map showing regular observations (circles) and

identified multivariate outliers (+).
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Fig. 9 provides an alternative presentation to Fig. 8.
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The above demonstrates the necessity for developing a

more effective way of visualising multivariate outliers.

Firstly, it should be possible to provide a better

visualisation of the distribution of the RDs, and

secondly, it is desirable to distinguish between outliers

with extremely low values and outliers having very high

values of the variables.

Both features are fulfilled with the visualisation in

Fig. 9, the multivariate outlier plot. The simulated two-

dimensional data set in Fig. 9 represents a background

and an outlying population. The RDs were computed

and—similar to Fig. 1—three inner tolerance ellipses

(dotted lines) are shown for 0.25, 0.5, and 0.75 quantiles

of w22: The outer ellipse corresponds to the threshold

cn dð Þ with d ¼ w22;0:98 of the adaptive outlier detection

method. Values in the inner ellipse, which are at the

centre of the main mass of the data, are represented by a

small dot. Observations between the 0.25 and 0.5

tolerance ellipses are shown by a larger dot. Going

further outwards, a small circle is used as a symbol, and

the most distant non-outliers are plotted as a small plus.

Finally, multivariate outliers that are outside the outer

tolerance ellipse are represented by a large plus.

For the second feature, i.e. distinguishing between

different types of outliers, a colour (heat) scale that

depends on the magnitude of the values for each variable

is used. Low values are depicted in blue, and high values

in red. More specifically, the colour scale is chosen
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Fig. 9. Preparation for multivariate outlier plot: five different

symbols are plotted depending on value of RD. Five classes are

defined by tolerance ellipses (dotted lines) for chi-squared

quantiles 0.25, 0.5, and 0.75, and outlier threshold of adaptive

outlier detection method. Colour of symbols varies continu-

ously from smallest to largest values for every variable. Thus,

observations lying on one dashed curve have the same colour.
according to the Euclidean distances (dashed lines) of

the scaled observations from the coordinate-wise mini-

mum, such that all coordinates have the same influence

on the symbol colour. This procedure is illustrated in

Fig. 9 for the Euclidean distances of the simulated data.

Applying the above visualisation technique to the O-

horizon soil data gives the multivariate outlier plot in

Fig. 10. Indeed, the spatial distribution of the RDs

becomes much clearer with the different symbols, and

the colour scale is very helpful in distinguishing the

different types of multivariate outliers. Two outlier

clusters are proximal to the industrial centres at

Monchegorsk and Nikel. Obviously, high values for

most of the variables occur there, and hence give an

indication of heavy contamination. The northern region

of the investigated area also includes many multivariate

outliers, but the symbols are in blue or green. This

region is not at all contaminated and exhibits low values

of the contaminant elements, and this combined with the

input of sea spray (Mg) as a locally important process

results in the outliers. The proposed visualisation

permits discrimination between these very different

families of outliers.
7. From multivariate back to univariate

With the help of good visualisation for multivariate

outliers it is easier to explain their structure and

interpret the geochemical data. To support interpreta-

tion it is useful to visualise the multivariate outliers for

every single variable. Highlighting the multivariate

outliers on the maps for every single element could



ARTICLE IN PRESS

-4

-2

0

10

C
en

te
re

d 
an

d 
sc

al
ed

 d
at

a

As Cd Co Cu Mg Pb Zn

2

4

6

8

Fig. 11. Plot of single elements for Kola O-horizon data, with

same symbols as used in Fig. 10.

P. Filzmoser et al. / Computers & Geosciences 31 (2005) 579–587586
achieve this. It is possible to use the same symbols as in

the multivariate outlier plot to provide important

information about the structure of these outliers.

For exploratory investigations, however, it is infor-

mative to have an overview of the position of the

multivariate outliers within the distribution of the single

elements. To achieve this we can simply plot the values

of the elements and use the same symbols and colours as

in the multivariate outlier plot. See Fig. 11 for the Kola

O-horizon data. All variables are presented as a series of

vertically scaled parallel bars, where the values are

scattered randomly in the horizontal direction (one-

dimensional scatter plot). Since the original values of the

variables have very different data ranges, the data were

first centred and scaled for this presentation by using the

robust multivariate estimates of location and scatter. In

this way the different variables can be easily compared.

This visualisation provides insight into the data struc-

ture and quality. As in the multivariate outlier plot, the

multivariate outliers are presented by large symbols +

for every variable. Not unsurprisingly in the light of the

previous discussion, the multivariate outliers occur over

the complete univariate data ranges, and not only at the

extremes. Moreover, extremely low values, e.g., for Pb,

which seem to be univariate outliers are not necessarily

multivariate outliers. The explanation can be found by

looking at the simulation example, Fig. 9, again, where

the lowest values for the x-axis are not multivariate

outliers but members of the main data structure.
8. Conclusions

An automated method to identify outliers in multi-

variate space was developed and demonstrated with real
data. In the univariate case it is often very difficult to

identify data outliers originating from a second or other

rare process, rather than extreme values in relation to

the underlying data of the more common process(es).

Extreme values can be easily detected due to their

distance from the core of the data. If they originate from

the underlying data they are of little interest to the

exploration or environmental geochemist because they

will neither identify mineralisation nor contamination.

In contrast, in the multivariate case it is necessary also to

consider the shape of the data, its structure, in the

multivariate space and all the dependencies between the

variables. Thus the really interesting data outliers,

caused by additional, rare processes, can be easily

identified.

Not surprisingly the identified multivariate outliers in

the test data set consisting of seven variables and 617

samples are often not the univariate extreme values. In

the context of Fig. 1, they are equivalent to the distant

off-axis individuals in the middle of the data range, e.g.,

the individual at (�1,1). The map of the multivariate

outliers clearly identifies contaminated sites and those

affected by the input of marine aerosols near the coast as

regionally important processes causing different data

outlier populations.

Although multivariate outlier identification is impor-

tant for thorough data analysis, the task of interpreta-

tion goes beyond that first step as the researcher is also

interested in identifying the geochemical processes

leading to the data structure. A crucial point, however,

is that multivariate outliers are not simply excluded from

further analysis, but that after applying robust proce-

dures which reduce the impact of the outliers the outliers

are actually left in the data set. Working in this way

permits the outliers to be viewed in the context of the

main mass of the data, which facilitates an appreciation

of their relationship to the core data. In this context, the

data analyst should use a variety of procedures, often

graphical, to gain as great an insight as possible into the

data structure and the controlling processes behind the

observations. For example, since factor analysis (like

many other multivariate methods) is based on the

covariance matrix, a robust estimation of the covariance

matrix will reduce the effect of (multivariate) outlying

observations (Chork and Salminen, 1993; Reimann

et al., 2002) and lead to a data interpretation centred

on the dominant process(es). Furthermore, when a

single dominant process is present the factor loadings

may be interpretable in the context of that process.

When non-robust procedures are used in the presence of

multiple processes factor analysis often behaves more

like a cluster analysis procedure. In such cases the factor

loadings provide little or no information on the internal

structure of the processes, but define a framework for

differentiating between them. Both applications have

merit, the latter in exploratory data analysis, and the
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former in more detailed studies. Unfortunately, the

EDA approach is often misused for a detailed process

study, leading to questionable conclusions.

We conclude that proper exploratory data analysis

and outlier recognition plays an essential part in the

interpretation of geochemical data, and we suggest, data

from other geoscience and physical science studies.

The method has been implemented in the free statistical

software package R (see http://cran.r-project.org/). It is

available as a contributed package called ‘‘mvoutlier’’,

and it contains all the programs to the proposed methods

and additionally valuable data sets from geochemistry,

like the Kola data (Reimann et al., 1998) and data from

Northern Europe (Reimann et al., 2003).
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