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Abstract Many different methods for statistical data editing can be found in the literature
but only few of them are based on robust estimates (for example such as BACON-EEM,
Epidemic algorithms (EA) and Transformed rank correlation (TRC) methods of Béguin and
Hulliger). However, we can show that outlier detection is only reasonable if robust methods
are applied, because the classical estimates are themselves influenced by the outliers. Nev-
ertheless, data editing is essential to check the multivariate data for possible data problems
and it is not deterministic like the traditional micro editing where all records are extensively
edited manually using certain rules/constraints. The presence of missing values is more a
rule than an exception in business surveys and poses additional severe challenges to the out-
lier detection. First we review the available multivariate outlier detection methods which can
cope with incomplete data. In a simulation study, where a subset of the Austrian Structural
Business Statistics is simulated, we compare several approaches. Robust methods based on
the Minimum Covariance Determinant (MCD) estimator, S-estimators and OGK-estimator
as well as BACON-BEM provide the best results in finding the outliers and in providing a
low false discovery rate. Many of the discussed methods are implemented in the R pack-
age rrcovNA which is available from the Comprehensive R Archive Network (CRAN) at
http://CRAN.R-project.org under the GNU General Public License.
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1 Introduction

Outliers are present in virtually every data set in any application domain, and the identifi-
cation of outliers has a hundred years long history. Much research has been done and many
definitions for an outlier exist (see for example Barnett and Lewis, 1994) but it is sufficient
to say that outliers are observations (not necessary errors) that are found far away from the
main body of the data and do not follow an assumed model. The multivariate aspect of the
data collected in surveys makes the task of outlier identification particularly challenging.
The outliers can be completely hidden in one or two dimensional views of the data. This
underlines that univariate outlier detection methods are useless, although they are favored
in the National Statistical Offices (NSO) because of their simplicity. Outlier detection and
robust estimation are closely related (see Hampel et al, 1986; Hubert et al, 2008) and the
following two problems are essentially equivalent:

– Robust estimation: find an estimate which is not influenced by the presence of outliers
in the sample.

– Outlier detection: find all outliers, which could distort the estimate.

A solution of the first problem allows us to identify the outliers using their robust residuals
or distances while on the other hand, if we know the outliers we could remove or down-
weight them and then use the classical estimation methods. In many research areas the first
approach is the preferred one but for the purposes of official statistics the second one is more
appropriate. Therefore the focus in the present work is on using robust methods to identify
the outliers which can be treated in the traditional way afterwards.

NSOs often correct the collected data in detail which is usually not necessary, because small
errors from small enterprises have almost no effect on the ultimately published aggregated
results (see Granquist, 1997). This process is highly time-consuming and resource inten-
sive and often requires a significant part of the costs of the whole survey. Furthermore, this
process is error-prone, because editing rules determined by subject matter specialists may
destroy the multivariate structure of the data and in case of survey data, sampling errors may
cause that correct data entries are marked as uncorrect by deterministic rules (see also, De
Waal, 2009).

To improve the editing process, techniques such as selective editing (see, e.g., Lawrence and
McKenzie, 2000), automatic editing (De Waal, 2003; Fellegi and Holt, 1976) and macroedit-
ing (see, e.g., Granquist, 1990) can be applied instead of the traditional microediting ap-
proach, where all records are extensively edited manually (see also, De Waal, 2009). Au-
tomatic editing is done by formulating a framework for both, the automatic construction of
implicit edits and a linear programming algorithm to edit the data in an optimized manner
automatically (Fellegi and Holt, 1976) using heuristic approaches for large data sets. While
this approach is perfectly suited for editing categorical data, outlier detection seems to be
preferable when editing continuous or semi-continuous scaled variables. Selective editing is
closely related to the concept of the influence function in robust statistics (in both concepts
the effect of each observation on an estimator is measured), i.e. selective editing detects
those statistical units which highly influence one (or a few) pre-defined measure(s). How-
ever, usually many different estimates are obtained from the same data set and those outliers
which do only have high influence on the measures as used in the selective editing process
are not detected.
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The aim of outlier detection in the survey context is to detect outliers in a multivariate space
in general. The detected outliers may be representative or non-representative (Chambers,
1986), i.e. the procedure can flag as outliers not only measurement errors but also correct
entries which do have an abnormal behaviour compared to the main bulk of the data. In other
words, outliers do not need to be errors but, if they are, they can have a large influence on
the estimates and it is reasonable to detect them. Fortunately great reduction of costs in the
statistical editing process is possible by outlier detection (see also Luzi et al, 2007) which
helps for understanding the quality of the data and contributes to ending up with accept-
able estimations and aggregates. After the outliers are identified the statistical agencies have
information which statistical units should be analysed and possibly corrected. In business
surveys they usually contact those outlying enterprises where they cannot explain the abnor-
mality of the behaviour of these enterprises in the underlying data set.

In contrast to univariate outliers, multivariate outliers are not necessarily extreme along a
single coordinate. They could deviate from the multivariate structure formed by the major-
ity of the observations. To illustrate this we will consider the well-known bushfire data
set which was used by Campbell (1989) to locate bushfire scars and was studied in detail
by Maronna and Yohai (1995). It is available from the R package robustbase and is a com-
plete data set consisting of 38 observations in 5 dimensions. In the left panel of Figure 1
a scatter-plot of the variables V2 and V3 is shown which reveals most of the outliers - the
two clusters 33-38 and 7-11. The estimated central location of each variable is indicated by
dashed-dotted lines and their intersection represents the multivariate centroid of the data.
The dotted lines are at the 2nd and 98th empirical percentiles for the individual variables.
A univariate outlier detection would declare as candidates the observations falling outside
the rectangle visualized with bold dotted lines. Such a procedure would ignore the elliptical
shape of the bivariate data. The bivariate data structure can be visualized by Mahalanobis
distances, which depend on the center and the covariance (see Equation (1) below). Certain
quantiles (e.g. 0.25, 0.50, 0.75 and 0.98) will result in tolerance ellipses of the correspond-
ing size. It is, however, crucial how location and covariance are estimated for this purpose.
Both the univariate and the multivariate procedures illustrated in the left panel of Figure 1
are based on classical estimates of location and covariance and therefore they fail to iden-
tify the outliers in the data. The right panel of Figure 1 shows the same picture but robust
estimates of location and covariance are used (here we used the MCD estimator, see below).
All outliers lie clearly outside the ellipse corresponding to the 0.98th quantile.

In sample survey data the outliers do not come alone, but are almost always ”accompanied“
by missing values, large data sets, sampling weights, mixture of continuous and categorical
variables, to name some of the additional challenges and these pose severe requirements on
the estimators. Survey data are usually incomplete and we assume that the data are missing
at random (MAR) (Little and Rubin, 1987), i.e. the missing values depend only on observed
data. This is a weaker assumption than the missing completely at random (MCAR) mech-
anism when the missingness is unrelated to the observed data. In the setting of business
surveys we do not know for certain if MAR holds and in general it is not possible to test if
MAR holds for a particular data set, nevertheless it is possible to use exploratory data anal-
ysis tools like these provided in the R package VIM to investigate the nature of the process
generating the missing values (see Section 4.2). We could expect departures from MAR, but
the pragmatic approach would be to expect at the same time that these departures would
not be serious enough to cause the performance of MAR-based methods to be seriously de-
graded as pointed out by Schafer and Graham (2002), see also Luzi et al (2007). Schafer
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Fig. 1 Example of multivariate outliers: the variables V2 and V3 of the bushfire data set. Dashed-dotted
lines mark the centers of the variables, and ellipses represent the 0.25, 0.50, 0.75 and 0.98 quantiles of the
Mahalanobis distances. The bold dotted lines are the 2nd and 98th empirical percentiles of the individual
variables. Location and covariance in the left panel are estimated by the sample mean and covariance matrix
while in the right panel a robust alternative is used.

and Graham (2002), page 173, recommend, although other procedures could be occasion-
ally useful too, to apply likelihood-based procedures, which are appropriate under general
MAR conditions.

One of the unique features of the outlier detection problem in the analysis of survey data
is the presence of sampling weights. For example, in business surveys the sample design is
defined in such a way that the sampling units (e.g. enterprises or establishments) with large
size (large number of employees or high turnover) are selected with high probability (often
selected in ”take-all“ strata) while the small sized ones are sampled with low probability (see
for example Hidiroglou and Lavallée, 2009). The sampling weights are (calibrated) inverses
of these (inclusion) probabilities. These sampling weights will be used in the estimation
procedure and therefore cannot be left unaccounted for in the phase of data cleaning and
outlier detection.

These challenges are probably the reason why multivariate outlier detection methods are
rarely applied to sample survey data. One of the exceptions is Statistics Canada (Franklin
et al, 2000; Franklin and Brodeur, 1997) where a robust method for multivariate outlier de-
tection was used in the Annual Wholesale and Retail Trade Survey (AWRTS). This method
is based on a robust version of principal component analysis using robust estimates of mul-
tivariate location and covariance obtained from the Stahel-Donoho estimator (SDE) (Stahel,
1981a; Donoho, 1982). Several robust methods are investigated in the EUREDIT project
(EUREDIT Project, 2004) which aims at improving the efficiency and the quality of auto-
matic methods for statistical data editing and imputation at NSOs. These robust methods are
further developed by Béguin and Hulliger (2004, 2008) and will be considered also in the
present study.

This paper is organized as follows. In Section 2 the general outlier detection framework
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is presented and the available algorithms are briefly reviewed. Their applicability to in-
complete data is discussed and their computational performance is compared in Section 3.
Section 4 presents an example based on a well-known complete data set with inserted simu-
lated missing data and continues with a simulation study which mimics a real data set from
Statistics Austria. Section 5 presents the availability of the software discussed so far and
Section 6 concludes.

2 Algorithms for outlier detection

2.1 General principles

A general framework for multivariate outlier identification in a p-dimensional data setX =

(x1, . . . ,xn) is to compute some measure of the distance of a particular data point from the
center of the data and declare as outliers those points which are too far away from the center.
Usually, as a measure of “outlyingness” for a data point xi, i = 1, . . . , n, a robust version
of the (squared) Mahalanobis distance RD2

i is used, computed relative to high breakdown
point robust estimates of location T and covariance C of the data set X:

RD2
i = (xi − T )tC−1(xi − T ) (1)

The most common estimators of multivariate location and scatter are the sample mean x̄ and
the sample covariance matrix S, i.e. the corresponding ML estimates (when the data follow
a normal distribution). These estimates are optimal if the data come from a multivariate
normal distribution but are extremely sensitive to the presence of even a few outliers in the
data. The outlier identification procedure based on x̄ and S will suffer from the following
two problems (Rousseeuw and Leroy, 1987):

1. Masking: multiple outliers can distort the classical estimates of mean x̄ and covariance
S in such a way (attracting x̄ and inflating S) that they do not get necessarily large
values of the Mahalanobis distance, and

2. Swamping: multiple outliers can distort the classical estimates of mean x̄ and covariance
S in such a way that observations which are consistent with the majority of the data get
large values for the Mahalanobis distance.

In the last several decades much effort was devoted to the development of affine equivariant
estimators possessing a high breakdown point. The most widely used estimators of this type
are the Minimum Covariance Determinant (MCD) estimator and the Minimum Volume El-
lipsoid (MVE) estimator, S-estimators and the Stahel-Donoho estimator. These estimators
can be configured in such a way as to achieve the theoretically maximal possible breakdown
point of 50% which gives them the ability to detect outliers even if their number is as much
as almost half of the sample size. If we give up the requirement for affine equivariance,
estimators like the orthogonalized Gnanadesikan-Kettenring (OGK) estimator are available
and the reward is an extreme gain in speed. For definitions, algorithms and references to the
original papers it is suitable to use Maronna et al (2006). Most of these methods are imple-
mented in the R statistical environment (R Development Core Team, 2009) and are available
in the object-oriented framework for robust multivariate analysis (Todorov and Filzmoser,
2009).

After having found reliable estimates for the location and covariance matrix of the data
set, the second issue is to determine how large the robust distances should be in order to
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declare a point an outlier. The usual cutoff value is a quantile of the χ2 distribution, like
D0 = χ2p(0.975). The reason is that if X follows a multivariate normal distribution, the
squared Mahalanobis distances based on the sample mean x̄ and sample covariance matrix
S follow χ2p distribution (see for example Johnson and Wichern, 2002, p. 189). This will no
more be valid if robust estimators are applied and/or if the data have other than multivariate
normal distribution. In Maronna and Zamar (2002) it was proposed to use a transformation
of the cutoff value which should help the distribution of the squared robust distances RD2

i

to resemble χ2 for non-normal original data:

D0 =
χ2p(0.975)med(RD

2
1, . . . , RD

2
n)

χ2p(0.5)
. (2)

For other alternatives which could lead to more accurate cutoff value see Filzmoser et al
(2005); Hardin and Rocke (2005); Cerioli et al (2009); Riani et al (2009).

A drawback of all so far considered methods is that they work only with complete data
which is not a usual case when dealing with sample surveys. In the next two subsections we
describe and introduce methods that are able to cope with missing values.

2.2 Algorithms based on imputation

Robustifying the EM algorithm. Little and Smith (1987) were the first to propose a robust
estimator for incomplete data by replacing the MLE in the M-step of the EM algorithm (see
Dempster et al, 1977) by an estimator belonging to the general class of M-estimates Huber
(1981) and called this procedure ER-estimator. They suggested to use as a starting point
for the ER algorithm ML estimation where the missing values were replaced by the median
of the corresponding observed data. Unfortunately, the breakdown point of this estimator,
as of all general M-estimates cannot be higher than 1/(p + 1) (see for example Maronna
et al, 2006, p. 186) which renders it unusable for the purpose of outlier detection. Copt
and Victoria-Feser (2004) constructed a high breakdown point estimator of location and
covariance for incomplete multivariate data by modifying the MCD estimator and using it
as a starting point not for an ER algorithm but for an S-estimator, adapted to work with
incomplete data. They call this estimator ERTBS. An implementation of this procedure was
available by the authors in the form of a compiled shared library but it did not perform as
well as expected and was excluded from further investigations in this work.

Normal imputation followed by high-BP estimation. A straightforward strategy for adapt-
ing estimators of location and covariance to work with missing data is to perform one pre-
liminary step of imputation and then run any of the above described algorithms, like for
example MCD, OGK, S and Stahel-Donoho (SDE) on the complete data. Many different
methods for imputation have been developed over the last few decades and here we will
consider a likelihood-based approach such as the before mentioned expectation maximiza-
tion (EM) imputation method (Dempster et al, 1977) assuming the underlying model for
the observed data is Gaussian. This method is able to deal with MCAR and MAR missing
values mechanism. For Gaussian data the EM algorithm starts with some initial values for
the mean and the covariance matrix and iterates through imputing missing values (impu-
tation step) and re-estimating the mean and the covariance matrix from the complete data
set (estimation step). The iteration process stops when the maximum relative difference in
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all of the estimated means, variances or covariances between two iterations is less than or
equal to a given value. The estimated in this way parameters are used to draw the missing
elements of the data matrix under the multivariate normal model (all further necessary de-
tails about the Gaussian imputation can be found in Schafer, 1997, Sections 5.3 and 5.4).
We are tempted to call this class of methods for example PM-MCD (poor man’s MCD), etc.
but for the sake of simplicity we will call them simply MCD, S, SDE, etc. meaning the high
breakdown method applied to complete data and at the same time this method applied to
normally (non-robustly) imputed data. Whenever another method for imputation precedes
the high breakdown estimation method, like the robust sequential imputation described in
the next Section, the corresponding notation will be used. In this way we can adapt also
projection based algorithms like SIGN1 (Filzmoser et al, 2008).

The next step after estimating reliably the location T and covariance matrix C is to com-
pute the robust distances from the incomplete data. For this purpose we have to adapt Equa-
tion (1) to use only the observed values in each observation xi and then to scale up the
obtained distance. We rearrange the variables if necessary and partition the observation xi
into xi = (xoi,xmi) where xoi denotes the observed part and xmi - the missing part of the
observation. Similarly, the location and covariance estimates are partitioned, so that we have
T oi and Coi as the parts of T and C which correspond to the observed part of xi. Then

RD2
oi = (xoi − T oi)

tC−1oi (xoi − T oi) (3)

is the squared robust distance computed only from the observed part of xi. If xi is uncon-
taminated, follow a multivariate normal distribution, and if the missing values are missing at
random, then the squared robust distance given by Equation (3) is asymptotically distributed
as χ2pi

where pi is the number of observed variables in xi (see Little and Smith, 1987).

The MCD estimator is not very efficient at normal models, especially if h is selected so that
maximal breakdown point (BP) is achieved (Croux and Haesbroeck, 1999), and the same is
valid for the OGK estimator (Maronna et al, 2006, p. 193, 207). To overcome the low effi-
ciency of these estimators, a reweighted version can be used (see Lopuhaä and Rousseeuw,
1991; Lopuhaä, 1999). For this purpose a weight wi is assigned to each observation xi, de-
fined as wi = 1 if RD2

oi ≤ χ2pi,0.975 and wi = 0 otherwise, relative to the raw estimates
(T,C) and using Equation (3). Then the reweighted estimates are computed as

TR =
1

ν

n∑
i=1

wixi,

CR =
1

ν − 1

n∑
i=1

wi(xi −TR)(xi −TR)t, (4)

where ν is the sum of the weights, ν =
∑n

i=1 wi. Since the underlying data matrix is
incomplete, the EM algorithm is used to compute TR and CR. These reweighted estimates
(TR,CR) which have the same breakdown point as the initial (raw) estimates but better
statistical efficiency are computed and used by default for the methods MCD and OGK.

Robust sequential imputation followed by high-BP estimation. Since we assume that out-
liers are present in the data we could expect an improvement of the performance of the
previously described methods if the non-robust Gaussian imputation is substituted by a ro-
bust imputation technique that can handle simultaneously missing and outlying values. One
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such method was proposed by Vanden Branden and Verboven (2009) (RSEQ), extending the
sequential imputation technique (SEQimpute) of Verboven et al (2007) by robustifying
some of its crucial steps. SEQimpute starts from a complete subset of the data set Xc and
estimates sequentially the missing values in an incomplete observation, say x∗, by mini-
mizing the determinant of the covariance of the augmented data matrix X∗ = [Xc; (x

∗)t].
Since SEQimpute uses the sample mean and covariance matrix it will be vulnerable to the
influence of outliers and it is improved by plugging in robust estimators of location and scat-
ter. One possible solution is to use the outlyingness measure as proposed by Stahel (1981b)
and Donoho (1982) and successfully used for outlier identification in Hubert et al (2005).
We can compute the outlyingness measure for the complete observations only but once an
incomplete observation is imputed (sequentially) we could compute the outlyingness mea-
sure for it too and use it to decide if this observation is an outlier or not. If the outlyingness
measure does not exceed a predefined threshold the observation is included in the further
steps of the algorithm. After obtaining a complete data set we proceed by applying a high
breakdown point estimation method in the same way as described in the previous section.

2.3 Algorithms based on other strategies

Transformed Rank Correlation (TRC). This is one of the algorithms proposed by Béguin
and Hulliger (2004) and is based, similarly as the OGK algorithm of Maronna and Zamar
(2002) on the proposal of Gnanadesikan and Kettenring for pairwise construction of the
covariance matrix. The initial matrix is calculated using bivariate Spearman Rank correla-
tions ρ(xk,xh), 0 ≥ i, j ≤ p which is symmetric but not necessarily positive definite. To
ensure positive definiteness of the covariance matrix the data are transformed into the space
of the eigenvectors of the initial matrix and univariate estimates of location and scatter are
computed which are used then to reconstruct an approximate estimate of the covariance ma-
trix in the original space. The resulting robust location and covariance matrix are used to
compute robust distances for outlier identification. In case of incomplete data the Spearman
rank correlations are computed only from observations which have values for both variables
involved and thus the initial covariance matrix estimate can be computed using all available
information. From this matrix the transformation matrix can be computed but in order to ap-
ply the transformation complete data matrix is needed which is the most difficult problem in
this algorithm. To obtain complete data each missing item xik is imputed by a simple robust
regression of xk on xh where xh is the variable with highest rank correlation ρ(xk,xh).
In order to be able to impute xik, the item xih must be observed and the quality of the
regression on a given variable is controlled by an overlap criterion, i.e. in order to choose
a variable as a regressor, the number of observations in which both variables are observed
must be greater than some γn where 0 < γ < 1 is a tuning constant. After all missing items
have been imputed (or some observations with too few observed items have been removed)
the complete data matrix can be used to perform the transformation and compute the final
robust location and covariance matrix as in the case of complete data.

Epidemic Algorithm (EA). The second algorithm proposed by Béguin and Hulliger (2004)
is based on data depth and is distribution free. It simulates an epidemic which starts at a
multivariate robust center (sample spatial median) and propagates through the point cloud.
The infection time is used to judge on the outlyingness of the points. The latest infected
points or those not infected at all are considered outliers. The adaption of the algorithm
to missing values is straightforward by leaving out missing values from the calculations of
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the univariate statistics (medians and median absolute deviations) as well as from the dis-
tance calculations. If too many items are missing in a pair of observations the corresponding
distance is set to infinity (in the practical implementation a simplified criterion is applied
excluding observations with less than p/2 observed items from the epidemic). EA is the
only method studied here which has no assumptions about the form of the distribution but
the tuning of the infection in order to attain best performance may be problematic. Without
going into detail about the choice of parameters we will note that in general the recommen-
dations given by the authors (Béguin and Hulliger, 2004, p.279) and the defaults in the R
programs were followed. It seems that of crucial importance is the choice of the transmission
function which determines the probability that a point is infected given another point and
the distance between them, the reach of the infection and the selection of the deterministic
mode of infection. In the examples in Section 4 we used the root function with maximal
reach and deterministic infection.

BACON-EEM (BEM). The third algorithm (Béguin and Hulliger, 2008) developed in the
framework of the EUREDIT project is based on the algorithm proposed by Billor et al
(2000) which in turn is an improvement over an earlier ”forward search“ based algorithm by
one of the authors. It is supposed to be a balance between affine equivariance and robustness
- it starts from a data set which is supposed to be outlier free and moves forward by inspect-
ing the rest of the observations - good points are added as long as possible. The adaptation
for incomplete data consists in replacing the computation of the location and covariance at
each step by an EM-algorithm.

The last three algorithms - TRC, EA and BEM take into account also the sampling context
in which the data are assumed to be a random sample s of size n from a finite population
U with size N and the sample is drawn with the sample design p(s). The sample design
p(s) defines the inclusion probabilities and the corresponding sampling weights. With these
weights the classical mean and covariance are estimated using the Hàjek estimators and the
weighted median and MAD are estimated as described in Béguin and Hulliger (2004) where
further details about the adaptation of the algorithms to sampling weights can be found.

It is rather difficult to provide general recommendations on the appropriate algorithm to
use in a certain data configuration. Most algorithms rely on elliptical symmetry of the data
majority; an exception is the Epidemic Algorithm. Affine equivariance of estimators like
MCD or S is usually lost if a normal imputation is done a-priori within the algorithm. The
combination of several routines makes it also impossible to determine the overall break-
down point of the procedure. For these reasons, a comparison is best made at the basis of
the computation time (Section 3), and within real and simulated data sets (Section 4).

3 Computation times

It is important to consider the computational performance of the different algorithms in
case of large data sets (with n ≥ 100). To evaluate and compare the computational times
a simulation experiment was carried out. Contaminated data sets with different sizes and
dimensions, (n, p), varying from (100,5) to (50000,30) were generated. The generated data
followed the model of mean-shift outliers, i.e. in each data set (1 − ε)n of the observations
were generated from standard multivariate normal distribution Np(0, Ip) and the remaining
εn were generated from Np(µ, Ip) where µ = (b, . . . , b)t with b = 10. The contamination
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proportion ε was chosen to be equal to 0.25, i.e. 25% of the generated observations in each
data set were outliers. Then 20% missing values, created with a missing completely at ran-
dom (MCAR) mechanism were included in the generated data sets. For this purpose all np
observation items were subjected to independent Bernoulli trials, realized with a probability
of success (i.e. the item is set to missing) q = 0.20. For each (n, p) combination 100 data
sets were generated and the runtime of each method was averaged across them.

The experiment was performed on a 2.4Ghz Intel R©Core
TM

2 Quad PC with 3.5Gb RAM run-
ning Windows XP Professional. All computations were performed in R 2.11.1. The MCD,
OGK, S and SDE algorithms from rrcov 1.0-1 were used and the imputation was performed
by functions em.norm() and imp.norm() from the package norm (Schafer, 1997).
The R code for the EA, TRC and BEM algorithms was provided by the authors. Figure 2
displays graphically the results of the experiment in logarithmic scale. Fastest is SIGN1,
followed closely by OGK and MCD with MCD being faster than OGK when n and p are
large due to the nesting and partitioning steps of the FAST-MCD algorithm. The computa-
tion time of the S algorithm is similar to that of MCD but S is slower for higher problem
sizes because as initial estimate is used MVE and not MCD. It is important to note that
although MCD has better statistical properties and is faster to compute, the recommended
initial estimate in the S estimator algorithm is MVE because of its smallest maximum bias
(see Maronna et al, 2006, p.199). EA is also fast, but it cannot cope with larger problems
because of very high memory requirements. Next comes BEM which suffers from the fact
that the available implementation is in pure R as compared to the native implementation of
MCD (FORTRAN), OGK (C) and S estimates (the most computationally intensive part -
the initial MVE estimates in C). With RSEQ we denote here for brevity the robust sequen-
tial imputation algorithm followed by MCD. It would be slightly faster if the imputation is
followed by SIGN1 or OGK instead of MCD. The Stahel-Donoho estimator is much slower
for large data sets than the other algorithms and therefore we show only the results for p = 5

and p = 10 (for comparison, with p = 20 it took 1 hour for n = 1000 and 13 hours for
n = 10000 while MCD did the same in 1 and 2 seconds, respectively).

4 Examples and Experiments

In this section we illustrate the behaviour of the considered algorithms in the presence of
missing values on examples. The first example is based on a well known in the literature
complete real data set in which we introduce missing data with varying percentage. The ad-
vantage of this data set is that it is very well studied and the outliers are known in advance. In
the second example we evaluate the algorithms on generated synthetic (but close-to-reality)
data sets based on a real structural business statistics data set. This is a standard procedure
in official statistics providing a way to avoid the disclosure of information (see also Rubin,
1993). This type of data sets include more difficulties for outlier detection algorithms than
we could cover in the current study and give a promising area of future work.

4.1 Bushfire data

As a first example we consider the bushfire data set which was briefly presented in Sec-
tion 1. Although this data set is not specific for survey data, it is well known in the literature,
and it may give first insights into the performance of the algorithms. The classical outlier
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Fig. 2 Comparing the computation time of 9 robust estimation algorithms in the presence of 20% missing
data.

detection method using the sample mean and covariance matrix in Equation 1 (see the illus-
tration in the left panel of Figure 1) does not recognize any outlier but most of the robust
high breakdown point methods (MCD, OGK, S, BEM, SDE) identify the outlying clusters
32-38 and 7-11 and to a lesser extent the single outlying observation 31 (cf. Maronna and
Yohai, 1995, p.337). Observations 29 and 30 lie on the boundary. The outliers are clearly
identified in the distance-distance plot (Rousseeuw and van Zomeren, 1990) shown in Fig-
ure 3. Thus the list of outliers in our example will consist of the 13 observations 7-11 and
31-38. We simulate item-non-response by applying MCAR mechanism which generates a
fraction q = {0.0, 0.1, 0.2, 0.3, 0.4} of missing values. For each of these five cases we gen-
erate m = 400 data sets, perform the outlier detection with each of the considered methods
and calculate the following two measures:

– FN - Average outlier error rate: the average percentage of outliers that were not identified
- false negatives or masked outliers

– FP - Average non-outlier error rate: the average percentage of non-outliers that were
classified as outliers - false positives or swamped non-outliers

The results are shown in Table 1. When no missing values are present, all methods but EA
and TRC behave properly and identify all outliers. Both EA and TRC miss one outlier and
declare one good observation as an outlier. The non-outlier error rate for the complete data
set can be explained for most of the procedures (MCD, OGK, S, SDE) by the observations
lying on the border - 12, 28, 29 and 30 - which in many cases are declared outliers. With
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Fig. 3 Distance-distance plot of the bushfire data set computed with the FAST-MCD algorithm (using
function CovMcd() from package rrcov).

Table 1 Bushfire data with simulated missing values: average percentage of outliers that were not identified
and average percentage of regular observations that were declared outliers

Outlier error rate (FN) Non-outlier error rate (FP)
0 10 20 30 40 0 10 20 30 40

MCD 0.00 2.52 9.15 17.12 30.83 12.00 3.88 2.91 2.14 2.08
OGK 0.00 5.75 19.60 32.15 41.15 16.00 6.26 4.30 3.36 3.68

EA 7.69 13.79 27.85 43.00 53.21 4.00 12.14 11.58 10.37 9.08
SIGN1 0.00 4.37 20.00 35.71 46.94 20.00 12.49 8.05 5.54 4.58

SDE 0.00 7.37 17.12 26.73 41.29 2.29 3.15 1.90 1.56 1.44
BEM 0.00 4.88 5.69 9.31 14.04 4.00 8.71 11.37 9.78 7.76

S 0.00 9.08 20.88 30.79 45.19 0.00 3.81 4.49 3.92 3.52
TRC 7.69 16.46 16.79 14.50 13.69 4.00 13.64 11.47 10.13 11.57

RSEQ MCD 0.00 1.71 8.73 19.12 34.46 12.00 9.34 9.44 3.50 1.94
RSEQ OGK 0.00 2.04 6.25 28.98 48.71 16.00 9.02 9.57 7.75 3.98
RSEQ SDE 0.00 1.88 9.79 21.37 31.21 7.53 9.10 7.75 2.95 1.97

RSEQ S 0.00 2.92 14.15 28.85 37.63 0.00 5.65 8.80 4.79 2.88
RSEQ SIGN1 0.00 2.08 9.67 47.65 78.12 20.00 13.07 10.49 17.39 22.41
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10% of missing data the RSEQ XXX methods based on robust sequential imputation are
best with respect to the average outlier error rate, followed by MCD, SIGN1 and BEM. In
terms of the non-outlier error rate, SDE, S and MCD are the best followed by RSEQ S,
OGK and BEM. In general all methods based on robust imputation have higher non-outlier
error rate than the corresponding methods preceded by normal imputation which is the price
paid for the higher robustness. When more missing data are added to the data set the outlier
identification power decreases gradually with BEM being the best, followed by MCD and
TRC. Most of the RSEQ methods perform still well with 20% of missing data but their
performance declines with 30%. Only BEM and TRC cope with 40% of missing data - all
other procedures break down, failing to identify 30 or more percent of the outliers. However,
in the case of BEM and TRC the price is a higher non-outlier error rate.

4.2 Structural business statistics data set

The Austrian structural business statistics data (SBS) from 2006 covers NACE sections C-
K for enterprises with 20 or more employees (NACE C-F) or above a specified turnover
(NACE G-K) (Eurostat, 2008). For these enterprises more than 90 variables are available.
Only limited administrative information is available for enterprises below these thresholds
and for those which belong to other economic branches (NACE sections L to O). The raw
unedited data consist of 21669 observations which include 3891 missing values. The small
enterprises (about 230.000) are not present in the raw data and therefore not considered for
our purpose. The highest amount of missing values is presented in the variable EMP (num-
ber of employees). The higher the amount of white-collar employees (B31) the higher the
probability of missingness in variable EMP. This can be easily derived by applying the R
package VIM (Templ and Filzmoser, 2008) for interactive exploration of the missing values
mechanism.

Rather than performing the outlier detection with the complete data set, it is often reason-
able to identify outliers in subgroups of the data. A detailed data analysis of the raw data
has shown that ideal subgroups are based on NACE 4-digits level data (see also Dinges
and Haitzmann, 2009). Broader categories imply that the data consist of different kinds of
sub-populations with different characteristics. For the sake of this study we have chosen the
NACE 4-digits level 47.71 - ”Retail sale of clothing in specialized stores“ - (Nace Rev. 1.11
52.42, ISIC Rev.4 4771). This is a typical NACE 4-digits level data set and consists of 199
observations with 7 missing values and various outliers. In order to be able to apply outlier
detection reasonably, specific variables were chosen, namely the ten variables shown in Ta-
ble 2. We are not using the original data set for outlier detection, but only synthetic data sets.
This is a standard procedure in official statistics, and it is a way to avoid the disclosure of
information. Thus, one generates synthetic (but close-to-reality) data sets from the original
data, which can then be used for simulation. In order to generate outlier-free synthetic data
sets, the structure of the main bulk of the data is estimated using a robust covariance esti-
mation with the MCD estimator applied to the log-transformed raw data (without missing
values). The logarithmic scale was chosen to make the data distributions more symmetric.
It should be noted that some variables (number of employees in different categories B31,
B41 and B23) are discrete valued but their range goes from 0 to approximately 20000 which
makes it reasonable to assume a continuous (log-normal) distribution. Synthetic data are
generated using the covariance structure of these ”good“ data points. Afterwards, missing
values are included in the synthetic data sets, where the missing values are generated using
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Table 2 Variables of the Austrian SBS data which are considered in our simulation study.

1 TURNOVER Total turnover
2 B31 Number of white-collar employees
3 B41 Number of blue-collar workers
4 B23 Part-time employees
5 A1 Wages
6 A2 Salaries
7 A6 Supply of trade goods for resale
8 A25 Intermediate inputs
9 E2 Revenues from retail sales

10 EMP Number of employees

the information of the raw data. This especially refers to the probability of missing values
in variable EMP which increases with increasing values of variable B31, as seen from the
original data. As for the raw data, missing values occur in two variables (EMP and A25).

In our tests, different outlier specifications are generated. In the next section will be pre-
sented the results for shifted outliers with the same covariance structure. Outliers of moder-
ate size are generated with meanµ′ = µ+(3.5, 2,−1, 0, 0, 1, 0,−1, 1.5, 0)t = (µTURNOV ER+

3.5, µB31 + 2, µB41 − 1, µB23 , µA1 , µA2 + 1, µA6 , µA25 − 1, µE2 + 1.5, µEMP )
t, with µ es-

timated using the MCD estimator. This robust estimation was performed on the raw log-
transformed data set taking into account only the complete observations. The data shifted
in this way look close to reality when comparing the raw data and the synthetic data with
the help of exploratory tools. In Figure 4 a parallel coordinate plot (which is a visualization
technique for multivariate data used to plot individual data elements across many dimen-
sions, see Wegman, 1990; Venables and Ripley, 2003) of one generated data set with 10%
of outliers is shown. The outliers are drawn with darker lines. When varying the amount
of outliers and/or missing values in a simulation study it is necessary to fully control the
rate of missing values and/or outliers. This also means that no outliers should be replaced
by missing values, otherwise the outliers generated beforehand are then masked by missing
values.

It is clearly seen that the variable EMP has the highest amount of missing values but at
the same time it is not contaminated (we do not shift its mean when generating the simu-
lated data) which corresponds to the real data we mimic. However a question could arise
what would happen if outliers in this variable were also present. To answer this question we
performed an additional experiment following exactly the same conditions described above
but the variable EMP was shifted by 1.5. The performance of all estimators on all compari-
son criteria remained stable (changed by less than 1%).

If the sampling context is taken into account, the data are assumed to be a random sam-
ple s of size n from a finite population U with size N and the sample is drawn with the
sample design p(s) which defines the inclusion probabilities and the corresponding sam-
pling weights. In business statistics often the inclusion probabilities and the corresponding
sampling weights are taken equal in each strata (e.g. depending on the employee size class
- large enterprises have inclusion probability one while small enterprises have a lower in-
clusion probability). Since outlier detection should be done in reasonable subgroups these
subgroups should ideally not differ from the stratification used for sampling (assuming sim-
ple random stratified design with equal inclusion probabilities in each strata). For unequal
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Fig. 4 Parallel coordinate plot of a typical data set with 10% of outliers (represented by the dark lines).

inclusion probabilities in a stratum the algorithms EA ,TRC and BEM (Béguin and Hul-
liger, 2004, 2008) might be the preferable choice. However, Béguin and Hulliger (2008),
page 102 advice to use also a non-weighted version of the algorithms since it is possible
that outliers are masked by large sampling weights which could dominate the model esti-
mate. Furthermore not all algorithms which we are considering in this study are adapted to
handling sampling weights, therefore we assume a design with equal inclusion probabilities
and the EA, TRC and BEM will be run with all sampling weights set equal to one.

4.3 Simulation Experiments

Based on the Austrian Structural Business Statistics (SBS) data set we perform two experi-
ments. In the first case we fix the fraction of outliers to 0.1 and vary the missing rates from
0.0 to 0.3 by 0.025. Alternatively, in the second case we fix the missing rate to 0.1 and vary
the fraction of outliers from 0.0 to 0.25 by 0.025. For each configuration m = 400 data
sets are generated and for each of them the outliers are identified using all available proce-
dures. As in the previous example two measures are calculated: (i) the average percentage
of outliers that were not identified (FN) and (ii) the average percentage of non-outliers that
were classified as outliers (FP). The methods based on robust sequential imputation (RSEQ)
identify all outliers in all configurations as the methods based on normal imputation do, so
in terms of outlier error rate there is no space for improvement. The non-outlier error rate
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Fig. 6 Average outlier error rate (left) and average non-outlier error rate (right) for fixed fraction of 10%
missing values and varying fraction of outliers.

of these methods is slightly higher than that of the corresponding methods based on normal
imputation as we already noted in the previous example. Thus the results of the methods
based on robust sequential imputation are quite similar to the corresponding methods based
on normal imputation and therefore we do not show them in the following presentation (but
these results are available from the authors upon request). The results for the rest of the esti-
mators are presented in Figure 5 and Figure 6. For an outlier fraction of 10% all estimators
perform excellent in terms of outlier error rate (FN) and identify all outliers independently
of the percentage of missing values as seen from the left panel of Figure 5. An exception
is EA which in some cases misses one or two outliers (below 2%). The average percent-
age of non-outliers that were declared outliers (FP) differ and BEM performs best, followed
closely by S, MCD, SIGN1 and SDE (below 3%). With less than 5% EA comes next and
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OGK declares somewhat more than 6% of regular observations as outliers, independently
of the proportion of missings. TRC performs worst with the average non-outlier error rate
increasing with increase of the fraction of missing values.

When the percentage of missing values is kept fixed at 10% and the fraction of outliers
is varied, some of the estimators break down quite early - SIGN1 is the first followed by
OGK. EA remains below 6%. The other estimators cope with all investigated fractions of
outliers without any problems. In terms of the non-outlier error rate BEM performs best
followed by S, MCD, SIGN1, SDE and EA (less than 5%). OGK comes next with error rate
between 5% and 8% and TRC is again last.

The bushfire example with its severe outliers and with added high percentage of missing
values was a serious difficulty for most of the methods which broke down by 40% missing
data. On the other hand the SBS data was easier to handle in both cases (10% outliers and
high percentage of missings or only 10% of missing data and high percentage of outliers)
by most of the algorithms. In general in both examples the best performer were the BEM
and MCD.

5 Software Availability

The complete data algorithms discussed in this paper are available in the R packages robust-
base, rrcov, mvoutlier and their counterparts for incomplete data are implemented in the
package rrcovNA. These packages are available from the Comprehensive R Archive Net-
work (CRAN) at http://CRAN.R-project.org under the GNU General Public License. The
three algorithms from the EUREDIT project (TRC, EA and BEM), as already mentioned,
were kindly provided by the authors.

6 Conclusions and outlook

In this paper we tested several approaches for identifying outliers in data sets including
missing values. Two aspects seem to be of major importance: the computation time and the
accuracy of the outlier detection method. For the latter we used the fraction of false negatives
- outliers that were not identified - and the fraction of false positives - non-outliers that were
declared as outliers. Overall, the preference of the ”optimal” algorithm will depend on the
data structure. Most of the used algorithms are designed for elliptically symmetric distribu-
tion, and their behaviour could be completely different in case of very skewed distributions.
The simulations and examples have shown that the BACON-EEM algorithm is generally a
good choice in terms of precision. If computation time is an important issue (because the
data set is very large and of high dimension), the algorithm based on the MCD estimator
might be the preferable choice. The missing data mechanism will in general affect the per-
formance of the outlier detection methods. For example, if algorithms based on imputation
are used (Section 2.2), the quality of the imputed values can be poor in case of missing not at
random, and this will also have consequences for the subsequent outlier detection algorithm.

Structural business statistics data include more difficulties for outlier detection algorithms,
like zero values, binary or categorical variables, skewness of the data as well as possible
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complex sampling designs of the survey. In our future work we will concentrate on these
issues.

Acknowledgements The careful review and constructive comments of the associate editor and the anony-
mous reviewers helped us to substantially improve the manuscript. We thank B. Hulliger and C. Béguin for
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