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The different parts (variables) of a compositional data set cannot be considered independent
from each other, since only the ratios between the parts constitute the relevant information
to be analyzed. Practically, this information can be included in a system of orthonormal coor-
dinates. For the task of regression of one part on other parts, a specific choice of orthonormal
coordinates is proposed which allows for an interpretation of the regression parameters in
terms of the original parts. In this context, orthogonal regression is appropriate since all
compositional parts–also the explanatory variables–are measured with errors. Besides clas-
sical (least-squares based) parameter estimation, also robust estimation based on robust
principal component analysis is employed. Statistical inference for the regression parameters
is obtained by bootstrap; in the robust version the fast and robust bootstrap procedure is
used. The methodology is illustrated with a data set from macroeconomics.
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1. Introduction

Compositional data are nowadays widely known as multivariate observations that carry
only relative information [1, 27, 28], particularly also through their frequent represen-
tation in proportions or percentages. Consequently, the standard Euclidean geometry,
based on the absolute (Lebesgue) measure, does not reflect the natural requirements for
compositional data analysis that can be summarized into principles of scale invariance
(multiplying by a positive constant does not alter the information conveyed by the com-
position), subcompositional coherence (analysis concerning a subset of parts must not
depend on the other non-involved parts) and permutation invariance (the conclusions
of a compositional analysis should not depend on the order of the parts) [11]. These
principles are followed formally by the Aitchison geometry, named after the author of
the seminal book on statistical analysis of compositional data [1]. The scale invariance
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property of compositional data allows for a representation of the observations with an
arbitrary constant sum constraint, like the mentioned proportions or percentages, and
thus we refer to the simplex as the sample space of (representations of) compositions.
As most standard statistical methods rely on the Euclidean geometry [6], the aim is
to express compositional data in the real space, i.e. to find an appropriate coordinate
representation with respect to the Aitchison geometry.

Since the dimension of the simplex is one less than the actual number of D parts in
the composition, there is no canonical basis that would allow to assign a coordinate to
each compositional part simultaneously. Recently, the main focus is devoted to find inter-
pretable orthonormal coordinates, guaranteeing isometry between the Aitchison geome-
try and the Euclidean real space, that would reflect the needs of a particular statistical
problem of interest [9, 27]. One possibility are log-contrasts, each one within a different
set of orthonormal coordinates, that make possible to assign one of the coordinates to a
chosen compositional part [15, 16, 19, 21]. Nevertheless, a further challenge arises when
not one part, but two (or even more) compositional parts are simultaneously of interest
within one coordinate system. This is exactly the case in regression analysis, when both
the response and explanatory variables come from one and the same composition. This
particular problem will be thoroughly discussed.

The next section introduces one possible choice of orthonormal coordinates, following
the idea of [2], extended for the purpose of regression analysis among compositional parts.
In particular, it turns out that D − 1 regression models are necessary to analyze com-
prehensively the relations of one compositional part to the rest. Moreover, as both the
response and explanatory variables are coordinates of a random composition, they are
random by nature. Consequently, standard least-squares regression would lead to biased
results, so orthogonal regression (as a special case of errors-in-variable models) needs to
be applied instead. This is treated in Section 3, and the estimation of the regression pa-
rameters via singular value decomposition of the input data matrix is described in detail
together with the corresponding geometric motivation. Moreover, as real-world compo-
sitional data are usually contaminated by outlying observations, a robust counterpart to
classical orthogonal regression (MM-estimates) is presented as well. In order to perform
statistical inference, like deriving confidence intervals or testing hypotheses, bootstrap
techniques for classical and robust orthogonal regression are described in Section 4. In
Section 5, these procedures are applied to a problem from macroeconomics. Section 6
introduces the R package oreg which was used for computation, and the final Section 7
concludes.

2. Coordinate representation of compositional data

As already mentioned in the introduction, specific features of compositional data [7] are
characterized by the Aitchison geometry on the simplex with Euclidean vector space
structure [10]. Nevertheless, most multivariate statistical methods rely on the Euclidean
geometry in real space [6, 26]. It is convenient to find orthonormal coordinates–in the
ideal case interpretable coordinates–that allow for a statistical analysis using standard
methods. This is possible through isometric logratio (ilr) coordinates [8] that assign a
(D − 1)-dimensional real vector to the D-part composition x = (x1, . . . , xD)′. Unfortu-
nately, due to the dimension of the Aitchison geometry (one less than the number of parts
of the composition), it is not possible to assign canonical coordinates to compositional
data. Thus, a proper choice of interpretable coordinates is of particular interest. One
possibility that seems to be advantageous from many different methodological aspects
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[15, 19, 25] results in a set of D real vectors z(lk) = (z
(lk)
1 , . . . , z

(lk)
D−1)′, l = 1, . . . , D, where

z
(lk)
i =

√
D − i

D − i+ 1
ln

x
(lk)
i

D−i

√∏D
j=i+1 x

(lk)
j

, i = 1, . . . , D − 1. (1)

Here (x
(lk)
1 , . . . , x

(lk)
D )′ stands for such a permutation of the parts (x1, . . . , xD)′, that

always the l-th compositional part fills the first position and the k-th part the second one,

(xl, xk, x1, . . . , xi, . . . , xD)′, i /∈ {l, k}. In such a configuration, the first ilr variable z
(lk)
1

explains all the relative information (logratios) about the original compositional part xl,

while the coordinates z
(lk)
2 , . . . , z

(lk)
D−1 explain the remaining logratios in the composition

[16]. Note that the only important position is that of x
(lk)
1 (which is interpretable through

z
(lk)
1 ), the other parts can be chosen arbitrarily from the perspective of xl, because

different ilr transformations are orthogonal rotations of each other [8]. Of course, z
(lk)
1

cannot be identified with the compositional part xl, as the other parts are also naturally
involved through the corresponding logratios. Therefore, due to the specific structure of
the Aitchison geometry, its interpretation is limited. We can also see that this coordinate
is formed by a logratio between the part xl and an “average part”, resulting from the

geometric mean of the remaining parts in the composition. Therefore, the values of z
(lk)
1

represent a measure of dominance of the part xl with respect to the other parts.
Regression analysis among compositional parts leads to a further complication, which

comes from the fact that at least two parts in the composition are of simultaneous
interest, the response part and the covariate part(s). Assume that xl stands for the
response and the remaining parts in the actual composition form the explanatory vari-
ables. We show that the coordinates (1) can be used for this purpose. In order to pro-
ceed, we follow methodologically the paper [2], where a similar problem was studied
in a hydrological context, and the paper [19] which treats the case of regression of a
real response on compositional explanatory variables. Let us start with the response
variable. As it was mentioned above, if all relative information concerning part xl in
a given composition should be merged into one coordinate, then all pairwise logratios
ln(xl/x1), . . . , ln(xl/xl−1), ln(xl/xl+1), . . . , ln(xl/xD) need to be aggregated. So we arrive
at

ln(xl/x1) + · · ·+ ln(xl/xl−1) + ln(xl/xl+1) + · · ·+ ln(xl/xD) = (D− 1) ln
x

(lk)
1

D−1

√∏D
j=2 x

(lk)
j

;

(2)

up to a scaling constant, and this is nothing else than the coordinate z
(lk)
1 from (1).

Indeed, since the main task is to analyze the influence of the other parts on xl, it seems
reasonable that also the corresponding coordinate will contain information on the relation
of xl to all remaining parts in the composition. From a mathematical perspective, the

coordinates z
(lk)
1 , l = 1, . . . , D, are nothing else than logcontrasts, i.e. terms of the form

c1 lnx1 + · · ·+ cD lnxD for
∑D

i=1 ci = 0, proportional to the well-known centered logratio
coefficients [1].

Now we can proceed with the coordinate representation of the explanatory subcompo-

sition (x1, . . . , xl−1, xl+1, . . . , xD)′. In the above notation, e.g., z
(lk)
2 , . . . , z

(lk)
D−1 can serve

for this purpose. Similarly, as we have done it for the response, we have to find an ap-
propriate coordinate representation for the explanatory variables. An additional problem
arises whether it is possible to treat D− 1 covariates simultaneously, represented by the
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respective coordinates. Unfortunately, this is not the case. The reason is that there would
be an overlap of information, conveyed by pairwise logratios, used to construct the result-
ing coordinates. To see that, let us consider a pair of covariates xk and xm and aggregate
the respective pairwise logratios from the explanatory subcomposition. Obviously, up to
the sign, both of them contain ln(xk/xm), so it would not be possible to use both of
them to construct orthonormal coordinates, required for a meaningful and interpretable
statistical processing. For a particular single part xk, however, we can continue to use

the coordinates (1), and the constructed z
(lk)
2 would fit exactly to our needs. It is just

not possible to consider both xk and xm (or even all covariates) simultaneously in one
regression model.

Consequently, in order to analyze the influence of single explanatory parts (or, more
precisely, their respective logratios) to the response, D − 1 multiple regression models
following the coordinate representations (1) need to be constructed. In each of these

models, the response is represented by the coordinate z
(lk)
1 to capture the relative infor-

mation on xl. Note that this coordinate is the same for any k ∈ {1, . . . , D}, k 6= l. To

each of the explanatory parts xk, k 6= l, the coordinates z
(lk)
2 , . . . , z

(lk)
D−1 according to the

reordered subcomposition (xk, x2, . . . , xi, . . . , xD)′, i /∈ {k, l}, k = 2, . . . , D, are assigned.

Similarly as before, the coordinate z
(lk)
2 explains all the relative information about part

xk in the resulting subcomposition. Considering the range of k, we arrive finally at D−1
regression models

z
(lk)
1 = b

(lk)
1 + b

(lk)
2 z

(lk)
2 + . . .+ b

(lk)
D−1z

(lk)
D−1 + ε (3)

(ε stands for an error term), assigned to single explanatory compositional parts. The
interpretation of these models results from the interpretability of the coordinates, i.e.,
in each model just the absolute term parameter and the parameter corresponding to the

coordinate z
(lk)
2 are used for further interpretation and for statistical inference (confidence

intervals, hypotheses testing).
Since both the response and the explanatory variables originate from one composition,

it cannot be assumed that the covariates represent errorless variables like in the case of a
real valued response [19]. Consequently, the use of an ordinary multiple regression model
is inappropriate and can even lead to biased results. Therefore, we apply an orthogonal
regression model (or, equivalently, a total least squares model) for this purpose, which is
a specific type of errors-in-variable (EIV) model [18].

3. Classical and robust orthogonal regression for compositional data

3.1 Orthogonal regression

For simplification of the notation, we denote the matrix of n realizations of the vector

(z
(lk)
2 , . . . , z

(lk)
D−1), for a chosen k ∈ {1, . . . , D}, k 6= l, as X ∈ Rn×D−2, and by y ∈ Rn

the observation vector of the response coordinate z
(lk)
1 . For a further simplification of

the notation, we assume without loss of generality that the response and the covariates
are mean-centered, i.e. the sample mean is subtracted from the compositional data in
coordinates. The total least-squares (TLS) method was originally introduced to solve
overdetermined systems of equations Xb ≈ y, where X and y are given data (here
compositions expressed in orthonormal coordinates), and b ∈ RD−2 is the vector of
unknown parameters. There is no exact solution; particularly in the case of n > D − 2,
we are seeking for an approximation.

In the classical TLS problem [22] we minimize the errors εX , εy, given the centered
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data X,y that make the system of equations X̂b = ŷ, X̂ = X+εX , ŷ = y+εy solvable,
i.e.

{X̂, ŷ, εX , εy} := argminεX ,εy
‖vec[εX , εy]‖ , (4)

subject to (X + εX)b = y + εy (“vec” forms one vector, composed of the columns of

the matrix in the argument). The solution is a maximum likelihood estimator b̂ in the

optimally corrected EIV model X̂b̂ = ŷ, X̂ = X+εX , ŷ = y+εy, if the usual assumptions
are fulfilled, namely that vec[εX , εy] has zero mean, and is a normally distributed random
vector with a covariance matrix that is a multiple of the identity.

From the methodological point of view, singular value decomposition is applied to
Z = [X,y] = UΛV′, where Λ = Diag(λ1, . . . , λD−1) and λ1 ≥ · · · ≥ λD−1 ≥ 0 are the
singular values of Z, and U and V are the corresponding orthonormal matrices. Let us
define the partitions

V =

[
V11 v12

v21 v22

]
, Λ =

[
Λ1 0
0 λD

]
,

where the matrices V11 and Λ1 are of dimension (D−2)× (D−2). Then a TLS solution
exists iff v22 is non-zero; moreover, it is unique iff λD−2 6= λD−1. In this case it is given
by

b̂ = −v12/v22 (5)

and the corresponding TLS error matrix equals εZ = [εX , εy] = −UDiag(0, λD−1)V′

[22], with 0 being a vector with D − 2 zeros. Thus, when a unique solution b̂ exists, it
is computed from the scaled right singular vector corresponding to the smallest singular
value. It is important to note that since the different ilr coordinate systems are just
orthogonal rotations of each other [8], the TLS estimates will transform accordingly.

It is well known that the matrices Λ and V from SVD applied on the centered ex-
planatory and response variables correspond to outputs of an eigenvalue decomposition
on the (estimated) covariance matrix Σ, as it is done in principal component analysis
(PCA). Thus, except for the intercept term in the orthogonal regression model (that is
discussed in the next section), the same results as above in (5) can be obtained using the
smallest eigenvalue and the corresponding eigenvector (loading vector) of the covariance
matrix. We will follow this approach further in the paper.

Regression estimators which are based on classical SVD or PCA are sensitive to outliers
that occur in most real-world data sets. Therefore, we consider also a robust version
of orthogonal regression. In [36], M- and S-estimators for robust orthogonal regression
are presented. However, S-estimators are computed using inefficient algorithms and M-
estimators have low breakdown point. Another possibility can be found in [3], where the
projection-pursuit approach is used, which is also suitable for more than one response
variable. In order to keep the structure of the paper consistent, but also to benefit from
the better statistical properties of the MM-estimates, which will be combined with fast
and robust bootstrap, we decided to follow the above (classical) approach in order to
develop robust orthogonal regression in orthonormal coordinates.

Although robust versions of SVD are available (e.g. [4]), it is simpler and computation-
ally more attractive to use robust PCA, which is obtained through a robust estimation
of the covariance matrix (e.g. [13]). Among other possibilities like [3, 12, 24], in the fol-
lowing the MM-estimators [29] are employed for this purpose. The reason for choosing
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MM-estimators is that they are highly efficient when the errors have a normal distribu-
tion, their breakdown point is 0.5 and they have bounded influence function.

Multivariate MM-estimators are extensions of S-estimators [23]. They are based on
two loss functions ρ0 and ρ1. Generally, a ρ function has to satisfy the conditions:

(a) ρ is symmetric and twice continuously differentiable, with ρ(0) = 0;
(b) ρ is strictly increasing on an interval [0, k] and constant on [k,+∞] for some finite

constant k.

A standard choice of such loss function is Tukey’s biweight function, defined as

ρc(x) =

{
x2

2 −
x4

2c2 + x6

6c4 if |x| ≤ c,
c2

6 if |x| > c,
(6)

where c > 0 is a user-chosen tuning constant. Given the matrix with the observations
in any chosen orthonormal coordinates (like those from the beginning of this section),
Z = [X,y] = (z1, . . . , zn)′ ∈ RD−1, the MM-estimators for location and covariance are
defined in two steps:

(1) Let (µ̃n, Σ̃n) be S-estimators of location and covariance, respectively, that is (µ̃n, Σ̃n)
minimize |C|, where | · | denotes the determinant of a matrix, subject to

1

n

n∑
i=1

ρ0

(
[(zi − t)′C−1(zi − t)]1/2

)
= b, (7)

for b > 0, among all (t,C) ∈ RD−1. Denote ŝ = |Σ̃n|1/[2(D−1)].

(2) The MM-estimator for location and shape (µ̂n, Γ̂n) minimizes

1

n

n∑
i=1

ρ1

([
(zi − t)′S−1(zi − t)

]1/2
/ŝ
)

among all t and all symmetric positive definite S with |S| = 1. The MM-estimator

of the covariance matrix is then Σ̂n = ŝ2Γ̂n.

Note that the values b in (7) and k0 corresponding to condition (b) in the loss function
ρ0 (first step) are chosen in order to reach the maximal breakdown point, and the value
k1 corresponding to condition (b) in ρ1 (second step) to achieve better efficiency of the
estimator.

The idea is to estimate the scale by means of a very robust S-estimator and then to
estimate the location and shape using different ρ functions to reach a better efficiency.
Once location and covariance are obtained using the MM-estimator, they can be used
to compute the robust orthogonal regression estimates as described above. Finally, it is
important to stress that MM-estimators, applied to compositional data in orthonormal
coordinates, i.e., to standard observations in real space, preserve all their important
properties (like high breakdown point and good efficiency).

3.2 Geometrical motivation

As mentioned in the previous section, the TLS (orthogonal regression) estimates of the
parameters can be obtained by means of principal component analysis. We apply the
proposed procedure directly to the case of four-part compositional data where a geomet-
rical illustration of the problem is still possible. For this purpose, we assume that we
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have a random vector z = (z1, z2, z3)′ (an orthonormal coordinate representation of the
composition). The task is to find a relationship between the response variable z1 and
the covariates z2, z3, expressed in the form z1 = b1 + b2z2 + b3z3 + ε, with the regression
parameters b1, b2, b3.

From a geometrical point of view, the basic idea is to fit a plane to the data using
PCA. The loadings of the first two principal components define a basis of the plane. As
the third principal component is orthogonal to the previous ones, its loadings define a
unit normal vector to the plane, n = (n1, n2, n3)′, forming the last column of the matrix
V in terms of the previous section. The plane passes through the point t, representing
the location estimate of the n × 3 data matrix Z (the arithmetic mean in the classical
case, equal to the zero vector for centered data), and its perpendicular distance from the
origin is t′n. The perpendicular distance from each point in Z to the plane (the norm of
the residuals) is the inner product of each centered point and the normal vector to the
plane. The fitted plane minimizes the sum of squared errors.

Consequently, the estimated regression parameters are obtained using the elements of
the normal vector, namely

b̂1 =
t′n

n3
, b̂2 = −n1

n3
, b̂3 = −n2

n3
.

4. Bootstrap sampling

For supporting the interpretation of the outcome of orthogonal regression, it is desirable
to obtain confidence intervals for the regression parameters, and p-values for tests on
these parameters. This statistical inference is only possible with strict distributional
assumptions, but even then it would be challenging to derive the exact distribution of the
parameters in the robust case. A better strategy is to derive the inference by resampling
methods. In order to relax the assumptions about the distribution of the input data, the
nonparametric bootstrap [17] was chosen for this purpose.

4.1 Classical nonparametric bootstrap

Generally, bootstrapping is based on building a sampling distribution for a statistic by
resampling from the data at hand. Consequently, the nonparametric bootstrap allows us
to estimate the sampling distribution of a statistic empirically without making assump-
tions about the form of the population, and without deriving the sampling distribution
explicitly. The basic idea is that, after drawing a sample of size n from S = {z1, . . . , zn}
with replacement (without loss of generality, we fix the special choice of orthonormal
coordinates again), we are treating the sample S as an estimate of the whole population.
This means that each element zi of S is selected with probability 1/n to mimic the orig-
inal selection of the sample S. This procedure is repeated R times, where R is a large
number, to obtain a sufficient number of bootstrap samples.

The r-th bootstrap sample is denoted as Sr = {zr1 , . . . , zrn}, r = 1, . . . , R. In the

next step we compute the regression estimates b̂i for each bootstrap sample to get
b̂r∗i , i = 1, . . . , D − 1. Then the distribution of b̂r∗i around the original estimate b̂i is

analogous to the sampling distribution of the estimator b̂i around the population pa-
rameter bi. In the context of orthogonal regression, the bootstrap distribution of b̂i can
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be directly used to derive sample p-values for significance testing of the regression pa-
rameters. For this purpose, the p-value pi for the regression parameter bi for a two-sided
alternative is derived by comparing the values of the bootstrap parameter estimates to
zero. By denoting li and hi as the number of estimated values lower and higher than
zero, respectively, we get pi = 2 ·min{li, hi}/R [5].

Furthermore, we can proceed also to construct bootstrap confidence intervals. For this
purpose, several approaches are available. A natural choice is to take bootstrap percentile
intervals that are free of any distributional assumptions [5, 17] and BCa intervals (bias-
corrected, accelerated percentile interval). The bootstrap percentile interval uses the

empirical quantiles of b̂r∗i (computed from Sr, r = 1, . . . , R) to form a confidence interval

for bi, (̂b∗i(l), b̂
∗
i(u)), i = 1, . . . , D − 1. Hence, from the ordered bootstrap replicates of the

statistic b̂i, i.e. b̂∗i(1), b̂
∗
i(2), . . . , b̂

∗
i(R), and for a given α ∈ (0, 1) we set l = [(R+1)α/2], u =

[(R+ 1)(1− α/2)] (rounded to the nearest integer).
Due to lower accuracy of percentile intervals in case of small samples, the BCa intervals

are considered as well. To find the BCa interval for bi we need to compute correction
factors z and a:

z = Φ−1

[
#R
r=1(̂b∗i(r) ≤ b̂i)

R+ 1

]
, (8)

where Φ−1(·) is the standard-normal quantile function and #(̂b∗i(r) ≤ b̂i)/(R + 1) is the

proportion of bootstrap replicates at or below the original-sample estimate b̂i of bi;

a =

∑n
j=1 (̂bi(−j) − bi)3

6[
∑n

j=1(̂bi(−j) − b
2
i )]

3/2
, (9)

where b̂i(−j) is defined as the value of b̂i produced when the jth observation is deleted

from the sample and bi =
∑n

j=1 b̂i(−j)/n. Then we need to compute values a1 and a2

that are used to locate the endpoints of the corrected percentile confidence interval,
b̂∗i(lower∗) < bi < b̂∗i(upper∗), as lower∗ = [Ra1] and upper∗ = [Ra2]:

a1 = Φ

[
z +

z − z1−α/2

1− a(z − z1−α/2)

]
; a2 = Φ

[
z +

z + z1−α/2

1− a(z + z1−α/2)

]
. (10)

Both percentile and BCa confidence intervals can be computed with the software package
described in Section 6.

4.2 Fast and robust bootstrap

The available theory for robust estimators is limited to asymptotic results. Although
bootstrap is a very useful tool, in case of robust estimators there are two problems:
computational complexity of robust estimators and the instability of the bootstrap in
case of outliers. Therefore we used fast and robust bootstrap [33, 35] which is based on
the fact that the robust estimators (namely S- and MM-estimators) can be represented
by smooth fixed point equations which allow to calculate a fast approximation of the
estimates in each bootstrap sample. For the case of MM-estimators, the fixed point
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equations are as follows,

µ̂n =

(
n∑
i=1

ρ′1(di/|Σ̃n|1/[2(D−1)])

di

)−1( n∑
i=1

ρ′1(di/|Σ̃n|1/[2(D−1)])

di
zi

)
; (11)

Γ̂n = G

(
n∑
i=1

ρ′1(di/|Σ̃n|1/[2(D−1)])

di
(zi − µ̂n)(zi − µ̂n)′

)
; (12)

Σ̃n =
1

nb

(
n∑
i=1

(D − 1)
ρ′0(d̃i)

d̃i
(zi − µ̃n)(zi − µ̃n)′ +

(
n∑
i=1

w̃i

)
Σ̃n

)
; (13)

µ̃n =

(
n∑
i=1

ρ′0(d̃i)

d̃i

)−1( n∑
i=1

ρ′0(d̃i)

d̃i
zi

)
; (14)

where we denote G(A) = |A|−1/(D−1)A for a (D − 1) × (D − 1) matrix A, di = [(zi −
µ̂n)′Γ̂

−1

n (zi−µ̂n)]1/2, d̃i = [(zi−µ̃n)′Σ̃
−1

n (zi−µ̃n)]1/2 and w̃i = ρ0(d̃i)−ρ′0(d̃i)d̃i. Here µ̂n
and Γ̂n are the MM-estimators of location and shape, respectively, and µ̃n and Σ̃n are the
S-estimators of location and covariance, respectively (for more details, see Section 3.1).
Generally, denote the equations (11) - (14) by means of a function f : R2[(D−1)+(D−1)2] →
R2[(D−1)+(D−1)2] such that f(Θ̂n) = Θ̂n, where Θ̂n contains all estimates in the vectorized
form and can be represented as a solution of fixed-point equations. For example, for MM-

estimators, we have Θ̂n :=
(

(µ̂n)′, vec(Γ̂n)′, vec(Σ̃n)′, (µ̃n)′
)′

. Instead of recalculating

the estimates Θ̂∗n for each bootstrap sample we can calculate its one-step approximation

starting from the initial value Θ̂n,

Θ̂1∗
n = f(Θ̂n). (15)

Unfortunately, this approximation underestimates the variability of Θ̂n because the initial
value in the approximation remains the same. To remedy this we can apply a linear
correction [32] as follows. Given the smoothness of f we can calculate a Taylor expansion

about the limiting value of Θ̂n

Θ̂n = f(Θ) +∇f(Θ)(Θ̂n −Θ) +Rn, (16)

where Θ = (µ′, vec(Γ)′, vec(Σ)′,µ′)′ , Rn is the remainder term and ∇f(·) is the matrix
of partial derivatives. If the remainder term is sufficiently small, we can rewrite (16) as

√
n(Θ̂−Θ) ≈ [I −∇f(Θ)]−1√n(f(Θ)−Θ). (17)

Since both sides of this equation are asymptotically equivalent, the distribution of the
bootstrapped statistics will also converge to the same limit. Finally, we can define the
linearly corrected version of the one-step approximation (15) as

Θ̂R∗
n := Θ̂n + [I −∇f(Θ̂n)]−1(Θ̂1∗

n − Θ̂n). (18)

9
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Note that the estimating equations involve weighted least squares estimates and covari-
ances, which are a generalization of the classical least squares method. Then the weights
will be small or even zero for observations identified as outliers. This guarantees that
Θ̂R∗
n is as robust as Θ̂n.

5. Example: Structure of gross value added

The procedures described in the previous sections are applied to a data set from
macroeconomics representing the structure of gross value added and the rela-
tion between its components. The data set comes from the World Bank database
(http://data.worldbank.org) and includes observations for 131 countries in 2010 at con-
stant 2005 USD.

Gross value added (GVA) is the most important measure of productivity of the econ-
omy of a country or region, representing the difference between production output and
intermediate consumption, i.e. the monetary value of the amount of goods and services
that have been produced, less the cost of all inputs and raw materials that are directly
attributable to that production. Gross value added is less than GDP because it excludes
value-added tax (VAT) and other product taxes.

GVA can be decomposed into the following economic activities:

• agriculture (consisting of agriculture, forestry, hunting and fishing);
• manufacturing1;
• other industry (consisting of mining and quarrying; electricity, gas, steam and air condi-

tioning supply; water supply; sewerage, waste management and remediation activities;
construction);

• services (consisting of education, health and other personal services; public adminis-
tration and defense).

Thus, GVA can be expressed as the sum of these four activities. The goal of the study is to
analyze the relation between manufacturing and the rest of the activities by considering
relative contributions of the mentioned activities to the overall GVA.

Although the original data are expressed in monetary units (USD), and no constant
sum constraint is present (like it is the case of proportions or percentages), from the
relative structure of GVA we can conclude that these four economic activities form a
composition x = (x1, x2, x3, x4)′, where x1 corresponds to manufacturing, x2 to agricul-
ture, x3 to other industry and x4 to services. In such case, using an arbitrary regression
technique either for the original observations or any constrained form of them, would
lead to biased results [19]. Figure 1 displays a ternary diagram of the explanatory vari-
ables x2, x3, x4. The ternary diagram is an equilateral triangle X2X3X4 such that the
three-part subcomposition (x2, x3, x4)′ is plotted at a distance x2 from the opposite side
of vertex X2, at a distance x3 from the opposite side of vertex X3, and at a distance x4

from the opposite side of vertex X4 (see, e.g., [1]). Accordingly, it can be observed that
the part srv (services) contains the largest relative contribution and agr (agriculture)
the smallest one in this subcomposition. This corresponds to the fact that the points are
concentrated mainly along the segment between srv and ind (other industry), rather
closer to the vertex srv.

For the further statistical processing, the compositional response and the explanatory
variables are expressed in ilr coordinates (1). Following the previous considerations, the

response coordinate is defined as z
(1k)
1 =

√
3
4 ln x1

3
√
x2x3x4

for any k ∈ {2, 3, 4}, i.e., it ex-

1Manufacturing is defined as the physical or chemical transformation of materials of components into new products.

10
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agr ind

srv

Figure 1. Ternary diagram of the explanatory variables agr (agriculture), ind (other industry), and srv (services).

plains all the relative information about manufacturing with respect to the other three
parts in the composition through an aggregation of the corresponding logratios. Permu-
tation of the remaining three activities results in three regression models, where always

the respective coordinate z
(1k)
2 for k = 2, 3, 4 includes the most interesting information -

(scaled) aggregation of logratios of xi with the remaining explanatory parts. The result-
ing regression models that favor one of the explanatory compositional parts x2, x3, x4

thus contains the following coordinates (in addition to z
(1k)
1 ),

z
(12)
2 =

√
2
3 ln x2√

x3x4
, z

(12)
3 =

√
1
2 ln x3

x4
;

z
(13)
2 =

√
2
3 ln x3√

x2x4
, z

(13)
3 =

√
1
2 ln x2

x4
;

z
(14)
2 =

√
2
3 ln x4√

x2x3
, z

(14)
3 =

√
1
2 ln x2

x3
,

respectively.
In Figure 2, scatterplots of the explanatory coordinates are displayed, where the part of

interest corresponds to x2 (upper left), x3 (upper right) and x4 (lower left). Particularly, it

can be seen that the x-coordinates of the upper left and upper right plots, z
(12)
2 and z

(13)
2 ,

are mainly negative which means that the relative contributions of agriculture and other
industry are lower than the mean contribution of the other parts. On the other hand,

the coordinate z
(14)
2 clearly shows the relative dominance of services. The 3D scatterplot

in Figure 2 (lower right) contains all three coordinates z
(12)
2 , z

(12)
3 , z

(12)
1 (in this order)

to see the relation between the covariates and the response variable. Although a certain
linear relationship can be observed from this scatterplot, orthogonal regression modeling
needs to be performed in order to specify the possible influence of covariates.

The results of classical orthogonal regression in coordinates (following Sections 3 and
4) are summarized in Table 1. Note that the intercept for all regression models is identical
(similar as for LS regression [19]), which is a consequence of the orthogonal relation be-
tween the different ilr coordinate systems. Therefore, although the basic model consists
of three regression parameters (corresponding to intercept and two orthonormal coordi-
nates), for the interpretation purposes it is enough to summarize just the intercept and

11
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Figure 2. The plots of coordinates of explanatory variables and 3D scatterplot of the explanatory coordinates.
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Figure 3. The 3D plot of estimated regression plane for coordinates z
(12)
2 , z

(12)
3 , z

(12)
1 .

Table 1. Summary of regression outputs using classical orthogonal regression for all defined models.

par. estimate perc. CI BCa CI p-value

intercept -2.151 (-4.464, -1.559) (-4.571, -1.562) 0.002

b
(12)
2 (agriculture) -0.394 (-0.584, -0.115) (-0.603, -0.011) 0.020

b
(13)
2 (other industry) -0.878 (-2.745, -0.498) (-3.390, -0.490) 0.000

b
(14)
2 (services) 1.272 (0.858, 2.978) (0.832, 2.777) 0.002
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Figure 4. Scatterplot of outlying observations.

the parameters corresponding to the coordinates z
(12)
2 , z

(13)
2 , z

(14)
2 from all three models.

Nonparametric bootstrap (with R = 1000) was used to derive the corresponding statis-
tical inference (confidence intervals, p-values for significance testing). Note that it would
be possible to compute the regression estimates for all remaining models just from the
estimates in one concrete model using a orthogonal transformations, similar as in the
standard case of LS (PLS) regression [20].

According to Table 1, all regression parameters are significant on the usual level

α = 0.05, although b̂
(12)
2 is closer to zero. Moreover, the estimated parameters b

(12)
2

and b
(13)
2 are negative which means that “agriculture” and “other industry” have small

negative relative influence on manufacturing. On the other hand, “services” (resulting
from the estimation in the last model) has strong positive relative influence on “manu-
facturing”. This is explained by the fact that the growth of the manufacturing sector is
inevitably induced by the growth of the services sector, necessary to support it. Trans-
portation, communication, financial and business services are required by the manufac-
turing and thus there is no increase in manufacturing without (relative) growth of these
services. To illustrate the regression results geometrically (see Section 3.2 to recall the
geometric motivation), Figure 3 displays the 3D plot of the estimated regression plane

for coordinates z
(12)
1 (response), and z

(12)
2 , z

(12)
3 (covariates) with all the points projected

on the plane.
Figure 4 shows the results of outlier detection for compositional data using Mahalanobis

distances [14]. There are 18 outlying observations in our dataset, affecting both the
response and the covariates. To restrict their possible influence on the estimates, a robust
version of orthogonal regression using MM-estimators was applied as well. The summary
of the regression outputs (including confidence intervals and p-values computed by fast
and robust bootstrap) are displayed in Table 2. The results are similar to those from

Table 1. In contrast to the classical analysis, here the regression parameter b̂
(12)
2 is not

significant. Consequently, the difference for the inference on b̂
(12)
2 can be attributed to

the outliers, underlining the need for a robust analysis. Of course, there are differences
among countries, and the relation between agriculture and industry is a long debated
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topic, see for example [30] and [31] for a detailed analysis of these linkages in India using
the input-output framework.

Table 2. Summary of regression outputs using robust orthogonal regression for all defined models.

par. estimate perc. CI BCa p-value

intercept -2.311 (-6.391, -1.666) (-6.040, -1.640) 0.006

b
(12)
2 (agriculture) -0.389 (-0.605, 0.180) (-0.590, 0.120) 0.116

b
(13)
2 (other industry) -1.075 (-4.994, -0.556) (-4.145, -0.549) 0.002

b
(14)
2 (services) 1.464 (0.996, 5.184) (0.031, 2.640) 0.002

6. Software: the R package oreg

The computations in this paper were carried out using the R package oreg which provides
functions for classical and robust orthogonal regression - oregClassic() and oregMM().
These functions can be applied on both compositional and non-compositional data. In
case of compositional data, all D − 1 regression models are estimated, one for each
orthonormal basis, as described in Section 2. The regression parameters are estimated
using (classical or robust) principal components. The MM-estimates are computed by a
call to the implementation in the rrcov package [34].

The results can be viewed by standard print() and plot() functions, while a
summary() function presents the parameter estimates and also the corresponding statisti-
cal inference (confidence intervals and p-values for significance testing) obtained through
bootstrap. In the robust version, fast and robust bootstrap from the package FRB [35]
is used.

The presented methodology is computationally intensive since we are dealing with
D− 1 regressions and each of them requires bootstrap and estimation of the robust MM
regressions. While the computational effort is mitigated by the application of the fast and
robust bootstrap approach, the question still remains how feasible the methodology is in
case of larger data sets. The example presented in the previous section is in dimension 4
only and does not shed light upon this issue. To study the computational performance of
the method, an experiment with simulated data with n = 400 observations in increasing
dimensions, up to D = 40 was carried out on an average, modern PC. For each D =
2, . . . , 40, all D − 1 classical and robust regressions with the bootstrap inference were
computed and the results (computation time in seconds) are presented in Figure 6.
For less than 15 variables, the robust MM-regression with fast and robust bootstrap is
even faster than the classical orthogonal regression with standard bootstrap (less than
1.5 minutes), but in higher dimensions the timings change. The classical orthogonal
regression remains below 7 minutes up to D = 40, while the time consumed by the
robust regression increases and becomes almost 50 minutes for D = 40.

A future extension of the package will include the weighted robust orthogonal regression
[12] and the projection pursuit algorithm [3].

7. Summary and discussion

Within a composition, the measured variables are usually accompanied by a measurement
error. Thus, if regression of one compositional part on other parts is to be done, the
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Figure 5. Computational performance of the robust and classical orthogonal regression for compositional data.

appropriate methodology is an errors-in-variable model, practically carried out through
orthogonal regression. Since one is interested also in the interpretation of the model
and in inference statistics, the task is to choose coordinates of the compositions which
can be assigned to the measured parts. We have presented such a choice based on ilr
coordinates, which have to be specified for each explanatory variable. All the different
ilr coordinates are orthogonal transformations of each other. Due to the invariance of
orthogonal regression to orthogonal rotations, the fit of the model does not change, and
the intercept term remains the same.

The parameters of the orthogonal regression model can be estimated either via SVD
(singular value decomposition) or by PCA (principal component analysis), since the
outcomes of both methods are the same for the centered variables. The computational
burden of both in the classical case is comparable up to moderate size of the data. Our
interest was also in robust parameter estimation, since data outliers can have a strong
effect on the classical estimates. Although procedures for robust SVD are available (e.g.
[4]), it is more straightforward to employ a robust PCA procedure, since one simply can
plug-in a robustly estimated covariance into the PCA procedure. Here we used the highly
robust and efficient MM-estimator of location and scatter to robustify PCA, and thus
estimate the parameters of the orthogonal regression model.

Statistical inference is particularly challenging in the robust case. Even if strict distri-
butional assumptions are taken, like joint multivariate normal distribution of the response
and the explanatory variables, it is not straightforward to derive the exact distribution of
the robustly estimated regression parameters. In order to avoid these difficulties and in
particular these strict assumptions, we used nonparametric bootstrap to estimate confi-
dence intervals for the regression parameters and p-values of the tests for the parameters.
This has been done for classical (least-squares based) and robust orthogonal regression.
In the latter case, a much faster procedure for robust bootstrap has been employed,
which is based on an approximation using fixed point equations.

Finally, the example has clearly shown that the proposed approach leads to meaningful
results. Although there are no massive outliers in the data set, so that the classical
and the robust analysis give about the same answer, they still differ in the significance
of a regression parameter, important for interpretation purposes. From the economic
perspective, it would also be interesting to investigate how the obtained relations change
over time or how they change across different country groups, or even to employ more
covariates (including non-compositional ones) for the regression purposes. We leave these
topics for further research.
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