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Biplots represent a widely used statistical tool for visualizing the resulting loadings and scores
of a dimension reduction technique applied to multivariate data. If the underlying data carry
only relative information (i.e. compositional data expressed in proportions, mg/kg, etc.) they
have to be pre-processed with a logratio transformation before the dimension reduction is
carried out. In the context of principal component analysis, the resulting biplot is called com-
positional biplot. We introduce an alternative, the ilr biplot, which is based on a special choice
of orthonormal coordinates resulting from an isometric logratio (ilr) transformation. This al-
lows to incorporate also external non-compositional variables, and to study the relations to
the compositional variables. The methodology is demonstrated on real data sets.
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singular value decomposition; compositional biplot; ilr biplot

1. Introduction

Compositional data represent multivariate observations where the relevant information
is contained in the ratios between the variables. Usually, already the measurement unit of
such data (proportions, percentages, mg/kg, ppm, etc.) reflects their relative character.
Since the interest is only in the ratios, the chosen unit is irrelevant, and it forms just a
proper representation of the variables, called compositional parts [1]. Geometrically, com-
positional data follow the Aitchison geometry on the simplex [2]. Consequently, standard
statistical methods that rely on the standard Euclidean geometry in real space usually
fail when they attempt to capture the multivariate structure of compositional data.

In the last two decades, several papers related to the proper statistical treatment of
compositional data have appeared, employing the logratio methodology to compositional
data analysis [1, 3–7]. This is also the case in the context of principal component analy-
sis (PCA) for compositional data [8–12]. Nevertheless, the recent developments concern
just the case of PCA working only with compositional parts [8, 10, 12] or when supple-
mentary variables are projected into a PCA biplot of compositional data [9]. A concise
methodology on how to incorporate also additional non-compositional variables into one
PCA is still not available, despite the fact that these cases frequently occur in practice.
Examples are chemical concentration data of air quality measurements with external in-
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formation like wind-speed or solar radiation, or election data with external information
characterizing the districts or regions.

The goal of this paper is to introduce an approach, based on the isometric logratio
transformation for compositional data [5], for exploring the relations between composi-
tional parts and external non-compositional variables using biplots of principal compo-
nents. In the next section, some basics on biplots are recalled (Section 2). Section 3 treats
biplots from a compositional data analysis point of view. Section 4 provides a detailed
description of the methodology to include additional variables to compositional data in
this context. Its usefulness for practical applications is demonstrated on two examples
(Sections 5): for a data set from the German federal election, and for employment data
in the European Union. The final Section 6 discusses possible problems and extension of
the new analytical tool.

2. The PCA biplot: construction and interpretation

Consider a given data matrix X of dimension n × D. The n rows are formed by the
observation vectors xi., for i = 1, . . . , n, and the D columns by the variable vectors xj ,
for j = 1, . . . , D. Throughout the manuscript, a “.” in the index of a vector will refer to
the corresponding row of a matrix, and a vector will always be a column-vector. Thus,
X = (x>1., . . . ,x

>
n.)
> = (x1, . . . ,xD). We further assume that X is mean-centered, i.e. the

column-wise arithmetic mean is subtracted from each column.
A PCA biplot can be constructed using singular value decomposition (SVD) of X,

given by

X = UDV>, (1)

where U ∈ Rn×n and V ∈ RD×D represent orthogonal matrices and D ∈ Rn×D is a
(rectangular) diagonal matrix, where the diagonal consists of non-negative values, the
singular values, which are arranged in descending order (d11 ≥ d22 ≥ · · · ≥ dkk ≥ 0).
Here, k ≤ min(n,D) denotes the rank of X. With this decomposition, X can be expressed
as

X =
k∑

i=1

diiuivi
>,

where ui and vi, respectively, represent the i-th column of the matrix U and V, respec-
tively. Due to the orthogonality of U and V the following equations hold:

XX>ui = d2iiui,

X>Xvi = d2iivi.

Thus, ui is the i-th eigenvector of XX> to the eigenvalue d2ii, and vi is the i-th eigenvector
of X>X to the same eigenvalue d2ii. From the latter equation it is immediate that vi is
also an eigenvector of the sample covariance matrix

S =
1

n− 1
X>X,
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which thus corresponds to the i-th loading vector of a classical PCA. Accordingly, the
PCA scores information is contained in the matrix V [13].

The goal of the biplot is to plot information of the observations (PCA scores) as well as
information of the variables (PCA loadings) in one plot [14]. For this purpose we define
the decomposition X = GH>, where the rows of the matrix

G
n×k

= (g1·, . . . ,gn·)
> =
√
n− 1U (2)

contain the information of the observations, and the rows of the matrix

H
D×k

= (h1·, . . . ,hD·)
> =

1√
n− 1

VD, (3)

contain information of the variables. The scores information is usually shown by points
in the biplot, while the loadings information is drawn by rays. Since a biplot is usually
two-dimensional, the information contained in X is exactly reproduced if the rank k of
X is two (or less). Otherwise, the descriptive ability of the biplot relies on the amount of
variability explained by the first two principal components, and we only obtain GH> ≈
X.

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

PC1

P
C

2

scores
loadings

g1.

g2.

h1.

h2.

h3.

h4.

cos(h2., h3.)

||h3. − h4.||

||g1. − g2.||

||h1.||

Figure 1. Graphical illustration of standard biplot properties.

With the above choices of the matrices G and H, the following properties are obtained
[14] and visually explained in Figure 1:

• The inner product between the rows of G and the rows of H estimates the original
matrix of observations X, i.e. g>i·hj· ≈ xij .

• Since HH> ≈ 1
n−1X

>X = S, a biplot constructed in this way is called covariance
biplot.

• The length of a ray estimates the standard deviation of the respective variable, ‖hj·‖2 =
h>j·hj· ≈ 1

n−1x
>
j xj .

• Consequently, the cosine of the angle between two rays expresses the approximated

correlation coefficients between the corresponding variables, cos (hi·,hj·) = h>i·hj·
‖hi·‖‖hj·‖ ≈

3
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x>i xj

‖xi‖‖xj‖ .

• The squared distances between the rows of H approximate the mean squared difference
between the variables, ‖hi· − hj·‖2 ≈ 1

n−1‖xi − xj‖2.
• The squared distances between the rows of G approximate the squared Mahalanobis

distance between the observations, ‖gi· − gj·‖2 ≈ (xi· − xj·)
>S−1(xi· − xj·).

The above well-known properties for the covariance biplot will be explored in the follow-
ing for compositional data.

3. Biplots for compositional data

3.1. The clr transformation and corresponding biplot properties

Compositional data follow the Aitchison geometry on the simplex. Before applying PCA
and constructing a biplot, the data need to be transformed to the usual Euclidean geom-
etry. A popular transformation for this purpose [8] is the centered logratio (clr) trans-
formation [1], defined for a D-part composition x = (x1, . . . , xD)> as

y = (y1, . . . , yD)> =

ln
x1

D

√∏D
i=1 xi

, . . . , ln
xD

D

√∏D
i=1 xi

> .
The expression in the denominator, D

√∏D
i=1 xi, represents the geometric mean of the

given composition x, denoted as g(x).
Let us assume the n × D matrix Y as a matrix of clr coefficients of X, the original

uncentered compositional data matrix. The elements of Y are denoted by yij , the rows by
yi·, and the columns by yj . Since the clr transformation preserves the distances between
the objects [5], the standard procedures can be applied for the newly constructed matrix
Y. For the sake of convenience, we will use the same notation as in the last section.
Accordingly, in analogy to (1), the SVD decomposition of Y is given by

Y = UDV>. (4)

Further, the matrices G and H are defined according to (2) and (3), respectively. Using
only the first two components of these matrices for the biplot construction, the relation
GH> = Y holds if the rank of Y is not larger than two–otherwise this relation is only
approximately valid, and the quality of the approximation depends on the rank of Y.
The rows of the matrix G contain the object information, and the rows of the matrix
H contain the information of the clr variables. Both sources of information are used to
construct the so-called compositional biplot [8].

The essential difference between the standard and the compositional biplot is that H
does not directly represent the original variables but transformed versions thereof. It is
possible to interpret the single clr variables as those capturing all the relative information
(ratios) about the corresponding compositional parts (in the numerator of the logratio)
[15]. Nevertheless, from a numerical perspective, one should be aware of the fact that the
geometric mean in the denominator can be driven by possible distortion (like rounding
errors) of the involved parts. For this reason, the interpretation of clr variables in the
sense of the original compositional parts (in terms of (sub)dominance of the part of
interest to the “mean” part in the composition) requires a careful selection of parts,
included in the parent composition. As a consequence, the interpretation of the relations
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in the compositional biplot has to be adapted (Figure 1):

• Similar to the standard biplot, the inner product between the rows of G and the rows
of H estimates the matrix of clr coefficients Y,

g>i·hj· =
√
n− 1u>i·

1√
n− 1

(vj·D) = u>i·Dvj· ≈ yij = ln
xij
g(x)

, (5)

where ui· and vj· are i-th and j-th row of U and V, respectively.
• The lengths of the rays estimate the standard deviations of clr transformed variables

(clr coefficients),

‖hj·‖2 = h>j·hj· =
1

n− 1
(vj·D)>(vj·D) ≈ 1

n− 1
y>j yj = var

(
ln

xj

g(x)

)
. (6)

• The links between the vertices of the rays estimate the standard deviation of the
logratio between the corresponding compositional parts, hence

‖hi· − hj·‖2 ≈
1

n− 1
(yi − yj)

>(yi − yj) =
1

n− 1

n∑
l=1

(yli − ylj)
2

=
1

n− 1

n∑
l=1

(
ln

xli
g(x)

− ln
xlj
g(x)

)2

=
1

n− 1

n∑
l=1

(
ln

xli
xlj

)2

= var

(
ln

xi

xj

)
.

(7)

• The projection of a score onto a link represents an approximate difference between the
two clr coordinates yij and yik, which is the logratio between the original values xij
and xik,

gi·
>(hj· − hk·) =

√
n− 1ui·

> 1√
n− 1

(vj· − vk·)D

≈ yij − yik = ln
xij
g(x)

− ln
xik
g(x)

= ln
xij
xik

.

(8)

• The Euclidean distance between the rows of G approximates the Mahalanobis distance
between the clr coefficients in the full space with the estimated covariance matrix SY

of the clr-transformed variables,

‖gi· − gj·‖2 = (gi· − gj·)
>(gi· − gj·) = (n− 1)(ui· − uj·)

>(ui· − uj·)

≈ (yi· − yj·)
>S−1Y (yi· − yj·).

(9)

Several further properties of the compositional biplot are listed in [8]. Although these
are important for interpreting the relations among the compositional parts, they cannot
be explored for relating compositional variables with external information.

The important difference between the standard and the compositional biplot is in the
interpretation of the rays and of the links between the vertices of the rays. While in
the standard biplot, rays and links represent variability among the variables, they repre-
sent relative variability in the compositional biplot. Specifically, the correlation measure
expressed by the cosine of the angle between two rays (standard biplot) is replaced by
the variance of a logratio, expressed as the (squared) length of a link in the composi-
tional biplot [1]. Accordingly, when the vertices coincide, or nearly so, then the variance
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var(ln xi

xj
) is approximately equal to zero. Thus, the ratio between xi and xj is constant,

or nearly so, and it could be stated that variables xi and xj are interchangeable.
In many situations, the clr coordinates themselves are not appropriate for a statistical

analysis, because due to the constraint y1 + · · ·+ yD = 0, resulting from the fact that clr
variables represent coordinates with respect to a generating system, the corresponding
covariance matrix is singular. A correlation coefficient between clr variables would thus
result in biased values. The reason is that for the covariance structure of clr variables
the following relations hold:

∑
i 6=j cov(yi, yj) = −var(yi), i = 1, . . . , D. Consequently, the

corresponding correlation coefficients loose their predicative value, because they cannot
vary freely between −1 and 1. From this perspective, also for combining the clr variables
with external non-compositional ones, the singularity constraint would result in problem-
atic issues. For example, any clr variable cannot be principally taken separately without
considering its relation to the other variables, expressed by the zero sum constraint. It
thus complicates intepretability of the biplot in the sense of relative information on sin-
gle compositional parts, discussed in the following. To sum up, this all makes the use
of clr variables for the purpose of PCA and the compositional biplot with additional
non-compositional variables not recommendable.

3.2. The ilr transformation and biplot construction

The isometric logratio (ilr) transformation results in orthonormal coordinates z =
(z1, . . . , zD−1)

> with respect to the Aitchison geometry, and it also leads to an orthonor-
mal basis of the hyperplane H : y1 + · · ·+ yD = 0, formed by the clr transformation [5].
Consequently, there exists a linear relation between the clr variables and the orthonormal
coordinates [5],

y = Vz. (10)

The columns of the D×(D−1) matrix V = (v1, . . . ,vD−1) are orthonormal basis vectors
on the hyperplane H,

vD−i =

√
i

i + 1

(
0, . . . , 0, 1,−1

i
, . . . ,−1

i

)>
, i = 1, . . . , D − 1, (11)

resulting in the ilr coordinates z. In particular, this means that PCA results in the
same principal component scores with non-zero variances (the last principal component
is formed by the normal vector on H, thus having zero variability).

There are infinitely many possibilities to construct an orthonormal basis. A special
choice of orthonormal coordinates that allows to interpret them in terms of the contri-
butions of the single compositional parts is as follows [16]. Consider the compositions
(xl, x1, . . . , xl−1, xl+1, . . . , xD), which are re-arranged such that the l-th part is in the

first position. We will use the notation x(l) = (x
(l)
1 , x

(l)
2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D ), where

each part with index l = 1, . . . , D could be placed on the first position, and the se-
quence of the other parts remains unchanged. The ilr transformation of x(l) results in

z(l) = (z
(l)
1 , . . . , z

(l)
D−1)

>, where the components are defined by

z
(l)
i =

√
D − i

D − i + 1
ln

x
(l)
i

D−i

√∏D
j=i+1 x

(l)
j

, i = 1, . . . , D − 1. (12)

Then, the first ilr variable z
(l)
1 explains all the relative information (log-ratios) about
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the original compositional part xl. The coordinates z
(l)
2 , . . . , z

(l)
D−1 explain the remaining

log-ratios in the composition [15]. Note that the only important position is that of x
(l)
1 ,

because it can be fully explained by z
(l)
1 . The other parts can be chosen arbitrarily,

because different ilr transformations are orthogonal rotations of each other [5]. Note that
the relation

yl =

√
D − 1

D
z
(l)
1 , l = 1, . . . , D (13)

confirms our preliminary requirement on interpretability of the resulting coordinates, for

D → ∞ both variables approach the same values. On the other hand, both yl and z
(l)
1

thus share also interpretational doubts, mentioned by defining the clr variables.
The advantage of obtaining an interpretation for each compositional part is redeemed

by the necessity of constructing D coordinate systems, where always just one variable is
of primary interest (at the first position). It is obvious that always the first coordinate

z
(l)
1 in each given system corresponds to the clr coordinate yl, for l = 1, . . . , D, differing

by the constant
√

D
D−1 .

Consider now an n × (D − 1) matrix Z(l) with ilr coefficients due to (12), for each
of the n observations. Assuming D different coordinate systems, then D singular value
decompositions are required to obtain scores and loadings for the biplot construction.
For l = 1, . . . , D, an SVD gives

Z(l) = U(l)DV(l)>. (14)

As it has been shown in [10], the diagonal matrix D is the same as in (4) for the clr-
transformed data. Moreover, all matrices U(l) are equal, and they correspond to the
matrix U in (4). This means that the scores in the clr space are identical to the scores of
the ilr space, apart from the last column of the clr score matrix that contains zeros. Due
to the relationship (10) between clr and ilr coordinates by a matrix with orthonormal
columns, and the fact that different ilr-transformations are orthogonally related, we get

V = V(l)V(l), for l = 1, . . . , D, (15)

where V are the loadings from an SVD of Y, and the matrix V(l) stands for corresponding
permutations of the orthonormal basis matrix V, see [5] and [10]. Considering relation
(13) it is immediate that the l-th row of V is equivalent to the first row of V(l), differing

only by the constant
√

D
D−1 .

For constructing the biplot, a decomposition of the form

Z(l) = G(l)H(l)>, l = 1, . . . , D, (16)

is required. With the above statements, and in analogy to the clr biplot, it is clear that

G(l) = G =
√
n− 1U, (17)

and

H(l) =
1√
n− 1

V(l)D. (18)

7
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Due to the relation between the matrices V and V(l), the first row h
(l)
1· of the ilr loadings

information H(l) is related to the l-th row hl· of the clr loadings information H by

h
(l)
1· =

√
D

D − 1
hl·, l = 1, . . . , D. (19)

The relationships between the loadings of ilr and clr coefficients are leading to similar
properties as in the compositional biplot, only differing by a constant. The properties of
the ilr biplot are illustrated in Figure 2.

• The inner product between the rows of G and the rows of H(l) gives

g>i·h
(l)
1· =

√
D

D − 1
g>i·hl· =

√
D

D − 1
u>i·Dvl· ≈

√
D

D − 1
yil =

√
D

D − 1
ln

xil
g(x)

. (20)

• The lengths of the rays represent

‖h(l)
1· ‖

2 =
D

D − 1
h>l· hl· ≈

D

D − 1

1

n− 1
y>l yl =

D

D − 1
var

(
ln

xl

g(x)

)
. (21)

• The links between the vertices are

‖h(i)
1· −h

(j)
1· ‖

2 =
D

D − 1
‖hi·−hj·‖2 ≈

D

D − 1

1

n− 1
(yi−yj)

>(yi−yj) =
D

D − 1
var

(
ln

xi

xj

)
.

(22)
• The projection of a score to the link yields

gi·
>(h

(j)
1· − h

(k)
1· ) =

√
D

D − 1
gi·
>(hj· − hk·) ≈

√
D

D − 1
(yij − yik) =

√
D

D − 1
ln

xij
xik

.

(23)
• As for the clr biplot, the Euclidean distance between the rows of G gives

‖gi· − gj·‖2 ≈ (yi· − yj·)
>S−1Y (yi· − yj·). (24)

• The angles between ilr coordinates and clr coefficients remain the same, despite the
fact that they are not used for interpreting a correlation structure of a compositional
biplot.

cos(h
(i)
1· ,h

(j)
1· ) =

D
D−1h

>
i·hj·

D
D−1‖hi·‖‖hj·‖

≈ y>i yj

‖yi‖‖yj‖
. (25)
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Figure 2. Graphical illustration of ilr biplot properties.

In the following, the biplot constructed by merging information from loadings of D
orthonormal coordinate systems together into one planar graph, as described above, will
be called ilr biplot. In order to avoid possible confusion, we should note that the ilr
biplot as defined here thus corresponds to a scaled compositional biplot of clr variables;
they both differ just in the interpretation of the loadings, coming from the employed
orthonormal coordinate systems in the ilr biplot. This helps to consider the (scaled)
clr variables separately (consequently also within the compositional biplot), and not as
an inherent part of the coordinates with respect to a generating system. On the other
hand, a biplot of ilr coordinates for an interpretable choice of balances [6], following the
properties of a standard biplot, can be constructed as well. In the next step we describe
how the ilr biplot can be extended by additional non-compositional variables.

4. Compositional biplots with additional variables

The next step to construct a meaningful biplot for both compositional data and exter-
nal non-compositional variables is to analyze, whether the use of a clr transformation
or ilr coordinate systems (12) for the compositional part of the data would yield the
same results (up to a scaling constant) as in the previous section. Consider q additional
non-compositional variables X∗ = (x∗1, . . . ,x

∗
q)
>, which have already been preprocessed

accordingly (e.g. scaled). In the following we have to distinguish different cases how to
combine external and compositional variables.

Initially, let us assume only one composition and external variables. We could consider

two joint matrices (Y
...X∗) ∈ Rn×(D+q) and (Z(l)

...X∗) ∈ Rn×(D+q−1), where Y represents
clr coordinates and Z(l), l = 1, . . . , D, are ilr coefficients for D different coordinate sys-
tems. Subsequently, it is required to apply the SVD for both matrices to compare scores
and loadings of a compositional and ilr biplot, respectively. For l = 1, . . . , D the SVD
gives

(Y
...X∗) = U∗D∗V∗> = G∗H∗>, (26)

9
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(Z(l)...X∗) = U∗(l)D∗(l)V∗(l)
>

= G∗(l)H∗(l)
>
. (27)

The diagonal matrices D∗(l), l = 1, . . . , D, are the same and they are equal to D∗ (up
to its last zero row/column) corresponding to the SVD for clr coordinates with external
variables. Similarly, it is straightforward to show that the scores for the compositional
and ilr biplot, respectively, are identical,

G∗(l) = G∗ =
√
n− 1U∗, l = 1, . . . , D. (28)

The loadings of the SVD of (4) and (27) are related according to a linear relation between
the clr and the ilr transformation (10) as

V∗ = V(l)V∗(l), l = 1, . . . , D, (29)

where the matrix V(l) represents the corresponding permutation of the orthonormal basis
matrix V (11). Accordingly, a relation between the loadings using the ilr transformation
and the clr transformation to construct a biplot including external non-compositional
variables is obtained as

h∗1·
(l) =

√
D

D − 1
h∗l· for l = 1, . . . , D. (30)

Since we have stated the same relation for loadings without external variables (19), it
is obvious that incorporating new non-compositional variables to the construction of a
biplot does not influence the resulting loadings and scores of the compositional parts.

Consequently, a meaningful interpretation between compositional parts and external
variables can be investigated. The representation of the relations among the composi-
tional variables has been introduced in Section 3 and in the case of external variables the
important role is played by the angles showing the approximate correlation coefficient
between two external variables as in the standard biplot. Similarly, for the purpose of
interpreting the relations between both types of variables only angles can be considered.
Thus the angles can also approximate the correlation structure between the chosen ex-
ternal variable x∗i i = 1, . . . , q and an arbitrary compositional part xl (l = 1, . . . , D),

since the compositional variable is expressed (in the above sense) using coordinate z
(l)
1 ,

l = 1, . . . , D, being a standard real variable.
Furthermore, let us assume two different compositional variables to investigate their

mutual relations among parts in a biplot (external variables are not considered for sim-
plicity). Let X1 = (x11, . . . ,x1D1

)> and X2 = (x21, . . . ,x2D2
)> be two different com-

positions with D1 respectively D2 parts. To compare loadings and scores it is necessary
to construct the SVD for the merged matrices of the clr and ilr coordinates for both
compositional variables as follows

(Y1
...Y2) = ŨD̃Ṽ> = G̃H̃>, (31)

(Z
(l)
1

...Z
(k)
2 ) = Ũ(lk)D̃(lk)Ṽ(lk) = G̃(lk)H̃(lk), (32)

where l = 1, . . . , D1 and k = 1, . . . , D2. Here Y1 and Y2, respectively, represent clr coef-

ficients of X1 and X2, respectively, and Z
(l)
1 ,Z

(k)
2 stand for their ilr coordinates according

to (12). The relationships between scores and loadings for the compositional biplot and
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the ilr biplot correspond directly to the simple case of one composition in Section 3.2.
Since, by omitting the last two rows and columns of D̃, the diagonal matrices D̃(lk) and
D̃ are the same, for l = 1, . . . , D, the corresponding scores are equal,

G̃(lk) = G̃ =
√
n− 1Ũ. (33)

We can derive an analogous relation also for the loadings,

h̃
(lk)
1· =

√
D1

D1 − 1
h̃l·, l = 1, . . . , D1, (34)

thus the ilr loadings concerning the first composition differ only by a constant
√

D1

D1−1 ,

where D1 is the number of parts of the first composition. A similar relation can also be
derived for the loadings highlighting parts of the latter composition, i.e.

h̃
(lk)
D1· =

√
D2

D2 − 1
h̃(D1+k)·, k = 1, . . . , D2. (35)

Taking into account the mentioned relations between scores and loadings, an appro-
priate interpretation of the properties can be incorporated for the case of a biplot con-
structed for two different compositional variables. Because the ilr coordinates represent
standard real variables, their relation for those coordinates resulting from different com-
positions can be analyzed using angles of the corresponding rays like in the standard
biplot. Of course, for measuring the strength of the relative relation between the parts
within one composition, the links between the rays still represent the preferred option.

Generally, it is feasible to construct a meaningful biplot for more compositions and ex-
ternal non-compositional variables simultaneously as a simple extension of two previously
described cases. The main idea consists in applying a special choice of ilr coordinates
(12) for each composition and preprocessing external non-compositional variables by the
corresponding transformations. Consequently, the transformed variables are merged into
one joint matrix followed by SVD to obtain scores and loadings for a biplot construc-
tion. Such a biplot representation reflects all possible combinations of the previously
mentioned cases.

The main convenience is given by a simple relationship between the resulting SVD for
clr and ilr coordinates. Obviously, it is not necessary to construct D coordinate systems
when scores are always the same and loadings differ from using the clr transformation only
by a scaling constant. It is possible to apply the clr transformation for the compositional
parts followed by the same interpretation of the biplot as for a special choice of ilr
coordinates (12). It is apparent that an appropriate interpretation of scores and loadings
always depends also on the characteristic structure of the examined data. Selected cases
are demonstrated on real-world data examples in Section 5.

5. Applications

5.1. Election data

The first example describes the results of a federal election in Germany in different
federal states (Table A1) in September 2013 (data come from German Federal Statistical
Office). The aim is to analyze the relations between the votes for the political parties
in the elections (compositional variables), and their relation to the unemployment rate
and the average monthly income (external non-compositional variables). We consider the
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votes for the Christian Democratic Union and Christian Social Union of Bavaria, also
called The Union (CDU/CSU), Social Democratic Party (SDP), The Left (DIE LINKE),
Alliance ’90/The Greens (GRÜNE), Free Democratic Party (FDP) and the rest of the
parties participated in the elections (other parties). The votes are examined in absolute
values (number of valid votes). The unemployment in the federal states is reported in
percentages, and the average monthly income in Euros.

As mentioned formerly, we are interested in relative information (ratios between the
votes for the parties) contained in the data and also the influence of some additional ef-
fects. Initially, it is necessary to use appropriate transformations for all variables to obtain
a meaningful biplot structure. For the numbers of valid votes, the ilr transformation (12)
is used. The unemployment information, provided in percentages, is logit-transformed in
order to change the relative scale of percentages (as a special case of compositional data)
into the absolute one [17], and the average monthly income is scaled using its mean and
its standard deviation. Subsequently, PCA is performed on these joint data to obtain
scores and loadings for constructing the biplot.

Figure 3 (left) shows the resulting biplot. The explained variance is high, with 92.8%.
It is obvious that the federal states are split into two groups. The right located group of
states corresponds exactly to the states of former East Germany, except Berlin. The rest
of them, left located, are states of former West Germany.

The lengths of the rays of the compositional variables represent the variability of re-
spective ilr coordinates, and the lengths of the rays of the external variables stand for
their own variability. The longest ray of the compositional variables represents the stan-
dard deviation of ilr variable DIE LINKE, which explains all the relative information of
DIE LINKE to the rest of the considered parties. This means that the relative variability
of the obtained votes differs a lot among all observed states. On the other hand, SDP
and other parties show the smallest relative variability.

The important role in the interpretation of compositional variables in biplots is played
by links between vertices of the rays. As the links stand for standard deviations of logra-
tios, they can provide the information about relative variability of compositional parts.
When the variance of the logratios var(ln xi

xj
) is approximately zero or nearly so, we can

say that the proportion of the variables is stable, thus xi and xj are interchangeable.

This is the case for the pair GRÜNE and SDP, and to some extent also for the pair
CDU/CSU and other parties. It means their proportion is almost equal among all obser-
vations. On the other hand, GRÜNE and DIE LINKE, FDP and DIE LINKE show the
highest proportional variability.

The relation between external non-compositional variables can be examined as in the
standard biplot. Accordingly, since the rays for income and unemployment are almost
orthogonal, these variables seem to be nearly uncorrelated. The angles of the rays are also
informative for investigating the relations between external variables and compositional

ones, since the latter are ilr coordinates z
(l)
1 which explain all relative information about

the original part xl. Accordingly, the parties GRÜNE and SDP are strongly positively
related to average monthly income. In contrast, the income variable is uncorrelated with
voters of FDP and DIE LINKE, there is no essential relationship between income and
votes for these political parties. The variable unemployment is strongly negatively related
to FDP and CDU/CSU. The opposite relation seems to exist between unemployment and
DIE LINKE, i.e. the rate of unemployment influences the proportional structure of people
voting DIE LINKE.

Also the federal states can now be associated with the variables: The division of the
states into the western and the eastern group is based on differences in the income (higher
in the west) and unemployment (higher in the east), but also in the voting behavior. For
example, in the eastern states DIE LINKE is much more dominant, and FDP is stronger

12
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in the west.
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Figure 3. Biplots for the German federal elections including unemployment and average monthly income: ilr

biplot (left) and standard biplot (right).

We also want to compare the results obtained using the ilr biplot with the case, where
the compositional nature of the election data is not accounted for. Therefore, these raw
percentage data are combined with the external variables unemployment (in percent)
and income (in absolute numbers, scaled). Then, an SVD is carried out to the combined
data, and the results are shown in a standard biplot in Figure 3 (right). Despite the
high explained proportion of variance (99.65%), it is obvious that the resulting biplot
differs a lot from the previous solution. We still have the separation of the states into
the two groups, which are the result of different income. However, all other variables are
essentially uncorrelated to this main direction. Also, this second PCA direction expresses
not even 1% of the variability, and is thus rather irrelevant for an interpretation.

We also tried to use a logit-transformation for each of the compositional variables, and
join this information with the external variables, i.e. with logit-transformed unemploy-
ment and scaled income. The resulting biplot is quite similar to the ilr biplot. There is,
however, no guarantee for this phenomenon, as it will be shown in the next example.

5.2. Employment data

The aim of the second example is to show how it is possible to construct and interpret
a biplot for two different compositions with external non-compositional variables. We
consider a data set consisting of the number of employed people in the countries of
the European Union (except of Ireland); the data come from EUROSTAT. The first
composition describes the number of employed people in different fields of economic
activity: agriculture, forestry and fishing (agri); industry and construction (industry);
financial and insurance activities (finance); real estate activities (real estate); public
administration, defense, education, human health and social work activities (public);
arts, entertainment, recreation and other service activities (arts). The second composition
illustrates employment in various age categories: from 15 to 24 years (15-24); from 25 to
64 years (25-64); and from 65 years and over (65+). The external variables are: shares
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of young people living with their parents (young), and people at the risk of poverty or
social exclusion (poverty); both are given in percentages.

Each compositional data set is ilr-transformed with D coordinate systems (12) (in-
stead, for simplicity, just the clr transformation can be taken), and afterwards joined
together with the external variables. Figure 4 shows the resulting ilr biplot. The propor-
tion of explained variance for these first two components is 79.1%. It is visible that many
observations which are close to each other are also geographically in a neighborhood,
for instance the Baltic states (Estonia, Latvia, Lithuania) or the Scandinavian countries
(Denmark, Finland, Sweden). Close groups of observations have a similar proportional
behavior of the considered variables. In general, richer countries are concentrated in the
left part of the biplot, whereas less economically strong ones are in the right part. This
is also supported by the external variables poverty, pointing to the right side, and real
estate, pointing to the richer countries. On the top of graph we can recognize a group
of countries whose gross domestic product (GDP) consists particularly from activities of
the financial sector (Luxembourg, Malta and also Cyprus).

−3 −2 −1 0 1 2

−
3

−
2

−
1

0
1

2

PC1 (57.98%)

P
C

2
 (

2
1
.1

2
%

)

BE

BG

CZ

DK

DE

EE

GR

ES

FR

HR

ITCY

LV LT

LU

HU

MT

NL AT

PL
PT

RO

SI

SK

FI

SE

UK

−0.5 0.0 0.5

−
0
.5

0
.0

0
.5

young
finance

agri

real estate

65+

poverty

industry

25−64
arts

15−24
public

Figure 4. Ilr biplot of employed people by economic activity and age, including the risk of poverty or social

exclusion and the share of young people living with their parents.

Initially, let us consider only the first composition (economic activity) and relations
within these variables. The most significant ray is apparent for the agricultural sector,
expressing a large standard deviation of all relative information of the variable agri to the
remaining sectors. The links suggest that variables public and industry are proportionally
almost equal, the proportion remains almost the same among all the observations. The
same behavior can also be observed for the pairs finance and arts, industry and arts,
public and arts, finance and public. On the contrary, the highest proportional variability
is evident between agriculture and real estate activities, resp. financial activities. Within
the second composition, the links seem to be very similar for all given parts.

Subsequently, we can also investigate relations between both compositions. Since the
same ilr transformation (12) was used for both of them, the resulting conclusions (con-
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cerning the biplot interpretation) are made in the same way as dealing with standard
real variables. We can see that the rays for public and young employees (15-24) nearly
coincide, thus the behavior of these two variables within their parent compositions is
positively correlated. The analogous relation can also be identified between 15-24 to arts
and finance, then between 25-64 to industry and finance. Oppositely, the dominance of
agriculture and young workers in their respective compositions is negatively correlated.
It means that the agricultural sector is more important in countries with lower relative
representation of young workers (this corresponds also to its positive correlation with
employees over 65 years).

Considering now the external variables, we see that the percentage of young people
living with their parents is uncorrelated to the proportion of employed people in the
agricultural sector. The same conclusion can be stated also for the arts sector. On the
contrary, the variable young is strongly related to the relative information of the indus-
trial sector. On the other hand, the young is strongly negatively correlated with real
estate activities since these variables lay approximately on the same line. The risk of
poverty appears uncorrelated with employed people between 25 and 64 years. Moreover,
the variable poverty is strongly negatively correlated with the relative amount of peo-
ple employed in the public administration. Additionally, the risk of poverty seems to be
related also to the variables agri and industry.

It is interesting to compare the compositional biplot also with a biplot constructed in
the standard way, i.e. by ignoring the compositional nature of both compositions. Figure
5 shows two standard biplots with different data preprocessing transformations. The
left graph represents data without scaling, since the data are expressed in percentages,
scaling seems to be unreasonable in this case. Regardless, the resulting biplot does not
look very meaningful for the purpose of interpretation. The non-compositional variables
reflect significantly higher variability than other observed variables (much longer rays).
For this reason, the logit transformation was used for all non-compositional variables and
the biplot is shown in Figure 5 (right). The explained variance is much lower in this case
(72.18%) and there are some significant differences to the ilr biplot. For instance, the age
structure of the employed people is completely different. The ray of employed people in
age of 25 to 64 is slightly visible and the variance of young people (15-24) has changed
its direction. In the ilr biplot the ray coincides with the public variable, whereas here it
seems to be correlated with real estate activities.
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Figure 5. Standard biplot of employed people by economic activity and age with external non-compositional

variables: no transformation used (left), using logit transformation (right).

In conclusion, the construction of the ilr biplot enhances the applicability of the com-
positional biplot, whereas they visualize the same scores and loadings (up to a scaling
constant). Frequently, standard biplots result in misleading representations and their
construction does not consider the natural geometric structure of compositional data. As
it was shown in the examples, the ilr biplot usually yields more reasonable results.

6. Discussion

The multivariate data structure of compositional data can be analyzed with the clr biplot,
i.e. a biplot based on singular value decomposition of the clr-transformed data. Instead of
the clr transformation, we considered a specific ilr transformation for each compositional
variable. Variable-wise, this yields the same information as clr, up to a scaling constant.
However, from an interpretation point of view, the ilr version is more convenient, since
each ray in the plot represents an individual orthonormal coordinate with a meaningful
interpretation.

The ilr version of the biplot has the additional advantage that it is possible to
reasonably combine compositional data with other compositions, and/or with non-
compositional (external) variables. The idea is that each composition is ilr-transformed,
the results are combined, and then external variables merged. We have shown how the
relations between the variables of different compositions, relations to external variables,
and relations to the observations can be interpreted.

As in the non-compositional case, a proper preprocessing of external variables should be
considered. It has been shown on real examples that the most convenient transformations
are logit transformation for percentage data and simple scaling for variables containing
absolute values. Possibly also the log-transformation can be applied, when the effect
of relative scale of the original variable needs to be suppressed [18]. A scaling of the
compositions is not necessary since the logratio transformations are invariant with respect
to scaling.

It has been shown on practical real-world examples that the ilr biplot provides a more
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reasonable representation of the data structure than standard biplots since it captures
the different geometrical features of compositional data. As in the usual case, a proper
interpretation depends also on the explained proportion of variance. The higher variance,
the better the ilr biplot reveals the real multivariate data structure. It is of course possible
to show an ilr biplot not only for the first two components, but also for higher-order pairs.

In further research, a robust version of the ilr biplot can be considered and constituted,
based on robust PCA for compositional data [10]. A robustified version will be less
sensitive to outlying observations.
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Appendix A. Abbreviations

Table A1. Codes representing names of Ger-
man states
Abbreviation State

BB Brandenburg
BE Berlin
BY Bavaria
BW Baden-Württemberg
HB Bremen
HE Hesse
HH Hamburg
MV Mecklenburg-Vorpommern
NI Lower Saxony
NW North Rhine-Westphalia
RP Rhineland-Palatinate
SH Schleswig-Holstein
SL Saarland
SN Saxony
ST Saxony-Anhalt
TH Thuringia

Table A2. Codes representing

names of European countries
Abbreviation Country

AT Austria
BE Belgium
BG Bulgaria
CY Cyprus
CZ Czech Republic
DE Germany
DK Denmark
EE Estonia
ES Spain
FI Finland
FR France
GR Greece
HR Croatia
HU Hungary
IT Italy
LT Lithuania
LU Luxemburg
LV Latvia
MT Malta
NL Netherlands
PL Poland
PT Portugal
RO Romania
SE Sweden
SI Slovenia
SK Slovakia
UK United Kingdom
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