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Abstract The estimation of a mean of a proportion is a frequent task in statistical survey
analysis, and often such ratios are estimated from compositions such as income components,
wage components, tax components, etc. In practice, the weighted arithmetic mean is reg-
ularly used to estimate the center of the data. However, this estimator is not appropriate
if the ratios are estimated from compositions, because the sample space of compositional
data is the simplex and not the usual Euclidean space. We demonstrate that the weighted
geometric mean is useful for this purpose. Even for different sampling designs, the weighted
geometric mean shows excellent behavior.
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1 Introduction

Many surveys are concerned with the problem of estimating a mean of proportions. For
example, one can be interested in the mean relative amount of time spent on working ac-
tivities from the all-day activities, or the mean concentration of a pollutant in a study area.
Usually, such examples are connected with a constant sum constraint, like 24 hours in the
first case, or 1 (100) for proportions (percentages). However, this is not a necessary con-
dition when considering proportional data. A counter-example are household expenditures
of single-living persons: if the interest is on the relative contribution of foodstuffs on the
overall expenditures, it is irrelevant if this part is expressed in euro or in percentages – both
numbers lead to exactly the same information.

More formally, let oi and Oi be the original values of two parts of a sample with i =
1, . . . , n observations/compositions, typically a part of interest for oi and the remaining
(amalgamized) parts for Oi. In our first example, oi corresponds to the amount of time
spent on working activities, and Oi on the other activities for the i-th person included in
the sample. Then the mean proportion is usually estimated as (

∑n
i=1 oi)/(

∑n
i=1(oi + Oi)),

or it is directly estimated with the sample arithmetic mean 1
n

∑n
i=1 oi when the data are

already expressed in proportions or percentages. Nevertheless, this approach leads to some
difficulties. In particular, these difficulties are connected with the concept of relative scale.
Intuitively, the difference between one and two hours spent on working is not the same as
between 10 and 11 hours. In the first case, two hours represent the double of one hour,
while 11 hours is 1.1 times ten hours. The sample arithmetic mean estimator ignores the
relative scale concept, with the consequence of misleading interpretations, for instance when
comparing subpopulations. Note also that the standard mean estimators give in general
two different answers if the data are provided with or without constant sum constraint.
However, independent of the constraint we are interested in the same quantity, and thus a
unique result should be expected.

Often we are not only interested in an estimation of the mean, but also in a conventionally
calculated confidence interval around the mean. Using the above mean estimators for this
purpose may lead to non-sense intervals, like negative values for percentage data. In this case,
the interval can be simply cut to the non-negative part, but this violates the basic concept
of a confidence interval as a tool for covering the true value of the population characteristic
with a prescribed probability. The main reason for the undesired behavior of the confidence
interval of percentage data is the improper underlying geometry. The percentages do not
follow the usual Euclidean geometry in the real space, and consequently, also the Lebesgue
measure as the underlying measure for any meaningful statistical inference is not appropriate
there, see e.g. Mateu-Figueras and Pawlowsky-Glahn [2008] for details. Thus, although some
technical adjustments of the normal confidence interval may seem to solve the problem of
having negative values in interval estimators around the mean like in Kott and Liu [2009],
the only concise solution can be to change the underlying geometry (and consequently also
the measure) to a geometry that follows the properties of the sample space of proportional
data [Pawlowsky-Glahn and Egozcue, 2001].

Another approach taking into account the relative scale is based on ratios xi = oi/Oi.
Although in practice usually not only the ratios are available for the analysis, they are
exclusively of interest when data carry only relative information, represented in proportions
or percentages. Pawlowsky-Glahn and Buccianti [2011] demonstrate this for many examples
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from natural and social sciences. For this reason, this case is of particular importance. The
ratio does not change if the original data are expressed in percentages or in other units.
This is also illustrated in Figure 1. The absolute values are shown with filled circles, their
coordinate-wise arithmetic mean is indicated by the dashed lines and the open triangle. The
grey lines from the origin represent the proportions. In fact, any data value on the grey line
contains potentially the same information, namely the ratio of the original data. For reasons
of comparability, the data can be normed such that the two parts forming the ratios sum
up to 1. This constraint of sum 1 is indicated by the solid black line, and the symbols “+”
are the projected data points. The solid triangle represents the projected mean. The center
of the open circle is the mean of the projected data points, which differs from the projected
mean. Formally,

x̄ =
1

n

n∑
i=1

xi =
1

n

n∑
i=1

oi
Oi
6=

1
n

∑n
i=1 oi

1
n

∑n
i=1Oi

=
ō

Ō
. (1)
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Fig. 1 Illustration of the geometry of proportional data (see text for detailed explanations).

For the geometric mean, on the other hand, we have

x̄G =

(
n∏
i=1

xi

)1/n

=

(
n∏
i=1

oi
Oi

)1/n

=
(
∏n
i=1 oi)

1/n

(
∏n
i=1Oi)

1/n
=

ōG
ŌG

. (2)

Let us illustrate the above considerations (and extend them slightly) also with two nu-
merical examples to show that the arithmetic mean is not scale invariant and does not have
the property of subcompositional coherence [Egozcue, 2009], while the geometric mean does
possess these properties.
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Consider three sampled observations, compositions x1 = (1, 2), x2 = (1, 5), x3 = (5, 5).
They can easily be expressed in proportions that sum up to one – the result is p1 =
(0.333, 0.667), p2 = (0.167, 0.833), p3 = (0.500, 0.500). Both the arithmetic and geomet-
ric means are computed and we also rescale them to proportions. For the arithmetic mean
we get x = (0.368, 0.632) and p = (0.333, 0.667), thus the ratios between their first and
second parts equal 0.583 and 0.500, respectively. We conclude that the arithmetic mean is
not scale invariant when dealing with relative information [Egozcue, 2009]. For the geo-
metric mean we get in both cases g = (0.317, 0.683), with the corresponding ratio 0.464.
The geometric mean preserves the ratios and therefore it is scale invariant. Note that these
properties can be also generalized, see [Pawlowsky-Glahn and Egozcue, 2002] for details.

We go further and extend the previous example by adding one additional part: x∗1 =
(1, 2, 5), x∗2 = (1, 5, 20), x∗3 = (5, 5, 5). Similar calculation as above lead to the arithmetic
means x∗ = (0.143, 0.245, 0.612), the means of the proportions p∗ = (0.166, 0.259, 0.576)
and the geometric means g∗ = (0.128, 0.276, 0.595) (the values are again rescaled to sum
one). For each estimator we compute again the ratio between the first and the second part,
resulting in 0.583, 0.640 and 0.464, respectively. Obviously, the arithmetic mean from the
original data and the geometric mean preserve the ratios from the previous case, but the
result from the arithmetic mean after rescaling to proportions differs substantially (0.500
versus 0.640). Although the arithmetic mean of the proportions has the nice property that
the constant sum constraint is preserved, it leads to inconsistent values, and it depends on
the data scale.

Thus, for the geometric mean it is irrelevant whether ratios or the original data are used,
the result is the same. This, however, only demonstrates the invariance of the geometric
mean with respect to using original or the ratio data, and the lack of this invariance for the
arithmetic mean, but it does not give an answer to the question which estimator or data
information is appropriate for the problem.

In this paper we propose to use the logarithm of the ratio xi = oi/Oi (logratio) in order
to obtain an estimator that can be interpreted in the usual sense. (Note that the mean of
the logratios can simply be transformed to the geometric mean.) In fact, data containing
relative information are known under compositional data or compositions. The problem of
statistical estimation with relative information is treated in many papers and books, e.g.
in Aitchison [1986] and Pawlowsky-Glahn and Buccianti [2011]. The idea is to move the
statistical analysis from the so-called Aitchison geometry on the simplex, that follows the
nature of compositions, isometrically to the usual Euclidean space. Recently, the problem of
sampling from finite populations of data carrying relative information was studied in Graf
[2006a,b, 2011] for the Swiss Earnings Structure Survey. Here we focus not only on the case
of estimating the mean, but we aim at going much deeper into the practical problems of
survey sampling, like the treatment of different sampling schemes.

The paper is organized as follows: Section 2 provides details about the logratio approach
to compositional data analysis. In Section 3 we discuss estimators for the population mean
of data carrying relative information in case of finite populations. Numerical results with
close-to-reality data sets are provided in Section 4. The final Section 5 concludes.
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2 Elements of compositional data analysis

Generally, a D-part composition x = (x1, . . . , xD) consists of strictly positive parts xi > 0,
i = 1, . . . , D, which carry only relative information, and the parts sum up to a constant,
usually chosen as 1. The choice of the constant is not important, see Figure 1, and thus it
is common to use the closure operation C that rescales the sum of the parts. Consequently,
x ≡ C(x) means that a composition x is expressed in terms of (an arbitrary) constant sum.
Concretely, with the closure operation we identify the original composition x = (x1, . . . , xD)
with its representation, like in proportions,

C(x) =

(
x1∑D
i=1 xi

, . . . ,
xD∑D
i=1 xi

)
.

This is a meaningful assumption. When e.g. relative contributions of single household ex-
penditures on the total amount of expenditures are of interest rather than their absolute
values in a specific (currency) unit, then the ratios between parts (that are exclusively of
interest) obviously remain the same for x and C(x). In the following, we suppose that the
compositions are already rescaled to unit constant sum; otherwise, the operator C is chosen
to rescale the sum of parts to that constant.

2.1 Sample space and geometry of compositions

In this paper we are specifically interested in one compositional part x (e.g. proportion of
food on all household expenditures). Accordingly, we deal with compositional data of the
form x = (x, 1−x), x > 0, where possibly other compositional parts have been aggregated to
the part 1−x (e.g. all different kinds of household expenditures except food, when exclusively
the relative contribution of this part is of interest). Theoretical and practical aspects of the
special case of analyzing “univariate” compositional data x are investigated in Filzmoser
et al. [2009].

The set of all compositions x, denoted as S, forms a segment between the points [1, 0]
and [0, 1] on the plane, see bold solid line in Figure 1. This one-dimensional subset of the
first quadrant of the plane represents a special case of the simplex sample space, the sample
space of D-part (D ≥ 2) compositions. Since compositions are expressed in a relative scale,
a special geometry on S, different from the standard Euclidean one, needs to be used,
when analyzing raw compositional data. This is nowadays known under the name Aitchison
geometry [Egozcue and Pawlowsky-Glahn, 2006, Mateu-Figueras and Pawlowsky-Glahn,
2008] and results in operations of perturbation and power transformation as an analogon
to the usual vector addition and scalar multiplication, as well as a new approach to norm
and distance. Accordingly, for two 2-part compositions x = (x, 1 − x) and y = (y, 1 − y)
and a real number α, the operations of perturbation and power transformation result in
compositions

x⊕ y = C[xy, (1− x)(1− y)] and α� x = C[xα, (1− x)α],
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respectively. Consequently, we set x 	 y = x ⊕ ((−1) � y). The Aitchison norm and the
Aitchison distance are real numbers

‖x‖A=
1√
2

∣∣∣∣ln x

1− x

∣∣∣∣ and dA(x,y) =
1√
2

∣∣∣∣ln x

1− x
− ln

y

1− y

∣∣∣∣ . (3)

The Aitchison distance results in the definition of the Aitchison measure of the interval (a, b)
of proportions, thus a = (a, 1− a) and b = (b, 1− b) ∈ S, as

λA(a, b) =
1√
2

∣∣∣∣ln b

1− b
− ln

a

1− a

∣∣∣∣ . (4)

Together with the definition of the inner product (which is, however, trivial in the case of
two-part compositions), the Aitchison geometry has all the well-known properties of the
standard Euclidean geometry. The Aitchison geometry obviously follows the concept of rela-
tive scale. If we consider again the example of differences of time spent on working from the
second paragraph of Section 1 (the values can be represented in proportions, or equivalently,
taking the original constant sum constraint 24 into account), we get λA(1, 2) = 0.74 and
λA(10, 11) = 0.17.

From Equations (3) and (4) it can be seen that the compositional information is processed
by the logarithm of ratios (logratios). Setting

z = ilr(x) =
1√
2

ln
x

1− x
(5)

(analogously for y), the Aitchison norm and distance move to the usual Euclidean norm and
distance on the real line and also λA(a, b) = |ilr(b) − ilr(a)|. In fact, Equation (5) defines
the one-to-one isometric logratio (ilr) transformation [Egozcue et al., 2003] that maps the
compositions isometrically from the simplex with the Aitchison geometry to the (Euclidean)
real line. This allows to use most of the standard statistical methods and estimators that
rely on the Euclidean geometry for the transformed data, like the arithmetic mean or the
empirical variance. Obviously, the interpretation of the ilr variable z is based on the descrip-
tion of the ratio between both compositional parts. Finally, note that the ilr transformation
of two-part compositions reminds on the well known logit transformation used for the lo-
gistic regression model [Agresti, 2002]. However, for logistic regression the transformation is
carried out mainly because of problems with the domain of the response variable, without
any deeper geometrical background as presented above.

2.2 Distributional characteristics of compositions

In this section we want to characterize the distribution of compositions in order to define
an appropriate estimator for the measure of central tendency. In particular, we justify theo-
retically why the geometric mean is appropriate as the corresponding estimator in the case
of compositional data. This can be done directly on the simplex by taking advantage of the
special properties of the Aitchison geometry [Pawlowsky-Glahn and Egozcue, 2002]. Con-
sider a random two-part composition X = (X, 1 −X). The center of the distribution of X
is the ξ ∈ S that minimizes the expectation E[d2A(X, ξ)]. Note that the random variable
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d2A(X, ξ) for fixed ξ can be both discrete or continuous, depending on the number of real-
izations of the random composition X. The minimum is reached at a value ξ = cen(X), and
it is called center of X. Then, for two random compositions X and Y, a real number a and
a non-random composition b ∈ S, the following intuitive relations

cen(X⊕Y) = cen(X)⊕ cen(Y), cen(a�X⊕ b) = a� cen(X)⊕ b (6)

hold [Pawlowsky-Glahn and Egozcue, 2002]. In the following we will denote cen(X) simply
by γ. The mean value E[d2A(X,γ)] is usually called total variation of X in this context,
abbreviated by totvar(X) [Hron and Kubáček, 2011], and here it is equal to the variance of
the ilr transformed variable Z of the composition X,

totvar(X) = var(Z) = var

(
1√
2

ln
X

1−X

)
. (7)

From its construction, the total variation represents a measure of total dispersion of X
around γ and, also in the general case of a D-part composition, D ≥ 2, its properties
correspond to the standard case of a variance of a random variable. For a scalar a ∈ R and
a non-random composition b ∈ S it holds that

totvar(a�X⊕ b) = a2 · totvar(X). (8)

Let us consider a random sample of size n from an infinite population, X1 = (X1, 1 −
X1), . . . ,Xn = (Xn, 1−Xn), i.e. a set of independent random compositions, all of them with
the same distribution as X. It was proved in Pawlowsky-Glahn and Egozcue [2002] that the
random composition

G =
1

n
� (X1 ⊕ · · · ⊕Xn) = C

 n

√√√√ n∏
i=1

Xi,
n

√√√√ n∏
i=1

(1−Xi)

 , (9)

called sample center and formed by geometric means of both parts, is the best linear unbi-
ased estimator of γ in the sense of the Aitchison geometry. This means that this estimator
is linear in the context of the Aitchison geometry. Moreover, it is unbiased, cen(G) = γ,
and for any other linear unbiased estimator G∗ of γ we have that totvar(G) < totvar(G∗).
Both the theoretical and the sample center have an intuitive representation in the ilr coor-
dinate as the mean value and the sample mean of Z, respectively. Practical computations
of these characteristics are usually based on these properties. Note that the geometric mean
was already used in some survey studies, e.g., for comparing price indices [McClelland and
Reinsdorf, 1999], but without the theoretical background as mentioned above.

3 Finite populations of compositional data

Since we want to consider realistic scenarios in survey sampling, the case of finite popula-
tions of compositions needs to be considered. There are many practical examples of finite
populations of compositional data in survey applications, see, e.g. Graf [2006a], or the in-
troductory examples. The basic ideas of sampling are common for all types of populations,
thus also for populations of compositional data. The sampling consists of selecting some
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part of a population in order to make a statement for the whole population. In the basic
sampling setup, the population U consists of a known, finite number N of units. Each unit is
associated with a composition of a part of interest and the remaining part. This composition
of each unit in the population is fixed, even if it is an unknown quantity, it is not a random
one. The units in the population are identifiable and may be labeled with numbers 1, . . . , N .

The goal here is to determine proper population characteristics. In the previous section
we came to the conclusion that each compositional data set may be characterized by center
and total variation (i.e. variance of the corresponding ilr variable). This can be utilized
also in the finite population case by defining the finite population center (finite population
geometric mean),

γN =
1

N
� (x1 ⊕ · · · ⊕ xN ) =

1

N
�

N⊕
i=1

xi, (10)

of all the compositions x1 = (x1, 1 − x1), . . . ,xN = (xN , 1 − xN ) in the whole population.
Since the units are no longer random compositions as in the previous section, we denote
them by lower-case letters in order to distinguish this case from the situation before. The
population center can be equivalently computed as population mean of the ilr transformed
units z1, . . . , zN by µN = 1/N

∑N
i=1 zi, and back-transformed using the inverse ilr (ilr−1)

transformation,

γN = C
[
exp

(
µN√

2

)
, exp

(
−µN√

2

)]
. (11)

Although here this formula was used just for back-transformation of the population mean,
it holds also generally to move ilr-transformed data back to the simplex.

It is important to emphasize that computing the population total, as it is usual in sam-
pling theory, would have no sense in this context, because there is no equivalent characteristic
on the simplex. Moreover, because the population total variation coincides with the (usual)
finite population variance,

σ2 =
1

N − 1

N∑
i=1

(zi − µN )2, (12)

we can make all the following considerations concerning center and total variation in the
ilr space. As a consequence, the center (as a result of the inverse ilr transformation of the
population mean) can be used only to determine the population proportion.

Let us now briefly summarize the main approaches to the parameter estimation from
finite populations, as they are described in Cochran [1977] and Thompson [2002]. We focus
on the design-based inference, where designs are determined by assigning to each possible
sample s the probability P(s) of selecting the sample. This is, in fact, the source of random-
ness. The probability P(s) is connected with the probability πi that unit i is included in the
sample, for i = 1, . . . , N .

The first sampling design we want to consider is simple random sampling, also called
simple random sampling (SRS) without replacement. The idea is to select n distinct units
from the N units in the population in such a way that every possible combination of n units
has the same chance to be the selected sample. This can be done by n selections, where at
each step every unit of the population that has not already been selected has equal chance
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of being selected. We have that P(s) = 1/
(
N
n

)
and πi = n/N . Here the sample mean

z =
1

n

n∑
i=1

zi (13)

is an unbiased estimator of the population mean. A back-transformation to the (unit) sim-
plex, analogously as in (11), leads to an unbiased estimator of (10), the sample center. The
variance of z is given by

var(z) =

(
N − n
N

)
σ2

n
, (14)

while its unbiased estimator is obtained by replacing N with n and µN by z in Equation
(12).

A more general situation is proposed by unequal probability sampling, where different
units in the population have different probabilities of being included in the sample [Cassel
et al., 1977] (the above mentioned SRS represents a special case). The sampling procedure
itself usually determines the different inclusion probabilities, which then have be taken into
account for a reasonable estimation of population quantities. If we limit ourselves to designs
without replacement, then the general Horwitz-Thompson estimator [Horvitz and Thomp-
son, 1952] of the population mean is defined as

µ̂π =
1

N

n∑
i=1

zi
πi
. (15)

Obviously, direct computation on the simplex would lead to

γ̂π =
1

N
�

n⊕
i=1

[(
1

πi

)
� xi

]
= C

 N

√√√√ n∏
i=1

x
1/πi

i , N

√√√√ n∏
i=1

(1− xi)1/πi

 , (16)

i.e. to the weighted geometric mean of both compositional parts, closed to unit constant
sum constraint. It is an unbiased estimator of the finite population center γN in the sense
of the Aitchison geometry, i.e. cen(γ̂π 	 γN ) = n, where n = C(1, 1) is neutral element on
the simplex. This comes from the property

cen(γ̂π 	 γN ) = ilr−1(E(ilr(γ̂π 	 γN ))) = ilr−1(E(µ̂π − µN )),

where the expectation is taken in sense of the sampling design [Pawlowsky-Glahn and
Egozcue, 2002].

The variance of the (unbiased) estimator µ̂π equals (see Thompson [2002], p. 54)

var(µ̂π) =
1

N2

N∑
i=1

(
1− πi
πi

)
z2i +

1

N2

N∑
i=1

N∑
j=1,j 6=i

(
πij − πiπj
πiπj

)
zizj .

An unbiased estimator for the variance is given by

v̂ar(µ̂π) =
1

N2

n∑
i=1

(
1− πi
π2
i

)
z2i +

1

N2

n∑
i=1

n∑
j=1,j 6=i

(
πij − πiπj
πiπj

)
zizj
πij

,
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where πij denotes the probability that both units i and j are included in the sample.
An approximate (1 − α)100% confidence interval for the parameter µN , based on the

large-sample normal approximation for the estimator µ̂π, is

(µ̂π − u1−α/2
√

v̂ar(µ̂π), µ̂π + u1−α/2
√

v̂ar(µ̂π)),

where u1−α/2 denotes the (1−α/2) quantile of the standard normal distribution. Note that
for samples with small sample sizes (less than about 50) also the (1 − α/2) quantile of the
t-distribution with n − 1 degrees of freedom can be applied instead of u1−α/2. Using the
inverse ilr transformation, we arrive for the population proportion (coming from the unit-
sum representation of the finite population center) at an interval (l, u), taking the first parts
of the compositions (l, 1− l) =

C
(

exp
[
(µ̂π − u1−α/2

√
v̂ar(µ̂π))/

√
2
]
, exp

[
−(µ̂π − u1−α/2

√
v̂ar(µ̂π))/

√
2
])

(17)

and (u, 1− u) =

C
(

exp
[
(µ̂π + u1−α/2

√
v̂ar(µ̂π))/

√
2
]
, exp

[
−(µ̂π + u1−α/2

√
v̂ar(µ̂π))/

√
2
])
, (18)

respectively, forming the upper and lower bounds of the corresponding confidence interval on
the simplex. Applying the inverse ilr transformation, the confidence intervals are expressed
in the Aitchison geometry on the simplex (with the corresponding Aitchison measure), thus
they cannot produce difficulties even in extreme cases as described in Section 1 [Mateu-
Figueras and Pawlowsky-Glahn, 2008].

A particular interesting case is the well-known stratified sampling. The main idea is to
divide the population into subpopulations (regions or strata), and to select a sample by some
design within each stratum. The principle of stratification is to partition the population in
such a way that the units within each stratum are as similar as possible. Then, a stratified
sample can provide greater precision than a simple random sample of the same size. The
design is specially called stratified random sampling if the design within each stratum is
simple random sampling. For example, a geographical region may be stratified into similar
areas by means of some variable like habitat type, elevation or soil type. Human populations
may be stratified on the basis of geographic region, city size, sex, or socioeconomic factors
[Thompson, 2002]. Nevertheless, although stratified sampling is very popular in practice, it
is most likely used for convenience reasons rather than for constructing homogeneous groups.

Let us assume that the sample of compositions is selected by simple random sampling
from each of L strata in the population, with selections in different strata independent of
each other. Suppose that within stratum Uh, h = 1, . . . , L any specified design is used to
select the sample sh of nh units from Nh in the population; the total number of units in the
population is N =

∑L
h=1Nh and the total sample size is n =

∑L
h=1 nh. Further, suppose that

one has an estimator µ̂h which is unbiased for the population mean µh in the corresponding
stratum with respect to that design. Let var(µ̂h) denote the variance of µ̂h and v̂ar(µ̂h)
its unbiased estimator. Then an unbiased estimator of the overall population mean µN is
obtained by the weighted mean of the stratum estimators,

µ̂st =
1

N

L∑
i=1

Nhµ̂h. (19)
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Back-transformation of (19) to the simplex obviously results in the weighted geometric mean.
Because of independence of the selections in different strata, the variance of the stratified
estimator (and its unbiased estimator) is the sum of the individual stratum variances,

var(µ̂st) =

L∑
h=1

(Nh/N)2var(µ̂h), v̂ar(µ̂st) =

L∑
h=1

(Nh/N)2v̂ar(µ̂h).

An important task is how to allocate the given total sample size n =
∑L
h=1 nh among

the L strata. A reasonable allocation scheme estimates the population mean with the lowest
variance for a fixed total sample under stratified random sampling [Neyman, 1934, so called
optimum allocation or Neyman allocation],

nh =
nNhσh∑L
k=1Nkσk

. (20)

Note that the stratum population standard deviations σh, defined analogously as in (12) for
all units in the stratum h, may in practice be estimated with sample standard deviations
from past data. Applications of the Neyman basic idea to real-world problems were shown
in many papers, see e.g. Sukhatme and Tang [1975], Kadane [2005]. Improvements to allow
upper and lower bounds of the sample sizes within strata are given by Gabler et al. [2010].

4 Numerical results

4.1 The Austrian close-to-reality EU-SILC population

This example and also the simulation study in Section 4.4 is motivated by the European
Union Statistics on Income and Living Conditions (EU-SILC) 2006 of Austria, but is also
applicable to many other survey data. EU-SILC is a complex panel survey conducted in EU
member states and other European countries. It is mainly used for measuring risk-of-poverty
and monitoring social cohesion in Europe [Atkinson et al., 2002] and to monitor the Europe
2020 goals. The EU-SILC data contain information about income, which is a composition
of different income components. In addition, the original EU-SILC data contains more than
400 other categorical variables.

To carry out design-based simulations, population data are needed [for detailed discussion
about design-based simulation studies we refer to Alfons et al., 2011a]. The procedure to
generate such a close-to-reality population using the information of the sample is described
in Kraft [2009] and Alfons et al. [2011c] and implemented in the R-package simPopulation

[Kraft and Alfons, 2010]. The model-based methods therein can be considered as extensions
of the data generation of Münnich et al. [2003] and Münnich and Schürle [2003]. Alfons et al.
[2011c] have shown that the generated population is adequate and fulfills all the necessary
requirements: the actual sizes of regions and strata are reflected; marginal distributions
and interactions are considered; heterogeneities between subgroups are retained; the income
components are simulated in a realistic manner; the household structure is reflected in the
population.
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Table 1 Variables of the synthetic EU-SILC population data from which samples are drawn with different
sampling designs.

Variable Type Distribution log-scale

Region multinomial 9 levels

Household size ordinal scale 9 levels 1 3 5 7 9

Age continuous from 1 − 97

AgeCut ordinal scale 4 levels (−1,24] (44,64]

Gender binomial 2 levels male female

Economic status multinomial 7 levels

Citizenship multinomial 3 levels AT EU Other

social continuous/compositional

other continuous/compositional

social/(social + other) continuous/ratio

4.2 Population characteristics

Table 1 lists the variables of the close-to-reality synthetic Austrian EU-SILC population
data that are used in the following [for detailed information about the data generation, see
Alfons et al., 2011c,b]. To get information about the distribution of the variables, small
sparkboxes and sparkbars [Tufte, 2001] are included in this (graphical) table. It can be
seen, that the variables social and other, and especially the ratio social/(other+social) are
extremely right skewed. A detailed description of all these variables is provided in Eurostat
[2004] and EU-SILC [2009].

The variable social (see Table 1) describes the household income from “social” transfers
from family/children related allowances. The household income denoted by “other” includes
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Table 2 95% confidence intervals for the arithmetic and the geometric mean.

social/(social + other)
estimator CI left mean CI right
arithmetic mean (m()) 0.444 0.518 0.591
arithmetic mean (m()/m()) 0.314 0.378 0.442
geometric mean 0.493 0.626 0.742

income from rental of a property or land, housing allowances, regular inter-household cash
transfer received, interest, dividends, profit from capital investments in unincorporated busi-
ness, income received by people aged under 16, regular inter-household cash transfer paid
and repayments/receipts for tax adjustment. For a detailed description of the variables we
refer to European Commission et al. [2009]. The proportion of social income on the total
property and transfer income or, equivalently, the ratio between the social income and the
income from other sources (taking the geometric mean approach) may be of special interest
to policy makers for comparative studies.

The problem of the presence of zero values is relevant when the geometric mean as
measure of central tendency is considered. Nevertheless, when exclusively one proportion is
of interest, it is rather a classification problem than a numerical one. If somebody has zero
social transfers, then he/she does not belong to the group of socially supported citizens.
Consequently, in practice such observations are usually excluded from the data set, see
Mart́ın-Fernández et al. [2011] for details.

4.3 Arithmetic mean versus geometric mean

We consider the subpopulation female from region Burgenland, living in single households.
This subpopulation is one interesting domain defined by EU-SILC [2009]. Note that the
sampling weights are the same for each observation in this domain. From this subpopulation
a sample of size 50 is drawn (the population size equals 491) and confidence intervals are
estimated from the ratio of the two compositional parts social/other and social/(social
+ other). The ratio social/other stands for the amount of income from social transfers
regarding to income in other areas, and social/(social + other) describes the income from
social transfers on the whole income, often reported from statistical agencies and institutions
[see, e.g., Leetmaa and Rennie, 2009].

Table 2 shows the three possible estimates of the population proportion and the corre-
sponding conventionally calculated 95% confidence intervals. The differences between the
arithmetic and geometric means are large and the confidence intervals even do not overlap.
Note that the corresponding confidence interval for the population center, the geometric
mean, was computed using formulas (17) and (18), i.e. considering the closure operation
in order to represent the bounds in proportions (with respect to the remaining part of the
composition).

Figure 2 shows the distribution (at population level) of the geometric and the arith-
metic mean estimates in 246 domains (gender × region × citizenship × four age classes)
for the ratio social to social + other. Again we observe large differences for the different
estimation methods. The (closed) geometric mean estimates, given by back-transformation
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Fig. 2 Distribution of the geometric and arithmetic means in 246 domains at population level.

of (13) to the unit simplex, indicates the tightest distribution while, in comparison, espe-
cially the corresponding arithmetic mean estimates (m(s)/(m(s)+m(o))) is flat and broad.
Domains that show outlying behavior (indicated by the two breaks in the left part of the
distributions) are better reflected by the geometric mean estimates. Even more, it appears
that m(s)/(m(s)+m(o)) is strongly affected by a few observations in the extreme right tail
of the distributions for o. Also, observations on s/(s+o) that are far from 0.5 have too little
influence on m(s/(s+o)). Figure 2 shows that using the geometric mean approach can give
very different results from the two arithmetic mean options, so it is obvious that the choice
of the estimator is an important issue. The differences in Table 2 thus did not only occur
by chance, but these are systematic differences. On average, the geometric mean approach
gives higher values.

As noted in the previous sections, the (closed weighted) geometric mean, or more pre-
cisely, its corresponding part should be chosen to estimate the center of the data, because
it is coherent with the Aitchison geometry. The arithmetic mean can result in misleading
interpretations.

4.4 Effect of the sampling design

In the context of survey sampling it is also interesting to look at the effects of sampling
designs. Here we omit the standard solutions based on the arithmetic mean approach for
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two reasons. First, the true values based on arithmetic and geometric means - calculated at
population level - differs. It therefore makes no sense to compare arithmetic mean estimates
with geometric mean estimates since the population truth is different. Secondly, we have
already shown that the arithmetic mean approach is not suitable to estimate the center,
and thirdly, we think that figures corresponding to arithmetic means, such as presented in
Figures 3 and 4, would increase the length of the paper without much value added.

In this section, design-based simulations should show that the weighted geometric mean
comes with no bias, independent of the chosen sampling design, similarly as in the case
of the standard arithmetic mean approach. Therefore, the effect of the sampling design is
evaluated by different settings. In Section 3 we described how to deal with sampling weights
in compositional data from finite populations. In the following we compare the results with
the unweighted version to see the importance of the results obtained in Section 3.

The investigation is performed in five different sampling designs which are indicated in
Table 3. We also show the numbers of observations drawn from the Austrian synthetic
population in each stratum in that table. All used sampling designs are very basic but often
used in practice. Even oversampling is often used, for example, when the at-risk-at-poverty
indicator is the most interesting indicator, then people who have income around the at-
risk-at-poverty rate will be oversampled, i.e. people from large households or families with
only one adult in the household. For our experiment we took an extreme case of n1 = 800
and n2 = n3 = . . . = n9 = 50 to show an effect (since the inclusion probabilities are very
different) of oversampling.

Table 3 Sample sizes in each stratum in the simulation. The strata correspond to the Austrian NUTS 2
classification and to gender × age class.

Design B NÖ W K Stmk OÖ Sbg T V
SRS 15000

Neyman 382 2460 2288 1323 2056 3933 840 960 757
equal size 1667 1667 1667 1667 1667 1667 1667 1667 1667

proportional 152 923 815 360 693 976 372 480 319
oversampling 800 50 50 50 50 50 50 50 50

M 0-24 M 25-44 M 45-64 M 65+ F 0-24 F 25-44 F 45-64 F 65+
equal size 1875 1875 1875 1875 1875 1875 1875 1875

Figures 3 and 4 show boxplots of the estimation results obtained from estimating the
(weighted) geometric mean on 10000 samples drawn from the synthetic EU-SILC population
data. Various strategies are considered for drawing these samples. The estimations are carried
out in the domain gender. In Figures 3 and 4, the true values - the geometric means calculated
at population level - are plotted as grey vertical dashed lines. Naturally, using a simple SRS
design, the geometric mean and the weighted geometric mean provide the same results
without any bias (see Figure 3(a)). Using Neyman allocation to sample from a stratified
population (Figure 3(b)), a very small bias is introduced by the unweighted version of the
geometric mean. Larger bias may result with the unweighted version if other stratifications
are used. Using equal size samples in each stratum (Figure 3(c)), n1 = n2 = . . . n9 =
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1667, a large bias is introduced when estimating the geometric mean by not considering the
sampling weights. This can also be seen in Figure 4(a), where other stratification variables
are used. Using proportional sample sizes due to each strata (1/500), no bias is introduced
(Figure 3(d)). However, if one region is oversampled (n1 = 800, n2 = n3, . . . , n9 = 50) a
large bias comes with the unweighted geometric mean estimates, shown in Figure 4(b).
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(b) Neymann. Stratification: region (db040)
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(c) Equal size. Stratification: region (db040)
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Fig. 3 Simulation results for domains male/female from the (weighted) geometric mean concerning different
sampling designs.
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Fig. 4 Simulation results for domains male/female from the (weighted) geometric mean concerning equal
size samples in each strata and oversampling in one region.

5 Conclusions

Data sets consisting of proportions or parts are compositional data which are represented in
the so-called Aitchison geometry on the simplex and not in the usual Euclidean geometry.
Thus, when mean proportions should be estimated, the classical mean is not useful because
it is designed for the standard Euclidean geometry. As a consequence, the arithmetic mean
does not fulfill requirements like scale invariance and subcompositional coherence, see the
examples in Section 1. Instead, the geometrical mean has a solid theoretical basis in the
compositional data framework. It has been demonstrated by numerical examples that the
results for the geometric mean and the confidence interval around the mean are useful.

In design-based simulations we have shown that the weighted geometric mean approach
comes with no bias. However, if the sampling weights are not considered, the bias may get
large. Therefore, the sampling design should be considered in the estimation process.

An interesting question is how multivariate compositional data, consisting of several
proportions on a whole, should be treated. The present approach in sampling theory is to
consider only the single variables for univariate analyses, or to apply multivariate methods
by ignoring the sampling design. An extension of the theory presented in this paper to
the multivariate case of finite populations of proportions (compositions) is intended for our
future research.
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