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Abstract

The log-ratio methodology represents a powerful set of methods and techniques for statistical analysis of
compositional data. These techniques may be used for the estimation of rounded zeros or values below the
detection limit in cases when the underlying data are compositional in nature. An algorithm based on itera-
tive log-ratio regressions is developed by combining a particular family of isometric log-ratio transformations
with censored regression. In the context of classical regression methods, the equivalence of the method based
on additive and isometric log-ratio transformations is proven. This equivalence does not hold for robust re-
gression. Based on Monte Carlo methods, simulations are performed to assess the performance of classical
and robust methods. To illustrate the method, a case study involving geochemical data is conducted.

Key words: balances, EM algorithm, log-ratio transformations, robust regression, values below detection
limit

1. Introduction

Compositional data, or compositions, are vectors of positive values quantitatively describing the contri-
bution of D parts of some whole, which carry exclusively relative information (Aitchison, 1986; Egozcue,
2009). The nature of these data explains why the variables or columns of the data matrix are also known
as parts in the literature of compositional data analysis (hereafter CODA). This type of data is frequently
collected in many applied fields (such as geochemistry, nutrition and behaviour sciences) and is represented
as vectors with a constant sum constraint, such as proportions, percentages or ppb. According to Pearson
(1897), there is general agreement that taking the usual Euclidean geometry approach to the statistical
analysis of compositions may yield misleading results. The log-ratio (logarithm of a ratio) methodology
proposed in Aitchison (1986) represents a powerful set of methods and techniques to apply to CODA. Since
the 1990s, numerous publications have extended this approach in both theoretical and practical respects.
Most of these new ideas and strategies to CODA were presented recently at the four CoDaWork meetings
(Thió-Henestrosa and Mart́ın-Fernández, 2003; Mateu-Figueras and Barceló-Vidal, 2005; Daunis-i-Estadella
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and Mart́ın-Fernández, 2008; Egozcue et al., 2011) and collected in special publications (Buccianti et al.,
2006; Pawlowsky-Glahn and Buccianti, 2011).

The main idea of the log-ratio approach is that compositional data are characterised by a different
geometry in their sample space, the simplex. This structure, now known as the Aitchison geometry, confers to
the simplex all the properties of a (D-1)-dimensional Euclidean space (Egozcue and Pawlowsky-Glahn, 2006).
Because most standard statistical methods are designed for data in a real Euclidean space, compositions
need to be expressed as vectors of values that belong to such a space. Two different but related ways make
it possible to obtain these new vectors. The first of these ways is used when original compositions are
expressed in coordinates with respect to an orthonormal basis in the Aitchison geometry. The second is
used when a family of log-ratio transformations (ilr, alr, clr) is applied. From among the transformations
in such a family, the isometric log-ratio (ilr) transformations (Egozcue et al., 2003) are preferred because
of their advantageous theoretical and practical properties (Egozcue and Pawlowsky-Glahn, 2005; Filzmoser
et al., 2009; Hron et al., 2010). In particular, (Egozcue et al., 2003) shows that the ilr-transformed values
of a composition are equal to the coordinates of the composition from a particular orthonormal basis. In
contrast, additive log-ratio (alr) transformations are related to oblique (not orthonormal) bases, and the
centred log-ratio (clr) transformation provides the coefficients in a generating system.

The log-ratio methodology obviously cannot be used for CODA when the data contain zero values. The
zeros can be present for various reasons, such as comprehensively described in, e.g., Mart́ın-Fernández et al.
(2011). If the parts (compositional variables) are continuous, such as concentrations of chemical elements,
often a zero entry in the data matrix represents a consequence of rounding-off error rather than a pure
absence of the part in the composition. Another typical situation is one in which detection limits exist
and those values below the detection limits (VBDL) are automatically set to be zeros or simply labelled as
less-thans. Often, each part has a different detection limit, and the detection limit can even change among
observations, if the samples (row in data matrix) have been measured by different laboratories. This problem
is known in the literature by the term rounded zeros, and several proposals for dealing with this type of data
have been published in the last decade (e.g., Mart́ın-Fernández et al., 2003; van den Boogaart et al., 2006;
Palarea-Albaladejo et al., 2007). Note that when xij is a rounded zero for a particular observation i and a
variable j, it holds that xij < eij , where eij is a threshold, i.e., the round-off error or the detection limit. In
essence, rounded zeros represent a special case of missing values (Mart́ın-Fernández et al., 2003) what implies
a natural way for their treatment. In this paper, we focus on a parametric treatment based on a combination
of the modified Expectation-Maximization (EM) alr algorithm introduced in Palarea-Albaladejo and Mart́ın-
Fernández (2008) with the ilr model-based technique for imputation of missing values in CODA introduced
in Hron et al. (2010). The latter study proposes a procedure based on iterative regressions for the estimation
of missing values. The use of the parametric approach in Palarea-Albaladejo and Mart́ın-Fernández (2008)
guarantees that the estimated values are below the reported detection limit.

In our approach, it follows that rounded zeros are associated with very small values that usually produce
outlier samples in the distribution. The obvious reason for this is the relative scale of compositions as
well as the properties of the Aitchison geometry. Unfortunately, the estimation of rounded zeros can itself
be influenced by (other) outlying observations in the data set. In Hron et al. (2010), it is shown that
compositional outliers need not necessarily be characterised by extreme absolute values in the parts, but can
rather be characterised by extreme ratios between parts. To minimise the undesirable influence of deviating
samples, robust counterparts to the standard statistical procedures are employed. This is achieved using
robust rather than classical regressions in the iterative scheme. Robust regression automatically downweights
outlying observations, i.e., observations that are outliers in either the space of the predictors or the residual
space (Maronna et al., 2006).

In the following section, principles of compositional data analysis and published treatments for rounded
zeros are reviewed. Section 3 presents the new proposed model, which builds on the proper use of ilr
transformations. In section 4, we emphasise the advantages of using robust techniques in the context of
interest in this study. Section 5 presents practical examples and comparisons of the proposed technique with
available tools. Section 6 presents some conclusions and final remarks.
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2. Compositional data and rounded zeros

Compositional data are inherently connected with the concept of relative scale and measurements of
differences. For example, the differences between two pairs of observations, where the part of interest has
concentrations of 1% and 2% for the first pair and 10% and 11% for the second pair, respectively, should
not be considered equivalent. For the first pair, the ratio is 2/1=2, while for the second pair, the ratio is
11/10=1.1. In fact, any appropriate CODA should follow two main principles when dealing with this type
of multivariate observations, as stated in Aitchison (1986). The first principle, known as scale invariance,
can be summarised as follows: “Any meaningful characteristic of a composition should be invariant under a
change of scale”. In other words, no analysis should depend on the particular units in which the composition
is expressed because proportional positive vectors represent the same composition. The second principle,
known as subcompositional coherence, establishes that any analysis obtained from a set of a composition
of D parts should not be in contradiction with that obtained from a sub-composition containing d parts,
where d < D. The subcompositional coherence principle is usually the reason why CODA fails when it is
conducted using standard statistical methods (Pearson, 1897; Aitchison, 1986). The log-ratio methodology
in CODA guarantees that both principles are always verified. Nevertheless, it implies the following inherent
difficulty: the zeros problem.

Rounded zeros can be conceptualised as a special type of censored data for which an upper threshold is
known. They can be considered as fitting into an NMAR (not missing at random) mechanism of missing
values (Little and Rubin, 1987) in the context of when the probability that one value is missing may depend
on the missing value itself. Indeed, rounded zeros cannot be observed because their values are below a known
threshold (Mart́ın-Fernández et al., 2011). Thus, sound rounded zero replacement procedures are required
in CODA for analysts to be able to apply the log-ratio methodology.

Using a non-parametric replacement approach, Mart́ın-Fernández et al. (2003) recommends that values
equal to 65% of the threshold be imputed to zeros and that the whole composition be adjusted by the so-called
multiplicative modification. This strategy, which minimises the distortion of the covariance matrix, can be
useful in cases where the percentage of zeros is not large (for example, less than 10%). Doing otherwise
would lead to overestimation of the relationship between compositional parts, expressed in terms of the
variation matrix (Aitchison, 1986), or, in general, to production of an undesirable bias in the covariance
structure of the compositional data set.

Figure 1 illustrates the presence of a threshold within the Aitchison geometry (Egozcue and Pawlowsky-
Glahn, 2006) in a simple case. The data set used for this example contains the proportions of sand, silt and
clay in 39 sediment samples obtained at different water depths in an Arctic lake (Aitchison, 1986, p. 359).
In Figure 1A, a forced threshold at level 10% in the part Sand is represented by a line. The samples with
a value in part Sand below this threshold are considered as VBDL. Figure 1B shows the data set and the
threshold line in coordinates, i.e., in the ilr-transformed space. As recommended in Mart́ın-Fernández et al.
(2003), to minimise the distortion of the covariance matrix, the ratios between the available data values
should be preserved when any replacement of zeros is applied. In both figures, for the samples with VBDL
in the part Sand, the trajectories of the ratios Silt/Clay constant are plotted. The positions of the imputed
values, represented by the symbol ×, need to be present on these trajectories to minimise distortion. The
estimation of the imputed values × is performed using the robust version of the ilr algorithm that will be
described in the next section.

Nevertheless, a much more serious problem arises from the fact that the particular imputed values could
significantly influence any statistical method applied to compositions after a log-ratio transformation. As an
example, suppose that the true value of a component is barely below the threshold. Due to the relative scale
of compositions, an imputation of a value of, for example, 65% of the threshold can turn the observation
into a multivariate outlier, while it would suit the main data structure if the imputed value was correct.
An outlier detection method (Filzmoser and Hron, 2008) would identify this observation, but it would be
incorrectly flagged as an outlier simply because of an incorrect imputation. Such outliers can also have a
severe effect on statistical estimates, such as the mean, the covariance or regression coefficients (Maronna
et al., 2006).

Because the method of Mart́ın-Fernández et al. (2003) is only appropriate when the percentage of zeros

3



●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●●

● ●●●●

●●

Silt Clay

Sand

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●●●
●

●

●
●

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

−
3

−
2

−
1

0
1

2

z1
z2

(A) Simplex S3 ⊂ R3 (B) ilr-transformed space ≡ R2

Figure 1: Aitchison geometry of a threshold: (A) Simplex represented as a ternary diagram and (B) ilr-transformed space.
Circles (◦) represent original samples; crosses (×) represent imputed samples using the robust ilr algorithm.

is below 10%, Palarea-Albaladejo et al. (2007) proposed a parametric replacement approach in which the
alr transformation (Aitchison, 1986) is used in conjunction with an adapted version of the EM algorithm
to generate plausible values for rounded zeros. In essence, the modification of the EM algorithm is based
on a censored regression model proposed in Amemiya (1984). In Palarea-Albaladejo and Mart́ın-Fernández
(2008), it is shown that the modified EM algorithm performs somewhat better than the non-parametric
approach, with an increasing relative amount of zeros in a compositional data set. However, this approach
has associated with it some possible difficulties that need to be mentioned. Although the alr transformation
appears to be convenient from a computational point of view, it is not isometric, as the ilr transformation
is. This implies that the censored regression method used in the algorithm can be influenced by outlying
observations in the residual alr space that are not outliers in the simplex space. Thus, when the regression
method is robustified by downweighting the influence of outliers, it might still result in a strong bias in the
resulting imputed values.

3. Isometric log-ratio approach

From Egozcue et al. (2003), it is well known that in CODA, the selection of an orthonormal basis for the
simplex fully determines a particular ilr transformation. Following an ilr transformation, it is generally not
possible that each of the resulting ilr variables can be assigned to an individual compositional part, in the
sense that the ilr variable explains all of the relative information of this particular part. This is problematic in
a setting where the estimation of rounded zeros is achieved by regression on the individual parts. However,
D different ilr transformations can be constructed, each consisting of D-1 new variables, such that the
first ilr variable always contains all of the relative information on the i-th part of the original composition
(Fǐserová and Hron, 2011). To be specific, each D-part composition x = (x1, . . . , xD)t can be associated with

another composition x(l) = (x
(l)
1 , x

(l)
2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D )t resulting from a permutation of the parts x =

(x1, . . . , xD)t, where the l-th part is moved to the first position, i.e., x(l) = (xl, x1, . . . , xl−1, xl+1, . . . , xD)t.
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The ilr transformation

z
(l)
i =

√
D − i

D − i+ 1
ln

x
(l)
i

D−i

√∏D
j=i+1 x

(l)
j

, i = 1, . . . , D − 1, (1)

transforms compositions x(l) into (D−1)-dimensional real vectors z(l) = (z
(l)
1 , . . . , z

(l)
D−1)t, l = 1, . . . , D. The

inverse transformation of z(l) to the original (permuted) composition x(l) is then given by

x
(l)
1 = exp

(√
D − 1√
D

z
(l)
1

)
,

x
(l)
i = exp

− i−1∑
j=1

1√
(D − j + 1)(D − j)

z
(l)
j +

√
D − i√

D − i+ 1
z
(l)
i

 , i = 2, . . . , D − 1, and (2)

x
(l)
D = exp

−D−1∑
j=1

1√
(D − j + 1)(D − j)

z
(l)
j

 .

Consequently, the obtained composition can be represented as vectors with a constant sum constraint, such

as proportions or percentages. Note that the first variable z
(l)
1 includes all parts of the original composition

x. The coordinates z
(l)
2 , . . . , z

(l)
D−1 explain the remaining log-ratios in the composition (Fǐserová and Hron,

2011). Although z
(l)
1 explains all of the information concerning xl, we cannot say that z

(l)
1 is the original

compositional part xl, but rather that it stands for xl. The remaining ilr variables can, in principle, be chosen
arbitrarily because they do not represent any specific compositional part. Different ilr transformations are
orthogonal rotations of each other (Egozcue et al., 2003).

According to Hron et al. (2010), the choice of the above ilr transformation is particularly useful when the
goal is to predict xl from the rest of the composition. Thus, in the following discussion, a new parametric
treatment for rounded zeros will be introduced using multiple regression analysis for compositional data.
This ilr approach will be combined with the censored regression suggested in the modified EM algorithm
Palarea-Albaladejo and Mart́ın-Fernández (2008).

Consider a compositional data set X = [xij ] with n observations (rows) and D compositional parts
(columns). Initially, for each part xl that includes rounded zeros, the data set must be ilr-transformed into

an unconstrained real data set Z(l) = [z
(l)
ij ] using equation (1). Note that because all parts are involved in

equation (1), a complete version of the data matrix with initialised values for the rounded zeros is required
as a starting point for the iterative EM algorithm. This initialisation can be achieved by multiplicative
replacement, 65% of the threshold, as described in Mart́ın-Fernández et al. (2003). In this way, the initial
distortion of the covariance structure of the data set is minimised. The algorithm is consistent with the
concept of iterative model-based imputation of missing values for compositional data, as described in Hron
et al. (2010). Note that here the compositional parts are sorted, in descending order, according to the
number of rounded zero values to be imputed (let parts x1, . . . , xD correspond to such a configuration), and

then, in each step of the algorithm, a regression of z
(l)
i1 on z

(l)
i2 , . . . , z

(l)
i,D−1 is applied to impute values in

x
(l)
1 , l = 1, . . . , D. The estimated values from the preceding steps are used to perform the regression.

Imputation of rounded zeros requires a modification to this general algorithm because the imputed values

must not exceed the value of the threshold(s). Let e
(l)
i1 ≡ eil be the thresholds in the l-th compositional part

of the original data set X; then, the ilr transformation of rounded zeros, when x
(l)
i1 < e

(l)
i1 occurs, results in

unknown values z
(l)
i1 with the property z

(l)
i1 < ψ

(l)
i1 , where

ψ
(l)
i1 =

√
D − 1

D
ln

e
(l)
i1

D−1

√∏D
j=2 x

(l)
ij

. (3)

5



In the following we use the notation Z(l) = [z
(l)
1 ,Z

(l)
−1], where z

(l)
1 is the first column of the matrix Z(l) and

Z
(l)
−1 contains the remaining columns. According to Palarea-Albaladejo and Mart́ın-Fernández (2008), in the

t-th step of the iteration process, our proposed algorithm replaces unknown values in the variable z
(l)
1 by its

conditional expected value

E[z
(l)
1 |Z

(l)
−1, z

(l)
1 < ψ

(l)
1 ], (4)

using all other variables as explanatory variables. This procedure assumes that the ilr-transformed composi-
tions follow a normal distribution: the so-called ilr-normal distribution or normal distribution in the simplex

(Mateu-Figueras and Pawlowsky-Glahn, 2008). Each unknown value z
(l)
i1 in the variable z

(l)
1 is replaced by

ẑ
(l)
i1 = z(l)

t

i,−1 · β̂
(l)
− σ̂(l)

φ

(
ψ

(l)
i1 −z

(l)t

i,−1·
ˆβ

(l)

σ̂(l)

)

Φ

(
ψ

(l)
i1 −z(l)t

i,−1·
ˆβ

(l)

σ̂(l)

) , (5)

where φ and Φ are the density and distribution functions of the standard normal distribution, respectively;

σ̂(l) is the estimated conditional standard deviation of the variable z
(l)
1 ; and β̂

(l)
denotes the vector of

estimated coefficients of the linear regression of z
(l)
1 on Z

(l)
−1 (for such rows of the data matrix, where the

values of z
(l)
1 are observed). More details on the estimation of the regression parameters will be provided

in section 4. Note that the second term in equation (5), the novelty of the censored regression Amemiya

(1984)], guarantees that imputed values are below the threshold. After the treatment of the variable z
(l)
1 , the

completed data set is transformed back to the simplex by the inverse ilr transformation (equation 2). The
next compositional part is then considered for imputation. In this way, all compositional parts containing
rounded zeros are sequentially imputed. The entire procedure is repeated iteratively until convergence is
reached, i.e., when the Frobenius matrix norm of the difference between the empirical covariance matrices
computed from the ilr-transformed data according to equation (1) from the current and the previous iteration
is smaller than a specified limit (ζ = 0.0001). After convergence, the last completed data set produced by
the algorithm is back-transformed to the simplex using equation (2). In this way, a compositional data set
is obtained where the rounded zeros have been replaced by estimated values below the detection limit(s).

The full algorithm can be summarised in the form of the following pseudo code:

Stage 1: Preliminaries.

1 Initialise the rounded zeros to a value of 65% of the threshold for the

corresponding compositional part

2 Sort the compositional parts by decreasing order of the number of their

rounded zeros

Stage 2: Impute missing values and check for convergence.

3 FOR l = 1, . . . , D:

4 ilr-transform the data and thresholds by equations (1) and (3)

respectively

5 Replace rounded zeros by conditional expected values using equation (5)

6 Back-transform the data using equation (2)

7 END FOR

Stage 3: Restore original format.

8 Rearrange the parts in the original order.

It is interesting to note that an equivalence exists between an approach based on an ilr transformation
and one based on an alr transformation; namely, in the general case, multiple linear regression models based
on least-squares estimation applied in the alr-transformed space and in the ilr-transformed space produce
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exactly the same estimation of the response values. A proof is given in Appendix A. This fact implies

that the term z
(l)
i,−1 · β̂

(l)
in equation (5) gives exactly the same estimates of the response variable with both

log-ratio transformations. A proof that censored regression as given in (5) is also equivalent in both log-ratio
transformations is given in Appendix B.

4. Robust treatment of rounded zeros

When classical least-squares regression is used, the model described by equation (5) results in the same
treatment of rounded zeros as the modified EM alr algorithm introduced in Palarea-Albaladejo and Mart́ın-
Fernández (2008). Because real data frequently contain outliers or deviating data points, a more robust
regression approach is preferable (Maronna et al., 2006). Furthermore, rounded zeros are assumed to rep-
resent very small values that might potentially have a strong influence if they appear in the divisor of a
log-ratio transformation. In this case, the ilr approach as proposed here is preferable over an alr-based
method because it can be robustified easily and because the treatment of the outliers in the regression
model is consistent with the Aitchison geometry.

Figure 2 illustrates an example in which both classical and robust regressions were applied to the same
data set. For this example, the Arctic lake data set shown in Figure 1 was used. In both cases, a linear
regression of coordinate z2 to z1 was applied. Figure 2 (left) shows the resulting regression lines, from which
it is evident that the classical regression (the dashed line) is seriously affected by the outliers. The robust
regression (the solid line), conversely, captures the trend in the data much better. Figure 2 (right) shows
both lines back-transformed to the ternary diagram where the original data set is plotted. Here as well, it is
evident that the robust regression fit of the data structure is much better than the classical regression fit.
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Figure 2: Classical (dashed line) and robust (solid line) regression of variable z2 against z1 in the ilr-transformed space (left),
and back-transformation of the results to the ternary diagram (right).

Generally, in multiple linear regression, we consider a model of the form

γi = ξtiβ + εi for i = 1, . . . , n, (6)

with n observations of the response γ and of the explanatory variables ξi = (ξi1, . . . , ξip)
t (an intercept term

is included by setting ξi1 = 1), the vector of regression coefficients β and the error term εi. The classical
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least-squares (LS) estimator is defined as

β̂LS = argmin
β

n∑
i=1

(
γi − ξtiβ

)2
. (7)

The LS estimator is considered the best linear unbiased estimator (BLUE) if the errors ε1, . . . , εn are
independent and identically distributed with zero mean and the same residual variance σ2 (e.g., Johnson
and Wichern, 2002). If these strict assumptions are violated, the LS estimator loses its desirable properties,
and another estimator might be preferable. A robust estimation of the regression parameters can be achieved
using a so-called MM estimator for regression, which is defined as

β̂MM = argmin
β

n∑
i=1

ρ

(
γi − ξtiβ

σ̂

)
= argmin

β

n∑
i=1

ρ

(
ri(β)

σ̂

)
. (8)

The function ρ can be treated as a weighting function applied to the residuals ri(β) = γi − ξtiβ, which are
scaled by a robust scale estimator σ̂. Obviously, when the scale σ̂ is omitted, the LS criterion described by
equation (7) is a special case of equation (8) with ρ(r) = r2. The idea of robust regression is to appropriately
downweight the influence of large (absolute) residuals. Accordingly, the specific choice of the ρ function will
affect the properties of the resulting regression estimator (Maronna et al., 2006). Note that the M estimator
for regression (Huber, 1981) is defined as in equation (8), with the important difference being the choice
of algorithm used to solve the minimisation problem. As opposed to the M estimator, the MM estimator
achieves the highest possible level of robustness combined with a tunable efficiency. Computation of the MM
estimator is achieved using a highly robust but inefficient initial estimator for the regression coefficients (an
S estimator). This produces an initial estimation of the residuals, which are used to obtain σ̂ in equation (8)
by a so-called M estimator of scale. Finally, the MM estimator can be computed iteratively, starting from
the initial S estimator. For more details on the MM estimator algorithm and statistical properties, refer to
Maronna et al. (2006).

Here, robust regression is applied to the censored regression model described by equation (5). The MM
estimator is obtained by solving

β̂
(l)

MM = argmin
β

n∑
i=1

ρ

(
z
(l)
i1 − (z

(l)
i,−1)tβ

σ̂(l)

)
. (9)

Both the resulting regression coefficients β̂
(l)

MM and the estimated robust residual scale σ̂(l) are then used to
adjust the prediction according to equation (5):

ẑ
(l)
i1 = z(l)

t

i,−1 · β̂
(l)

MM − σ̂(l)

φ

(
ψ

(l)
i1 −z

(l)t

i,−1·
ˆβ

(l)

MM

σ̂(l)

)

Φ

(
ψ

(l)
i1 −z(l)t

i,−1·
ˆβ

(l)

MM

σ̂(l)

) . (10)

The censored regression is performed iteratively, as outlined in section 3. Note that because we deal with an
equivariant regression estimator (Maronna et al., 2006), a change of the ilr basis does not alter the results
(see, e.g. Filzmoser and Hron, 2011).

5. Practical examples

To compare the performance of the classical and robust methods used in this study, several different
data sets and scenarios were considered. We focused our comparison of the classical and robust methods
on the ilr approach outlined in section 3. Hereinafter, we refer to the classical ilr approach as CI and to its
robust version as RI. We tested these two possibilities, CI and RI, using real and simulated data sets.
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5.1. Compositional statistics and measures of distortion

Initially, we considered a data set X without rounded zeros. Taking a range of realistic thresholds, we
transformed observed values that were smaller than the threshold to rounded zeros. The compositional data
set resulting from this procedure was denoted by X∗. The two regression methods were then applied to
replace the rounded zeros to obtain completed compositional data sets. For a performance evaluation of the
two methods, we used the following three basic descriptive measures (e.g., Egozcue and Pawlowsky-Glahn,
2011) typically obtained from a compositional data set X formed by n compositions from the simplex SD:

• Central tendency: compositional geometric mean cen(X) = ( g1∑
gi
, . . . , gD∑

gi
), where gi is the geometric

mean of the part xi (ith column of the data matrix X).

• Total variance: totvar(X) = 1
n

∑n
k=1 d

2
a(xk, cen(X)), where xk is the k-th row of the data matrix.

We denote by da the Aitchison distance between two compositions x and y, defined as da(x,y) =√
1
D

∑
i<j

(
ln xi

xj
− ln yi

yj

)2
.

• Variability: compositional variation matrix T, the symmetric matrix containing the log-ratio variances
τij = Var(ln(xi/xj)) between two parts xi and xj , i, j = 1, . . . , D.

Note that the compositional geometric mean plays the role of the multivariate mean when the sample space
is the simplex. In addition, totvar evaluates the spread of the data, and the matrix T completely determines
the covariance structure of a compositional data set. In other words, given the variation matrix T, the
covariance matrix in any log-ratio transformed space can be obtained (e.g., Tolosana-Delgado et al., 2011).

For our purposes, two measures of distortion with respect to the original samples were also computed:

• Relative difference in covariance matrix (RDCM): Let S = [sij ] be the sample covariance matrix of the
original ilr-transformed observations zij , and let S∗ = [s∗ij ] be the sample covariance matrix computed
with the same ilr-transformed observations for which all the rounded zeros have been imputed. The
measure of the relative difference between both covariance matrices, based on the Frobenius matrix
norm ‖ · ‖F (e.g., Seber, 2008, p. 68), is

‖S − S∗‖F
‖S‖F

=

√
D−1∑
i,j=1

(
sij − s∗ij

)2
√

D−1∑
i,j=1

s2ij

. (11)

• Compositional error deviation (CED):

1
nM

∑
k∈M

da(xk,x
∗
k)

max
{xi,xj∈X}

{da(xi,xj)}
, (12)

is a generalisation of the measure applied in Hron et al. (2010). Here, nM is the number of samples xk
containing at least one rounded zero and M is the index set referring to such samples. The denominator
is the maximum distance in the original data set.

The basic properties of the Frobenius norm and the Aitchison distance make it possible to establish that
both measures are basis invariant. That is, both measures are preserved when a change of the ilr basis is
applied. The former criterion, RDCM, measures the influence of the imputation to the covariance structure.
The factor ‖S‖F in the denominator allows interpretation of RDCM as a relative error in relation to the
original covariance structure. For the case of an imputation method that does not produce distortion,
the optimal value RDCM=0 is achieved. If the imputation method produces a data set X∗ composed of
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only one multivariate data point, i.e., it has a null covariance structure, s∗ij = 0, i, j = 1, . . . , D − 1, then
RDCM=1. The latter criterion, CED, evaluates the relative distortion in those samples that include at least
one rounded zero. The numerator of CED consists of an average of the deviation between the original and
imputed samples. To avoid the undesirable effect of the amount of spread in the data set, it is divided by
the maximum distance within the data set. In this way, CED becomes a scaled measure.

5.2. Simulation study

For the simulation study, a 6-part random composition x ∈ S6 was considered, with centre (in %)
cen(x) = (2.5, 5.0, 20.0, 15.0, 7.5, 50.0)t and variation matrix

T =


0 2.33 0.48 1.93 0.74 2.00

0 2.98 0.08 1.11 0.20
0 2.31 0.97 2.50

0 0.79 0.11
0 1.00

0

 .

From the compositional geometric mean cen(x), it can be seen that smaller values were concentrated pri-
marily in the parts x1, x2 and x5. According to (Aitchison, 1986), a log-ratio variance close to zero suggested
a meaningful association among the involved parts. The values in the variation matrix T = (τij) indicated
that the strongest related parts were x2, x4 and x6 because their highest value of τij is 0.20. The parts x1
and x3 had a weak association (τ13 = 0.48) which was nonetheless stronger than the association between
parts x4 and x3 with x5, where τ45 = 0.79 and τ35 = 0.97. The rest of the associations were weaker be-
cause the values in the matrix T were in the range of 1.00 to 2.98. Note that D clr coefficients form a
hyperplane of transformed compositions in RD. Thus, once the matrix T was fixed, the covariance matrix
of the ilr-transformed random vector, Σ, was obtained easily using the equality Σ = − 1

2VtTV, where the
columns of the D× (D−1) matrix V are vectors of the orthonormal basis in the clr-transformed space (e.g.,
Tolosana-Delgado et al., 2011).

Using the above centre and variation matrix, a simulated data set X consisting of n = 300 compositions
was produced with Monte Carlo simulations under a multivariate ilr-normal model (Mateu-Figueras and
Pawlowsky-Glahn, 2008). The resulting compositional geometric mean cen(X) (Table 1) was very close
(Aitchison distance 0.085) to the true centre. The 25th and 75th percentiles showed that most of the small
values were concentrated in parts x1, x2 and x5. In addition, the RDCM, described by equation (11), equal
to 0.04, was obtained between the sample ilr-covariance matrix S and the true values in Σ.

Table 1: Univariate descriptive statistics of the data set X (concentrations in %).

x1 x2 x3 x4 x5 x6

min 0.14 0.15 0.43 0.84 0.81 1.89
p25 1.15 2.83 7.48 10.06 3.85 30.84

cen(X) 2.66 4.92 21.14 14.73 7.51 49.04
p75 4.23 6.75 38.82 16.92 9.42 60.03
max 23.00 13.91 90.41 27.81 26.60 79.28

The reproduced associations among the parts were observed in the clr-biplot (i.e., the biplot in the
clr-transformed space) in Figure 3. The rays of parts x2, x4 and x6 were the closest, revealing that they
were the parts with strongest relations. Note that the quality of the clr-biplot was reasonably high because
the axes explained 91% of the total variance. In addition, the fact that the rays of the parts x1, x2 and
x5 approximately formed an equilateral triangle, combined with the fact that smaller values were mostly
concentrated in these parts (Table 1), explained the spherical shape of the cloud of points in the clr-biplot.
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Figure 3: Clr-biplot of the simulated data set X. The total variance explained is 91%. Values below the detection limit of the
samples plotted as filled circles, are forced to zero in the scenario X∗

2. See the text for more details.

Note that some samples were plotted using filled circles in Figure 3. These samples corresponded to the
samples with values below the detection limit (VBDL). These values were forced, i.e., rounded, to zero in
the simulation study. Observe that most such samples were far away from the centre of the distribution,
suggesting that they were candidates to be classified as outliers. This example illustrates why robust
statistics is an appropriate tool to utilise with rounded zeros in CODA.

From the original data set X, a class of artificial data sets X∗ with a different distribution of rounded
zeros was created. For this data set, once the initial threshold, the detection limit (DL), for each element
was fixed, a set of different DLs was considered (Table 2) in order to define twelve different scenarios. The
DLs were accordingly established for each part at each level, as shown in Table 2. As a result, twelve
different scenarios, i.e., twelve different sets, {X∗1,X∗2, . . . ,X∗12}, were established. Note that an increase in
the number of rounded zeros was obtained across the scenarios and that, simultaneously, there were different
patterns in the number of zeros in the parts. For each scenario, we simulated 1000 data sets with similar
percentage distributions of rounded zeros in each part, as shown by the percentages in parentheses in Table
2. Note that the forced rounded zeros were mainly concentrated in parts x∗1, x∗2 and x∗5, with approximately
around 40% in the last scenario. Part x∗3 had some zeros in all scenarios but not many, with a maximum of
16% in scenario X∗12. Parts x∗4 and x∗6 were those with the lowest number of rounded zeros, below 9% in all
cases. For the more extreme scenario of X∗12, the 1000 simulated data matrices had approximately 27% of
their entries equal to zero.

After simulating the data sets with forced zeros, X∗i , i = 1, . . . , 12, both imputation methods, CI and
RI, were applied and the corresponding completed data sets were obtained. The performance of the two
methods was compared using the above statistics. Figure 4 (left) shows that the two methods, CI and
RI, produced very similar results in the worst-case scenario (X∗12) when the number of VBDL was the
greatest and all of the parts contained zeros. Even in this worst-case scenario, both methods estimated
the centre of the distribution reasonably well. The plot shows the interval percentiles (p5, p95) for each
part of the compositional geometric mean (i.e., the sample centre) cen(X∗12) across all of the simulations
and both imputation methods. The true values of the cen(x) = [2.5, 5.0, 20.0, 15.0, 7.5, 50.0] (in %). Note
that the intervals had different lengths, suggesting the relative nature of the scale of proportions. When
these intervals were plotted in the ilr-transformed space (not shown here), their lengths were comparable.
Figure 4 (right) shows the results of CI and RI for the estimated total variance across all of the 1000
simulations in the 12 scenarios, where the true value totvar(X) = 3.254 is indicated by a horizontal line.
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Table 2: Twelve synthetic rounded zeros scenarios. The associated percentage of rounded zeros in each part are shown in
parentheses. The column at the right shows the total percentage of rounded zeros in the set.

Detection limits in % (percentage of rounded zeros in the part)
Scenario x∗1 x∗2 x∗3 x∗4 x∗5 x∗6 Total

X∗1 0.15 (0.33) 0.15 (0.00) 2.50 (7.67) 2.50 (3.33) 0.15 (0.00) 5.00 (2.00) 2.22
X∗2 0.30 (3.33) 0.50 (3.00) 2.75 (8.67) 2.75 (3.33) 0.65 (0.00) 6.00 (2.67) 3.50
X∗3 0.45 (7.33) 0.85 (4.67) 3.00 (9.00) 3.00 (4.00) 1.15 (1.00) 7.00 (3.33) 4.89
X∗4 0.60 (12.33) 1.20 (7.33) 3.25 (9.33) 3.25 (4.00) 1.65 (4.00) 8.00 (3.67) 6.78
X∗5 0.75 (16.67) 1.55 (10.33) 3.50 (10.00) 3.50 (4.00) 2.15 (8.33) 9.00 (3.67) 8.83
X∗6 0.90 (20.67) 1.90 (14.00) 3.75 (10.33) 3.75 (4.00) 2.65 (12.67) 10.00 (5.00) 11.11
X∗7 1.05 (24.00) 2.25 (18.67) 4.00 (11.33) 4.00 (5.33) 3.15 (18.00) 11.00 (5.33) 13.78
X∗8 1.20 (27.00) 2.60 (21.67) 4.25 (12.33) 4.25 (5.33) 3.65 (21.33) 12.00 (6.00) 15.61
X∗9 1.35 (30.67) 2.95 (26.33) 4.50 (13.00) 4.50 (6.33) 4.15 (29.33) 13.00 (6.67) 18.72
X∗10 1.50 (32.33) 3.30 (33.67) 4.75 (14.67) 4.75 (6.67) 4.65 (34.67) 14.00 (7.33) 21.56
X∗11 1.65 (35.67) 3.65 (40.00) 5.00 (15.00) 5.00 (7.67) 5.15 (40.33) 15.00 (8.00) 24.44
X∗12 1.80 (38.33) 4.00 (46.67) 5.25 (15.67) 5.25 (8.33) 5.65 (46.00) 16.00 (8.00) 27.17
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Scenario 12 (left); total variance for each scenario. The horizontal line represents the true value totvar(X) = 3.254 (right).
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Both methods tended to underestimate the true value, suggesting that the imputed values led to a narrower
distribution. For scenarios X∗7 to X∗12 (with increasing numbers of VBDL), the robust method RI exhibited
better performance than CI. Surprisingly, RI approached the true value in the last scenario. This is related
to the pattern in the estimation of the elements from the variation matrix T = (τij). Total variability is,
by definition, a measure that accumulates the variability from log-ratios of all the parts. Consequently, it is
possible for a given method to underestimate the log-ratio variance of some parts and overestimate others,
with the total variance being ultimately well estimated. To investigate this in more detail, the estimates
of the elements of the variation matrix were computed for the two imputation methods. A similar general
pattern was observed for all of the elements τij = var(ln(xi/xj)), i, j = 1, . . . , 6 of the matrix. For scenarios
in which the number of VBDL is small, the estimation was approximately unbiased; as the number of zeros
increases, the CI method tended to underestimate the true value more. RI sometimes underestimated and
sometimes overestimated the true value, but it usually yielded larger values than CI did. To illustrate this
tendency, in Figure 5, we plotted the distribution of the following estimates of three entries in the variation
matrix: the smallest, τ64 = var(ln(x6/x4)) = 0.11, an intermediate value τ64 = var(ln(x6/x4)) = 1.11, and
the largest τ32 = var(ln(x3/x2)) = 2.98. The corresponding true values were plotted as vertical lines in
the figures. For each element, we plotted the scenario X∗2 at the left and the worst-case scenario X∗12 at
the right. Note that CI always tended to yield a lower variance value, resulting in an underestimation of
the total variance (Figure 4). However, when the number of VBDL was increased, RI overestimated the
variance for some log-ratios and underestimated it for others, resulting in a better final estimation of the
total variance (Figure 4).

Figure 6 shows the results for the measures of distortion. The results referred to the averages of the
measures, computed over all 1000 simulations for each of the 12 scenarios. Figure 6 (left) compares the
resulting RDCM for RI and CI. As the percentage of zeros was increased, the performance of both methods
worsened. However, in the scenarios with a high number of VBDL, the robust method performed better
than the classical one, suggesting that RI better estimates the covariance structure of the data set. Figure 6
(right) presents the results for the CED. As the percentage of zeros was increased, the CI method performed
better than the RI method. In other words, the distance between the original and the imputed values was
smaller for CI. The differences between CI and RI, however, were still small and would increase if artificial
outliers were added to the data. A scenario with just such a contamination of outliers is analysed in the
next section.

5.3. Real data set

We used a data set from the so-called Kola project (see http://www.ngu.no/Kola), a geochemical mapping
project, covering an area of 188,000 km2 north of the Arctic Circle. This project was conducted from 1992—
1998 by the Geological Surveys of Finland (GTK) and Norway (NGU) and the Central Kola Expedition
(CKE) in Russia. Approximately 600 soil samples in different layers were collected and analysed for the
concentration of more than 50 chemical elements (Reimann et al., 1998). The complete data set is available
in the R package StatDA (R development core team, 2008). To test the two imputation methods described
in this paper, the data from the moss layer were used. Our data set, denoted by X, was composed of 26
chemical elements measured in 594 samples, without rounded zeros. In contrast to the approach taken in
the simulation study described above, we focused on only one part xj of the compositional data set X, and
we set some values in this part to zero. We considered a sequence of 16 sample quantiles qi corresponding to
selected percentiles, from 5% to 95%, and transformed every observed value of this part smaller than qi to
a zero value (i.e., a VBDL smaller than qi). We denoted by X∗i , i = 1, . . . , 16, the compositional data sets
resulting from this procedure. Next, the two imputation methods, CI and RI, were applied to each data set
X∗i , and the final results were compared.

In our case study, we concentrated on the element vanadium (V ). In the Kola project area, the trace
element V is mostly generated by emissions from the industrial centres in Murmansk, Monchegorsk, Kirovsk,
Zapoljarnij, Kovdor and Nikel. Oil combustion can be another significant source of V emissions into the
atmosphere. Additionally, in the uncontaminated Finnish project area, a general increase of V levels in the
moss layer from south to north is evident, which could be caused by the increasing population and traffic
density. Low levels of V could thus be an indication of uncontaminated areas.
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Figure 5: Kernel density estimation of the distribution of the elements of the variation matrix: (A) τ64 = var(ln(x6/x4)); (B)
τ52 = var(ln(x5/x2)); (C) τ32 = var(ln(x3/x2)). Results for scenario X∗

2 (left) and for scenario X∗
12 (right). Vertical lines

represent the true values.
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Figure 6: Measures of distortion: RDCM-relative difference of the covariance matrix (left); CED-compositional error deviation
(right).
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Figure 7 shows the distribution of the element vanadium in the original space, in parts per million, as
well as its corresponding ilr-transformed variable as obtained from equation (1). For each data set, the
X∗i values below the corresponding quantile, from 5% to 95%, were forced to zero. As a result, in each
case, the observed values of V used in the log-ratio regression models were those values that were above
the corresponding percentiles. For example, in Figure 7, we illustrated the detection limits for the 10th and
80th quantiles of the distribution.

After applying the methods CI and RI to each data set X∗i , i = 1, . . . , 16, the RDCM and CED were
calculated. Figure 8 (left) shows that for RDCM, the robust method exhibited better performance for
percentiles below 0.5, which corresponds to 1.55mg/kg of vanadium. When the percentile was higher than
the 50th percentile, the classical method produced slightly smaller values of RDCM. This was also due to
the robustness properties of RI, for which a high number of VBDL resulted in a nearly exact fit (Maronna
et al., 2006). However, for very large percentiles where almost no information on vanadium remains, both
methods exhibited poor performance. The results for the CED in Figure 8 (right) revealed similar results.
RI outperformed CI for percentiles up to approximately 0.5.
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Figure 8: Relative difference of the covariance matrix (left) and compositional error deviation (right) for the classical (dashed
lines) and the robust method (solid lines) applied to each detection limit (sample percentile) for the chemical element vanadium.
The lines for “modified data” correspond to the outlier-effect experiment.

To gain more insight into the quality of the estimation, Figure 9 shows the original values of vanadium
(in mg/kg) versus the estimated values from both imputation methods. We selected the 10th and 80th
percentiles to compare the behaviour of the two methods above and below the 50th percentile. Figure 9
(A) shows the results for the 10th percentile. The RI method (right) yielded better estimates because the
CI method (left) tended to underestimate the original values: note that most of the points were below the
diagonal. This fact was consistent with a smaller CED (Figure 8) and with the idea that the extreme values,
i.e., the smallest percentiles, did not affect the robust method but led to underestimation with the classical
method. However, when a large sample percentile was considered, e.g., the 80th percentile, as shown in
Figure 9(B), the robust method was applied to sparse information and produced values that overestimate
the original data, although the corresponding data cloud was narrower than that obtained with the classical
method. This effect explained the behaviour illustrated in Figure 6 (right): when the scenario included a
large number of VBDL, the distance between the original samples and the imputed samples tended to be
larger.

The data set from the moss layer does not include extreme outliers (Reimann et al., 2008). As a
consequence, the different results obtained from the CI and RI methods were mostly due to the properties of
the different regression techniques applied in equations (5) and (10), respectively. To illustrate the superior
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Figure 9: Plot of measured versus estimated values for vanadium when the DL is equal to: (A) 10th sample percentile and
(B) 80th sample percentile. Plots at the left correspond to the classical method; plots at the right correspond to the robust
method.
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performance of the robust method, artificial outliers were included in a modified data set by multiplying
the upper 10th percentile of vanadium values 10% of vanadium by a factor of 2. Note that this was still a
very mild contamination of the data set, making the ilr-transformed values of vanadium a skewed slightly to
the right. Once again, both the CI and RI methods were applied to the modified data set, where rounded
zeros were forced using the same procedure as before. In Figure 8 (left), the effect of the presence of outliers
was clearly visible for the classical method. Robust imputation was not affected by the outliers. The CED
in Figure 8 (right) illustrated an effect for the RI method as well, but the CI method was more sensitive
to contamination. We obtained very similar results (not shown here) when only the maximum value of
vanadium was multiplied by a factor of 100, i.e., when just one outlier was included. Of course, as the
percentage of contamination was increased, the classical imputation results were more strongly affected.

6. Conclusions and remarks

When applying multivariate statistical methods, such as cluster analysis, multidimensional scaling, dis-
criminant analysis, or regression analysis, to real data sets, it is necessary to have a complete data set
available. In practice, however, many data sets are reported with values below a detection limit or with
zeros. This happens particularly with compositional data, consisting of, for example, concentrations of
chemical elements. In this paper, an approach is suggested to estimating rounded zeros in compositional
data. We have proven that imputation techniques based on classical censored regression are equivalent for
both ilr and alr transformations. Even in those situations where compositional data sets do not include
outliers, robust techniques are recommended to minimise the effect of small imputed values in the treatment
of rounded zeros. Robust methods are applied following an ilr transformation of the data because the alr
transformation does not provide invariance of the distances under permutations (changes in the divisor of
the alr transformation) and because it is not an isometric mapping.

Because the applied robust methods are affine equivariant, the use of the ilr transformation becomes
appropriate in the rounded zeros problem. Combining this transformation with the censored regression
model and robust techniques, we have introduced a procedure that, in general, improves the estimation
of the variability and produces minor distortion in the covariance structure of the data. Only in those
situations where the data set has a large number of rounded zeros does the classical approach seem to have
an advantage. In such scenarios, robust methods are applied to data from the core of the distribution, and
the classical approach, which works with all of the available information, could provide better estimations.
However, for those more usual scenarios where the percentage of rounded zeros is lower than 30%, robust
techniques are helpful because they are more appropriate when the censored values are in the extreme zone
of the tail of the distribution.

The R code (R development core team, 2008) of our proposed procedure is available in the package
robCompositions at the Comprehensive R Archive Network (see http://cran.r-project.org/).
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Ref. MTM2009-13272; by the Agència de Gestió d’Ajuts Universitaris i de Recerca of the Generalitat de
Catalunya under the project Ref: 2009SGR424; by the Secretaŕıa General de Universidades del Ministerio
de Educación Programa “Salvador de Madariaga” Ref: PR2010-0177; and by the Scottish Government.

Appendix A

Let Y be an n × 1 vector of observed values of a response variable y. Let X be an n × p data matrix
with the first column equal to a vector 1n of ones, and let the rest of the columns correspond to the values
of p − 1 variables x1, x2, . . . , xp−1. The multiple linear regression (MLR) model is Y = X · β + error,
where β is the column vector of coefficients and error is the residual term, which is usually assumed to
be normally distributed. It is well know that, in any Euclidean space, the estimated regression coefficients
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according to the least-squares model are β̂ = (Xt · X)−1 · Xt · Y. The estimated values of the response

variable are Ŷ = X · β̂, which can also be written as Ŷ = H · Y, where H is the well-known projection
matrix H = X · (Xt ·X)−1 ·Xt.

Let x = (x1, x2, . . . , xD) be a composition from the simplex SD. Let s1 = (x1, xD) and s2 = (x2, x3, . . . , xD)
be two subcompositions from x. Let alr(s1) = ln x1

xD
and alr(s2) = (ln x2

xD
, . . . , ln xD−1

xD
) be the alr-

transformed vectors of s1 and s2. Consider C2D to be the matrix (D − 2) × (D − 2) such that ilr(s2) =
alr(s2) ·C2D (e.g., Barceló-Vidal et al., 2011). The D−2 columns of the matrix C2D are linear combinations
of the D−2 vectors that form an orthonormal basis in the ilr-transformed space. We can assume that the ilr
basis is such that each log-ratio is one part xk over the geometric mean of the following parts x(k+1), . . . , xD
in the composition.

Hereafter, the subindex (i) and (a), respectively, stand for ilr and alr transformations. The MLR equa-
tions Y(i) = X(i) · β(i) + error(i) and Y(a) = X(a) · β(a) + error(a) thus denote the MLR model in each
respective transformed space. Note that in our case, we set Y(a) = alr(s1) and X(a) = [1n, alr(s2)]. We
also set X(i) = [1n, ilr(s2)]. We can consider Y(i) based on the log-ratio between the first part x1 and the
geometric mean of the parts x2, x3, . . . , xD. Let M2D be the matrix (D − 1)× (D − 1) formed by the first
row and column of an identity matrix, and let the other entries be equal to the matrix C2D:

M2D =


1 0 . . . 0
0
... [C2D]
0

 .

It follows that X(i) = X(a) ·M2D and that

M−1
2D =


1 0 . . . 0
0
... [C2D]−1

0

 .

The inverse relation from the log-ratio matrices can be easily obtained.
In addition, it holds that

H(i) = X(i) · (Xt
(i) ·X(i))

−1 ·Xt
(i) → H(i) = X(a) ·M2D · (Mt

2D ·Xt
(a) ·X(a) ·M2D)−1 ·Mt

2D ·Xt
(a)

→ H(i) = X(a) · (Xt
(a) ·X(a))

−1 ·Xt
(a) = H(a).

In other words, both projection matrices are equal; therefore, H(i) = H(a) = H; Ŷ(a) = H · Y(a) and

Ŷ(i) = H ·Y(i).
Note the following three important properties of this matrix H:

• Ht = H,

• H2 = H and

• H ·X(a) = X(a) and H ·X(i) = X(i).

For our proof, the most important property is the last of these three. The above results are true in the
general case of a change of basis in a Euclidean space. In other words, the above properties are not exclusive
for our case of log-ratio regressions.

Once the alr-MLR and ilr-MLR models have been obtained, it should be determined whether the esti-
mates from the two models are the same. Let C be the matrix that verifies ilr(x) = alr(x) ·C, i.e., for the
full composition. Let M be the matrix resulting from including in the second column and row of the matrix
C a second column and row from an identity matrix as follows:
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M =


c11 0 c12 . . . c1(D−1)
0 1 0 . . . 0
c21 0 c22 . . . c2(D−1)
...

...
... . . .

...
c(D−1)1 0 c(D−1)2 . . . c(D−1)(D−1)

 .

It is easily shown that (Y(i),X(i)) = (Y(a),X(a)) ·M.

Let (Ŷ(a),X(a)) and (Ŷ(i),X(i)) be the results in the transformed space produced by the two log-ratio

MLR models. Therefore, it must be demonstrated that the equality (Ŷ(i),X(i)) = (Ŷ(a),X(a)) ·M holds as
follows:

(Ŷ(a),X(a)) ·M = (H ·Y(a),H ·X(a)) ·M = H · (Y(a),X(a)) ·M =

= H · (Y(i),X(i)) = (H ·Y(i),H ·X(i)) = (Ŷ(i),X(i)),

where the properties H(i) = H(a) = H, H ·X = X and Ŷ = H ·Y have been applied.

Appendix B

As in Appendix A, the subindices (i) and (a) stand for ilr and alr transformations, respectively. We
denote by Y the variable that includes unknown values and by X the observed variables. Without loss of
generality, we can assume that the unknown values are in the first part x1 and the observed variables form the
rest x−1 = (x2, . . . , xD). In other words, in our case, we consider Y(a) = ln x1

xD
and X(a) = [1n, alr(x−1)]; we

take the corresponding Y(i) and X(i) by applying the ilr-transformation from equation (1). In these terms,
the conditional expected value-with a log-ratio-transformed detection limit ψ-in our proposed algorithm is
as follows:

E[Y|X,Y < ψ], (13)

where each unknown value yk in the variable Y is calculated using a censored regression in both log-ratio
transformed spaces, applying the following expressions:

ŷ(a)k = X(a)k · β̂(a)− σ̂(a)
φ

(
ψ(a)k−X(a)k·

ˆβ(a)

σ̂(a)

)
Φ

(
ψ(a)k−X(a)k·

ˆβ(a)

σ̂(a)

) and ŷ(i)k = X(i)k · β̂(i)− σ̂(i)
φ

(
ψ(i)k−X(i)k·

ˆβ(i)

σ̂(i)

)
Φ

(
ψ(i)k−X(i)k·

ˆβ(i)

σ̂(i)

) . (14)

The proof analyses whether the estimates obtained, (Ŷ(a),X(a)) and (Ŷ(i),X(i)) are equivalent. In other
words, it must be demonstrated that (ŷ(i)k,X(i)k) = (ŷ(a)k,X(a)k) ·M holds, where the matrix M is the
matrix introduced in Appendix A. To accomplish this proof, it is necessary to describe some properties of
M. This matrix is composed of the matrix C that verifies ilr(x) = alr(x) ·C for any composition x ∈ SD
(e.g., Barceló-Vidal et al., 2011). This matrix is the product of two specific matrices F and V: C = (F ·V)t.
Here, F = [ID−1 : −1D−1], where I is the identity matrix of order D − 1. The columns of the matrix V,
with order D × (D − 1), are the vectors of the ilr-orthonormal basis. For the basis described by equation
(1), applied in our algorithm, the element (vij) in matrix V is equal to

vij =


0 for i < j;√
D−j
D−j+1 for i = j;

− 1√
(D−j)(D−j+1)

for i > j.
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Using the above expressions, it is easy to state that for any matrix M, it holds that mij = 0 for i < j.
This property will be crucial for a proof of the relation between the two estimates. For example, for D = 6,
one obtains

M =


1.095 0 0 0 0 0

0 1 0 0 0 0
0.224 0 1.118 0 0 0
0.289 0 0.289 1.155 0 0
0.408 0 0.408 0.408 1.225 0
0.707 0 0.707 0.707 0.707 1.414

 .

Upon examining the expressions in (14), we conclude that it is only necessary to analyse the second term

in the subtraction because the first one, Xk · β̂, is the MLR estimate that is analysed in Appendix A. To find
the relation between the conditional variances σ̂(a) and σ̂(i), it is necessary to consider their corresponding
expressions from the regression models

(Y(a) −X(a) · β̂(a))
t · (Y(a) −X(a) · β̂(a)) and (Y(i) −X(i) · β̂(i))

t · (Y(i) −X(i) · β̂(i)), (15)

where Y stands for the vector no × 1 composed by the no observed values in the variable. From Appendix
A, the observed part in the data set and the estimates from MLR verify that

(Y(i),X(i)) = (Y(a),X(a)) ·M and (X(i) · β̂(i),X(i)) = (X(a) · β̂(a),X(a)) ·M. (16)

Subtracting both expressions in (16) one obtains

(Y(i) −X(i) · β̂(i),0) = (Y(a) −X(a) · β̂(a),0) ·M,

where “0” is a matrix of order no × (D − 1) in which all entries are equal to zero. Therefore, it holds that

(Y(i) −X(i) · β̂(i),0)t · (Y(i) −X(i) · β̂(i),0) = Mt · (Y(a) −X(a) · β̂(a),0)t · (Y(a) −X(a) · β̂(a),0) ·M.

From the above identity and the special pattern of the matrix M, it is easy to prove that σ̂(i) = m11σ̂(a),
where m11 is the first element in the diagonal of M. This expression relates the conditional variances of the
two censored regressions. Finally, it is necessary to analyse the relation between the elements

ψ(a) −X(a) · β̂(a) and ψ(i) −X(i) · β̂(i), (17)

that are inside the normal density and distribution functions. Here, ψ stands for the vector nu × 1 of the
log-ratio transformed detection limits of the nu unknown values. The matrix X is the observed part of the
data set. From the construction of this matrix, it is simple to show that

(ψ(i),X(i)) = (ψ(a),X(a)) ·M. (18)

Subtracting the above expression and the expression on the right in (16), one obtains

(ψ(i) −X(i) · β̂(i),0) = (ψ(a) −X(a) · β̂(a),0) ·M,

and therefore, (ψ(i)k −X(i)k · β̂(i)) = m11(ψ(a)k −X(a)k · β̂(a)) for any k = 1, . . . , nu. Consequently, if the
relation between the conditional variances is considered, it holds that

ψ(i)k −X(i)k · β̂(i)

σ̂(i)
=
ψ(a)k −X(a)k · β̂(a)

σ̂(a)
, k = 1, . . . , nu,

which implies an equal value in the normal density and distribution functions in the censored regressions.
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Once the relations between all the elements in the censored regressions have been analysed, one can
state the relation between the estimates. To simplify the following expressions, the ratio between both
normal functions has been replaced by the expression [φ(·)/Φ(·)] that takes the same value for both log-ratio
censored regressions. Let (ŷ(i)k,X(i)k) be the k-th estimates from the ilr-censored regression. It holds that

(ŷ(i)k,X(i)k) =
(
X(i)k · β̂(i) − σ̂(i)[φ(·)/Φ(·)],X(i)k

)
=

=
(
X(i)k · β̂(i),X(i)k

)
−

(
σ̂(i)[φ(·)/Φ(·)],0

)
=

(
X(a)k · β̂(a),X(a)k

)
·M −

(
m11σ̂(a)[φ(·)/Φ(·)],0

)
=

(
X(a)k · β̂(a),X(a)k

)
·M −

(
σ̂(a)[φ(·)/Φ(·)],0

)
·m11

=
(
X(a)k · β̂(a),X(a)k

)
·M −

(
σ̂(a)[φ(·)/Φ(·)],0

)
·M

=
(
X(a)k · β̂(a) − σ̂(a)[φ(·)/Φ(·)],X(a)k

)
·M

= (ŷ(a)k,X(a)k) ·M.
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compositional data analysis. Mathematical Geology 35 (3), 279-300.

Egozcue, J.J., Tolosana-Delgado, R., Ortego, M.I. (eds), 2011. Proceedings of CODAWORK’11, The 4th Compositional Data
Analysis Workshop. Sant Feliu De Guxols, ISBN: 978-84-87867-76-7 (electronic publication). May 10-13.

Filzmoser, P., Hron, K., 2008. Outlier detection for compositional data using robust methods. Mathematical Geosciences 40
(3), 233-248.

Filzmoser, P. and Hron, K., 2011. Robust statistical analysis, Ch. 5. In: Pawlowsky-Glahn and Buccianti (2011), pp. 59-72.
Filzmoser, P., Hron, K., Reimann, C., 2009. Principal component analysis for compositional data with outliers. Environmetrics

20 (6), 621-632.
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