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Abstract Statistical simulation in survey statistics is usually based on re-
peatedly drawing samples from population data. Furthermore, population data
may be used in courses on survey statistics to explain issues regarding, e.g.,
sampling designs. Since the availability of real population data is in general
very limited, it is necessary to generate synthetic data for such applications.
The simulated data need to be as realistic as possible, while at the same time
ensuring data confidentiality. This paper proposes a method for generating
close-to-reality population data for complex household surveys. The proce-
dure consists of four steps for setting up the household structure, simulating
categorical variables, simulating continuous variables and splitting continuous
variables into different components. It is not required to perform all four steps
so that the framework is applicable to a broad class of surveys. In addition,
the proposed method is evaluated in an application to the European Union
Statistics on Income and Living Conditions (EU-SILC).

Keywords Synthetic data · Simulation · Survey statistics · EU-SILC

This work was partly funded by the European Union (represented by the European Commis-
sion) within the 7th framework programme for research (Theme 8, Socio-Economic Sciences
and Humanities, Project AMELI (Advanced Methodology for European Laeken Indicators),
Grant Agreement No. 217322). Visit http://ameli.surveystatistics.net for more infor-
mation on the project.

A. Alfons · S. Kraft · M. Templ · P. Filzmoser
Department of Statistics and Probability Theory, Vienna University of Technology
Wiedner Hauptstraße 7, 1040 Vienna, Austria
Tel.: +43 1 58801 10772
Fax: +43 1 58801 10798
E-mail: alfons@statistik.tuwien.ac.at

S. Kraft
now at the Institute for Quantitative Asset Management

M. Templ
Methods Unit, Statistics Austria



2

1 Introduction

Survey data contain variability due to sampling, imputation of missing val-
ues, measurement errors and editing. Statistical simulation in survey statistics
therefore often follows a close-to-reality approach (see, e.g., Münnich et al
2003), i.e., the behavior of the developed methodology for a specific survey
is investigated by repeatedly drawing samples from population data with the
sampling method and weighting scheme used in practice. Population data may
thus form the basis for a realistic framework to compare statistical methods
under different settings. In particular, the estimation of indicators needed for
policy decisions may be investigated with respect to different sampling designs
or common data problems such as measurement errors or missing values.

In teaching, population data may support courses on topics such as sam-
pling, statistical modeling or indicator estimation. Again, real-world situations
could be considered by drawing samples from close-to-reality populations. Is-
sues regarding, e.g., the sampling design or inhomogeneities in the data can
be explained using real-world applications.

However, real population data are typically limited to census or register
data. Only in exceptions are suitable population data available to researchers.
The remedy of this problem is to generate synthetic populations from existing
survey data.

Simulation of population microdata is closely related to the field of mi-
crosimulation (e.g., Clarke 1996), which is a well-established methodology
within the social sciences, although the aims are quite different. Microsim-
ulation models attempt to reproduce the behavior of individual units such as
persons, households or firms over the course of many years for policy analysis
purposes. Hence they are highly complex and time-consuming. Survey statis-
ticians, on the other hand, need synthetic populations as a basis for extensive
simulation studies on the behavior of their statistical methods. Fast computa-
tion is thus favored to over-complex models.

An alternative approach for the generation of synthetic data sets is dis-
cussed by Rubin (1993). He addresses the confidentiality problem connected
with the release of publicly available microdata and proposes the generation of
fully synthetic microdata sets using multiple imputation. Raghunathan et al
(2003), Drechsler et al (2008) and Reiter (2009) discuss this approach in more
detail. However, their approach does not allow to generate categories that are
not represented in the original sample, nor do they investigate the possible gen-
eration of structural zeros in combinations of variables. Moreover, some basic
variables from the real population data are required as auxiliary information.

The generation of population microdata for selected surveys as a basis for
Monte Carlo simulation is described by Münnich et al (2003) and Münnich
and Schürle (2003). Nevertheless, their framework was developed for house-
hold surveys with large sample sizes that contain mainly categorical variables.
All steps of the procedure are performed separately for each stratum of the
sampling design. The household structure is thereby simulated in two steps.
First, the household sizes are drawn from the observed conditional distribu-
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tions within the strata. Second, the age and gender structure of the population
households is generated by resampling households of the same size from the
respective strata in the sample. Additional categorical variables are then sim-
ulated by random draws from the observed conditional distributions of their
multivariate realizations within each combination of stratum, age (or age cat-
egory) and gender. Also continuous variables are modeled separately for each
combination of stratum and outcomes from certain influential variables.

In any case, this framework has been modified and extended in order to be
applicable to more complex surveys such as the well-known European Union
Statistics on Income and Living Conditions (EU-SILC). Please note that while
it would be interesting to establish a theoretical relationship between the good-
ness of the statistical models and the resulting populations, such an analysis
is out of scope for this paper due to the large number of models involved.
Instead, the proposed procedure is evaluated by means of simulation.

The rest of the paper is organized as follows. In Section 2, the proposed data
simulation method is described in great detail. Diagnostic plots and results
from extensive simulation studies in an application to EU-SILC are presented
in Section 3. The final Section 4 concludes.

2 Simulation of synthetic populations

The data simulation method proposed in this paper is motivated by the Eu-
ropean Union Statistics on Income and Living Conditions (EU-SILC; see Sec-
tion 3), but since it is designed to manage all difficulties of this highly complex
survey, it is also applicable to many other household surveys. In any case, the
following conditions need to be respected when simulating population data
(Münnich et al 2003; Münnich and Schürle 2003):

– Actual sizes of regions and strata need to be reflected.
– Marginal distributions and interactions between variables should be repre-

sented correctly.
– Heterogeneities between subgroups, especially regional aspects, should be

allowed.
– Pure replication of units from the underlying sample should be avoided, as

this generally leads to extremely small variability of units within smaller
subgroups.

– Data confidentiality must be ensured.

In the case of EU-SILC, another problem needs to be considered. As the name
suggests, EU-SILC contains information about income, which is split into dif-
ferent income components. The data simulation method must thus ensure that
such a breakdown of variables is done in a realistic manner.

Since some of the above conditions are conflicting with one another, gener-
ating completely realistic populations seems an impossible task. Nevertheless,
being as close to reality as possible suffices for drawing meaningful conclusions
from simulation studies.
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Our procedure is based on the ideas of Münnich et al (2003) and Münnich
and Schürle (2003). However, they mainly consider the generation of categor-
ical variables for specific surveys such as the German Microcensus, with only
a few simple extensions to continuous variables. The proposed method uses
modifications of their framework and both improves and extends the simula-
tion scheme such that it can be applied to a much broader class of household
surveys. This in particular includes surveys with relatively small sample sizes
or with complex continuous variables or components thereof. In general, the
procedure consists of four steps:

1. Setup of the household structure
2. Simulation of categorical variables
3. Simulation of continuous variables
4. Splitting continuous variables into components

While the propositions of Münnich et al (2003) and Münnich and Schürle
(2003) are only slightly modified in Step 1, an entirely different approach is
used in Steps 2 and 3. In addition, Step 4 constitutes a new development
motivated by EU-SILC. Having different stages provides maximum flexibility
of the framework. Depending on the specific survey, not all four steps need to
be carried out.

It is important to note that the proposed data generation method relies
solely on the underlying sample data, no auxiliary information (e.g., available
census data) is required. Stratification allows to account for heterogeneities
such as regional differences. Furthermore, sample weights are considered in
each step to ensure high similarity of expected and realized values. Concerning
data confidentiality, a detailed analysis of the framework using different worst
case scenarios is carried out in Templ and Alfons (2010). The conclusion of
this analysis is that the synthetic population data are confidential and may be
distributed to the public.

In the following sections, the different steps of the procedure are described
in detail. Section 2.5 then briefly discusses the implementation of the procedure
in R (R Development Core Team 2010).

2.1 Setup of the household structure

The household structure is simulated separately for each combination of stra-
tum k and household size l. First, the number of households Mkl is estimated
using the Horvitz-Thompson estimator (Horvitz and Thompson 1952):

M̂kl :=
∑
h∈HSkl

wh, (1)

where HS
kl denotes the index set of households in stratum k of the survey

data with household size l, and wh, h ∈ HS
kl, are the corresponding household

weights. Similarly, let HU
kl be the respective index set of households in the
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population data such that |HU
kl| = M̂kl. To prevent unrealistic structures in

the population households, basic information from the survey households is
resampled. Let xShij and xUhij denote the value of person i from household h in
variable j for the sample and population data, respectively, and let the first p1

variables contain the basic information on the household structure. For each
population household h ∈ HU

kl, a survey household h′ ∈ HS
kl is selected with

probability wh′/M̂kl and the household structure is set to

xUhij := xSh′ij , i = 1, . . . , l, j = 1, . . . , p1. (2)

Alias sampling (Walker 1977) is well suited for our purpose, as it is very
fast for a large number of sampled elements. Furthermore, as few variables as
possible should be adopted by the persons in the resampled households for
disclosure reasons. Our suggestion is to use only age and gender information,
which is typically available in household surveys.

2.2 Simulation of categorical variables

For simulating additional categorical variables, the approach by Münnich et al
(2003) and Münnich and Schürle (2003) is based on estimating conditional
distributions directly by the corresponding relative frequency distributions in
the underlying sample. It therefore requires a rather large sample size and is
not very flexible (see Section 3.2; cf. Kraft 2009). In particular, it does not
allow to generate combinations that do not occur in the sample. To overcome
these shortcomings, the proposed approach estimates conditional distributions
with multinomial logistic regression models.

Let xSj = (xS1j , . . . , x
S
nj)
′ and xUj = (xU1j , . . . , x

U
Nj)
′ denote the variables in

the sample and population, respectively, where n and N give the correspond-
ing number of individuals. The additional categorical variables are thereby
given by the indices p1 < j ≤ p2. Furthermore, the personal sample weights
are denoted by w = (w1, . . . , wn)′. Multinomial logistic regression models are
fitted for each stratum separately. Due to limited space, a detailed mathemat-
ical description of these models cannot be provided in this paper, but can be
found in, e.g., Simonoff (2003).

The following procedure is performed for each stratum k and each variable
to be simulated, given by the index j, p1 < j ≤ p2. Let ISk and IUk be the
index sets of individuals in stratum k for the survey and population data,
respectively. The survey data given by the indices in ISk is used to fit the
model with response xSj and predictors xS1 , . . . , xSj−1, thereby considering the
sample weights wi, i ∈ ISk . Furthermore, let {1, . . . , R} be the set of possible
outcome categories of the response variable. In particular, the number of pos-
sible outcomes is denoted by R. For every individual i ∈ IUk , the conditional
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probabilities pUir := P (xUij = r|xUi1, . . . , xUi,j−1) are estimated by

p̂Ui1 := 1
1 +

∑R
r=2 exp(β̂0r + β̂1rx

U
i1 + . . .+ β̂j−1,rx

U
i,j−1)

,

p̂Uir :=
exp(β̂0r + β̂1rx

U
i1 + . . .+ β̂j−1,rx

U
i,j−1)

1 +
∑R
r=2 exp(β̂0r + β̂1rx

U
i1 + . . .+ β̂j−1,rx

U
i,j−1)

, r = 2, . . . , R,
(3)

where β̂0r, . . . , β̂j−1,r, r = 2, . . . , R, are the estimated coefficients (see, e.g.,
Simonoff 2003). The values of xUj for the individuals i ∈ IUk are then drawn
from the corresponding conditional distributions.

Note that for simulating the jth variable, p1 < j ≤ p2, the j − 1 previous
variables are used as predictors. This means that the order of the additional
categorical variables may be relevant. However, once such a variable is gener-
ated in the population, that information should certainly be used for simulat-
ing the remaining variables. In our application to EU-SILC, changing the order
of the variables did not produce significantly different results (not shown). Al-
ternatively, the procedure could be continued iteratively once all additional
variables are available in the population, in each step using all other variables
as predictors. Nevertheless, such a procedure would be computationally very
expensive for real-life sized population data.

Estimating the conditional distributions with multinomial logistic regres-
sion models allows to simulate combinations that do not occur in the sample
but are likely to occur in the true population. Such combinations are called
random zeros, as opposed to structural zeros, which are impossible to occur
(e.g., Simonoff 2003). For close-to-reality populations, such structural zeros
need to be reflected. This can be done by setting pUir′ := 0, where r′ is an
impossible value for xij given xi1, . . . , xi,j−1, and adjusting the other proba-
bilities so that

∑R
r=1 p

U
ir = 1.

Keep in mind that the idea of the proposed data simulation framework is
to proceed in a stepwise fashion, generating different types of variables in each
step. However, the procedure could easily be modified to allow for previously
simulated continuous predictors when simulating a categorical variable.

2.3 Simulation of continuous variables

Continuing the notation from the previous section, let xSj and xUj , p2 < j ≤ p3,
denote the continuous variables. Two different approaches are presented in the
following. Both are able to handle semi-continuous variables, i.e., variables that
contain a large amount of zeros.

2.3.1 Multinomial model with random draws from resulting categories

This approach is based on the simulation of categorical variables described in
the previous section. The following steps are performed for each variable to
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be simulated, given by the index j, p2 < j ≤ p3. First, the variable xSj is dis-
cretized. This is done in a different manner for continuous and semi-continuous
variables. For continuous variables, R+1 breakpoints b1 < . . . < bR+1 are used
to define the discretized variable yS = (yS1 , . . . , y

S
n )′ as

ySi :=
{

1 if b1 ≤ xSij ≤ b2,
r if br < xSij ≤ br+1, r = 2, . . . , R. (4)

For semi-continuous variables, zero is a category of its own, and breakpoints
for negative and positive values are distinguished. Let b−R−+1 < . . . < b−1 =
0 = b+1 < . . . < b−R++1 be the breakpoints. Then yS is defined as

ySi :=


−r if R− > 0 and b−r+1 ≤ xSij < b−r , r = R−, . . . , 1,

0 if xSij = 0,
r if R+ > 0 and b+r < xSij ≤ b

+
r+1, r = 1, . . . , R+.

(5)

Note that the cases of only non-negative or non-positive values in xSj are
considered in (5).

Multinomial logistic regression models with response yS and predictors
xS1 , . . . , xSj−1 are then fitted for every stratum k separately, as described in the
previous section, in order to simulate the values of the categorized population
variable yU = (yU1 , . . . , y

U
N )′.

Finally, the values of xUj are generated by random draws from uniform dis-
tributions within the corresponding categories of yU . For continuous variables,
the values of individual i = 1, . . . , N are generated as

xUij ∼ U(br, br+1) if yUi = r. (6)

For semi-continuous variables, the values of individual i = 1, . . . , N are set to
xUij := 0 if yUi = 0, while the non-zero observations are generated as

xUij ∼
{
U(b−r+1, b

−
r ) if yUi = −r < 0,

U(b+r , b
+
r+1) if yUi = r > 0.

(7)

The idea behind this approach is to divide the data into relatively small sub-
sets. If the intervals are too large, using uniform distributions may be an
oversimplification. However, the advantage of this approach is that it allows
the breakpoints for the discretization to be chosen in such a way that the
empirical distribution is well reflected in the simulated population variable. It
thereby needs to be considered that the larger the number of breakpoints, the
higher the computation time. Quantiles in steps of 10% are reasonable default
values for the breakpoints, while the fit in the tails of the distribution may
be improved by also using the 1%, 5%, 95% and 99% quantiles. Note that
sufficient accuracy in some applications may already be reached with larger
steps in the middle part of the distribution (see Section 3).

When simulating variables that contain extreme values, such as income, tail
modeling should be considered. In that case, values from the largest categories
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could be drawn from a generalized Pareto distribution (GPD). The cumulative
distribution function of the GPD is defined as

Fµ,σ,ξ(x) =


1−

(
1 +

ξ(x− µ)
σ

)− 1
ξ

, ξ 6= 0,

1− exp
(
−x− µ

σ

)
, ξ = 0,

where µ is the location parameter, σ > 0 is the scale parameter and ξ is the
shape parameter. The range of x is x ≥ 0 when ξ ≥ 0 and µ ≤ x ≤ µ − σ

ξ

when ξ < 0. See, e.g., Embrechts et al (1997) for details on the peaks over
threshold approach for fitting the GPD. Note that other distributions may be
used for tail modeling as well (see, e.g., Kleiber and Kotz 2003). Nevertheless,
if the purpose of such a population is comparing different estimators in a
simulation study, it is important to note that using a GPD for the tails favors
estimators that incorporate generalized Pareto tail modeling over other types
of estimators.

2.3.2 (Two-step) regression model with random error terms

The second approach is based on linear regression combined with random
error terms. Semi-continuous variables are thereby simulated using a two-step
model. The following procedure is repeated for each variable to be simulated,
given by the index j, p2 < j ≤ p3.

For semi-continuous variables, the first step is to simulate whether xUij ,
i = 1, . . . , N , is zero or not. This is done by fitting logistic regression models
(see, e.g., Simonoff 2003) for each stratum separately. The binary response
variable yS = (yS1 , . . . , y

S
n )′ is defined as

ySi :=
{

0 if xij = 0,
1 else. (8)

For each stratum k, the observations given by the index set ISk are used to fit
the model with response yS and predictors xS1 , . . . , xSj−1. The sample weights
wi, i ∈ ISk , are considered in the model fitting process by using a weighted
maximum likelihood approach. For every individual i ∈ IUk , the conditional
probabilities pUi := P (yUi = 1|xUi1, . . . , xUi,j−1) that xUij is non-zero are estimated
by

p̂Ui :=
exp(β̂0 + β̂1x

U
i1 + . . .+ β̂j−1x

U
i,j−1)

1 + exp(β̂0 + β̂1x
U
i1 + . . .+ β̂j−1x

U
i,j−1)

, (9)

where β̂0, . . . , β̂j−1 are the estimated coefficients (e.g., Simonoff 2003). The
values yUi , i ∈ IUk , are then drawn from the corresponding conditional distri-
butions. Consequently, the zeros in the simulated semi-continuous variable are
given by xUij := 0 if yUi = 0. For the second step, the non-zero observations are
indicated by ĨSk := {i ∈ ISk : ySi = 1} and ĨUk := {i ∈ IUk : yUi = 1}.
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For continuous variables, on the other hand, ĨSk := ISk and ĨUk := IUk
are used in the following. Linear regression models are fitted for every stratum
separately. In order to obtain more robust models, trimming parameters α1 and
α2 are introduced. The following procedure is carried out for each stratum k.
Let the observations to be used for fitting the model be given by the index
set Iα2

α1
:= {i ∈ ĨSk : qα1 < xij < q1−α2}, where qα1 and q1−α2 are the

corresponding α1 and 1− α2 quantiles, respectively. The linear model is then
given by

xSij = β0 + β1x
S
i1 + . . .+ βj−1x

S
i,j−1 + εSi , i ∈ Iα2

α1
, (10)

where εSi are random error terms. Using the weighted least squares approach
with weights wi, i ∈ Iα2

α1
, coefficients β̂0, . . . , β̂j−1 are obtained (see, e.g., Weis-

berg 2005) and the population values are estimated by

x̂Uij = β̂0 + β̂1x
U
i1 + . . .+ β̂j−1x

U
i,j−1 + εUi , i ∈ ĨUk . (11)

The random error terms εUi need to be added since otherwise individuals with
the same set of predictor values would receive the same value in xUij . There are
two suggestions on how to generate the random error terms:

– Use random draws from the residuals

r̂Si = xSij −
(
β̂0 + β̂1x

S
i1 + . . .+ β̂j−1x

S
i,j−1

)
, i ∈ Iα2

α1
. (12)

– Use random draws from a normal distribution N (µ, σ2). The parameters µ
and σ are thereby estimated robustly with median and MAD, respectively.

The first approach is more data-driven, while the second approach is in ac-
cordance with the theoretical assumption of normally distributed errors. For
both, the trimming parameters α1 and α2 need to be selected carefully. If they
are too small, very large random error terms due to outliers may result in large
deviations especially in the tails of the distribution. If they are too large, the
random error terms may not introduce enough variability. In the application
to EU-SILC, α1 = α2 = 0.01 appeared to be a reasonable choice.

For variables such as income, a log-transformation may be beneficial before
fitting the linear model. Equation (10) is then changed to

log xSij = β0 + β1x
S
i1 + . . .+ βj−1x

S
i,j−1 + εSi , i ∈ Iα2

α1
. (13)

In that case, the population values are estimated by

x̂Uij = exp(β̂0 + β̂1x
U
i1 + . . .+ β̂j−1x

U
i,j−1 + εUi ), i ∈ ĨUk . (14)

However, the log-transformation causes problems with negative values, which
is realistic for income (losses from self employment, see the example with
EU-SILC data in Section 3). A simple remedy is of course to add a constant
c > 0 to xSij to obtain positive values, i.e., to use log(xSij + c) in the left-hand
side of Equation (13). This constant then needs to be subtracted from the right
hand side of Equation (14). Another possibility is to combine the two presented
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approaches for simulating (semi-)continuous variables. A multinomial model
with one category for positive values and certain categories for non-positive
values is applied in the first step. Positive values are then simulated using a
linear model for the log-transformed data, while negative values are drawn
from uniform distributions within the respective simulated categories.

2.4 Splitting continuous variables into components

The procedure for simulating components of continuous variables is motivated
by EU-SILC data, which contain information on various income components.
When simulating components, the following problems need to be considered
(cf. Kraft 2009). Even for a moderate number of components, it may be too
complex to consider all the dependencies between the components and the
other variables, as well as between the components themselves. Moreover,
sparseness of various components may be an issue, e.g., in EU-SILC data,
most income components typically contain only few non-zero observations. To
manage these problems, a simple but effective approach based on conditional
resampling of fractions has been developed. Only very few highly influential
categorical variables should thereby be considered for conditioning.

Let zS = (zS1 , . . . , z
S
n )′ and zU = (zU1 , . . . , z

U
N )′ denote the variable giv-

ing the total in the sample and population, respectively, and let xSj and xUj ,
p3 < j ≤ p4, denote the variables containing the components. First, the frac-
tions of the components with respect to the total are computed for the sample:

ySij :=
xSi,p3+j
zSi

, i ∈ ISr , j = 1, . . . , p4 − p3. (15)

For the second step, let Jc be the index set of the conditioning variables. This
step is performed separately for every combination of outcomes r = (rj)j∈Jc .
Let ISr := {i : xSij = rj ∀j ∈ Jc} and IUr := {i : xUij = rj ∀j ∈ Jc} be the
index sets of individuals in the survey and population data, respectively, with
the corresponding outcomes in the conditioning variables. For each individual
i ∈ IUr in the population, an individual i′ ∈ ISr from the survey data is selected
with probability wi′/

∑
i∈ISr

wi and the values of the components are set to

xUi,p3+j := zUi y
S
i′j , j = 1, . . . , p4 − p3. (16)

If no observations for combination r exist in the sample, i.e., if ISr = ∅, a
suitable donor r′ is selected by minimizing a suitable distance measure such
as the Manhattan distance d1(r, s) = ‖r − s‖1. Then ISr := ISr′ is used in the
above steps.

Resampling fractions has the advantage that it avoids unrealistic or un-
reasonable combinations in the simulated components. At the same time, it
does not result in pure replication, as the absolute values for simulated indi-
viduals are in general quite different from the corresponding individuals in the
underlying survey data.
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2.5 Software

The proposed data simulation framework is implemented in the R package
simPopulation (Alfons and Kraft 2010), which can be obtained from CRAN
(the Comprehensive R Archive Network, http://cran.r-project.org). For
maximum flexibility, the four steps of the procedure are available as separate
functions. To generate populations for EU-SILC, a wrapper combining all four
steps is implemented in order to provide a more convenient interface. Wrappers
for other surveys can easily be defined by the user. In addition, functions to
create diagnostic plots as shown in Section 3.1 are available. The latter are
implemented using packages vcd (Meyer et al 2006, 2010) and lattice (Sarkar
2008, 2011).

It would certainly be beneficial to present a line-by-line illustration of the
R code for the application in Section 3. Nevertheless, the EU-SILC sample
provided by Statistics Austria is confidential, thus the reader would not be
able to reproduce the results. Furthermore, the additional explanation of the
R code would render the length of the paper far from being reasonable. There-
fore, detailed instructions for such an analysis and the generation of diagnos-
tic plots are provided in a separate package vignette (Alfons et al 2010b). If
simPopulation is installed, the vignette can be viewed from within R with
the following command:

R> vignette("simPopulation-eusilc")

Note that the vignette uses the synthetically generated example data from the
package, hence the results presented there are reproducible.

3 Application to EU-SILC

The European Union Statistics on Income and Living Conditions (EU-SILC)
is one of the most well-known panel surveys and is conducted in EU member
states and other European countries. It is mainly used as data basis for the
Laeken indicators, a set of indicators for measuring risk-of-poverty and social
cohesion in European countries (cf. Atkinson et al 2002).

The application of the proposed data simulation procedure to EU-SILC
(limited to non-negative personal net income and income components) is de-
scribed in more detail in Kraft (2009), where an extensive collection of results
can be found as well. With the generalizations presented in this paper, how-
ever, it is also possible to simulate negative income or income components. The
underlying survey data used in this section is the Austrian EU-SILC sample
from 2006. Table 1 lists the variables to be included in the simulation and
their possible outcomes. It should be noted that due to low frequencies of oc-
curence, some categories of economic status and citizenship, respectively, have
been combined. Such combined categories are marked with an asterisk (*) in
Table 1. A complete description of variables in EU-SILC and possible outcomes
can be found in Eurostat (2004).
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Table 1 Variables selected for the simulation of the Austrian EU-SILC population data.

Variable Name Possible outcomes

Region db040 1 Burgenland
2 Lower Austria
3 Vienna
4 Carinthia
5 Styria
6 Upper Austria
7 Salzburg
8 Tyrol
9 Vorarlberg

Household size hsize Number of persons in household

Age age Age (for the previous year) in years

Gender rb090 1 Male
2 Female

Self-defined current pl030 1 Working full-time
economic status 2 Working part-time

3 Unemployed
4 Pupil, student, further training

or unpaid work experience or in
compulsory military or community
service*

5 In retirement or in early retirement
or has given up business

6 Permanently disabled or/and unfit to
work or other inactive person*

7 Fulfilling domestic tasks and care
responsibilities

Citizenship pb220a 1 Austria
2 EU*
3 Other*

Personal net income netIncome Sum of income components listed below

Employee cash py010n 0 No income
or near cash income > 0 Income

Cash benefits or losses py050n < 0 Losses
from self-employment 0 No income

> 0 Benefits

Unemployment benefits py090n 0 No income
> 0 Income

Old-age benefits py100n 0 No income
> 0 Income

Survivor’s benefits py110n 0 No income
> 0 Income

Sickness benefits py120n 0 No income
> 0 Income

Disability benefits py130n 0 No income
> 0 Income

Education-related py140n 0 No income
allowances > 0 Income

* combined categories
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Section 3.1 presents some diagnostic plots for comparing synthetic popula-
tion data to the underlying sample. How well the characteristics of the original
sample are reflected in such synthetic populations is further assessed by simu-
lation in Section 3.2. These comparisons with the underlying sample are essen-
tial as this is the only real data available. Weighted distributions are thereby
used for the sample data in all comparisions. In Section 3.3, the influence of
different sample sizes and sampling designs on the proposed methodology is
investigated by more extensive simulation studies.

3.1 Diagnostic plots for a single simulation

For setting up the household structure, households from the survey data are
resampled conditional on region and household size. Sensible correlation struc-
tures within the households are ensured by resampling the variables age and
gender, as recommended in Section 2.1. Afterwards, the variable age is cate-
gorized in order to use the resulting categories for the rest of the simulation.
Variables that are categorized in the data simulation procedure are listed in
Table 2, along with the respective categories. Besides age, the personal net
income is discretized at a later stage. The age categories are chosen as a res-
onable tradeoff between accuracy and computation time (see also Section 3.2).
Children below 16 are combined into one category since EU-SILC provides in-
formation for the remaining variables to be simulated only for persons of age
16 or above (see Eurostat 2004). Furthermore, one category for all persons of
age above 80 is used due to the low frequencies of occurrence. In any case,
economic status and citizenship are simulated for every region separately. In
the multinomial logistic regression models described in Section 2.2, the pre-
dictors age category, gender and household size are used for economic status,
while age category, gender, household size and economic status are then used
to simulate citizenship.

In this section, the structure of the simulated categorical variables is eval-
uated by graphical means only. Figure 1 contains mosaic plots visualizing the
expected and realized frequencies of gender, region and household size (top),
as well as gender, economic status and citizenship (bottom). Both show very

Table 2 Categorized variables created for use as predictors during the simulation.

Variable Name Categories

Age category ageCat ≤ 15, (15, 20], (20, 25], (25, 30], (30, 35], (35, 40],
(40, 45], (45, 50], (50, 55], (55, 60], (60, 65], (65, 70],
(70, 75], (75, 80], > 80

Personal net netIncomeCat [−9600,−5840), [−5840,−4200), [−4200, 0),
income category 0, (0, 800], (800, 2800], (2800, 5021.56],

(5021.56, 8456], (8456, 13720], (13720, 17738],
(17738, 23601.65] (23601.65, 29191.86],
(29191.86, 36000], (36000, 57227.69], > 57227.69



14

Data = Sample

●

●
● ● ● ● ● ●

●
●

●

●
● ● ● ● ● ●

●
●

Region

G
en

de
r

H
ou

se
ho

ld
 s

iz
e

fe
m

al
e

98
76

5
4

3
2

1

m
al

e

B LA Vi C St UA Sa T Vo

98
76

5
4

3
2

1

Data = Population

●

●
● ● ● ● ● ●

●
●

●

●
● ● ● ● ● ●

●
●

Region

G
en

de
r

H
ou

se
ho

ld
 s

iz
e

fe
m

al
e

98
76

5
4

3
2

1

m
al

e

B LA Vi C St UA Sa T Vo

98
76

5
4

3
2

1

Data = Sample

Economic status

G
en

de
r

C
iti

ze
ns

hi
p

fe
m

al
e

O
E

A

m
al

e

1 2 3 4 5 67

O
E

A

Data = Population

Economic status

G
en

de
r

C
iti

ze
ns

hi
p

fe
m

al
e

O
E

A

m
al

e

1 2 3 4 5 67

O
E

A

Fig. 1 Top: Mosaic plots of gender, region and household size. Bottom: Mosaic plots of
gender, economic status and citizenship.

similar structures in the sample and population data. Note that these plots
have been selected representatively, as the number of possible combinations of
variables is too large to show them all. However, the interactions between all
categorical variables are very well reflected in the synthetic population data.
This is further documented in Section 3.2 by average relative differences of
contingency coefficients from multiple simulation runs. While the two plots at
the top of Figure 1 are nearly identical, closer inspection of the two plots at
the bottom reveals small differences. These differences are due to the multi-
nomial logistic regression models. The following two points need to be kept in
mind. First, the expected frequencies of the different combinations are solely
determined by the sum of the corresponding sample weights. Second, the multi-
nomial models allow simulating combinations that do not occur in the sample
but are likely to occur in the population. Consequently, the differences may be
interpreted as corrections of the expected frequencies. For additional results
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Fig. 2 Left : Cumulative distribution functions of personal net income. For better visibility,
the plot shows only the main parts of the data. Right: Box plots of personal net income.
Points outside the extremes of the whiskers are not plotted.

concerning the simulation of categorical variables in the case of EU-SILC,
including χ2 goodness of fit tests, the reader is referred to Kraft (2009).

For simulating personal net income, the two approaches described in Sec-
tion 2.3 are compared. In both cases, the variables age category, gender, house-
hold size, economic status and citizenship are used as predictors and the mod-
els are computed separately for each region. The approach based on multino-
mial logistic regression models thereby uses the following parameter settings.
In the categorization of personal net income, zero is a category of its own
since personal net income is a semi-continuous variable. Breakpoints for the
positive values are chosen as their weighted 1%, 5%, 10%, 20%, 40%, 60%,
80%, 90%, 95% and 99% quantiles. Furthermore, the only three negative val-
ues are used as breakpoints for negative income. See Table 2 for the resulting
income categories. Values in the categories above the two largest breakpoints
are drawn from a truncated generalized Pareto distribution. In the following,
this approach will be referred to as MP. For the two-step linear regression ap-
proach, on the other hand, two different parameter settings are investigated.
The first uses random draws from the residuals and will be referred to as TR,
the second uses random draws from a normal distribution and will be referred
to as TN. In both cases, the positive sample data are trimmed with parame-
ters α1 = α2 = 0.01 and log-transformed in the second step of the procedure.
Trimming is used since this performed better (results not shown, cf. Kraft
2009). In order to simulate negative income, a multinomial model is used in
the first step. For negative income, again the only three existing values are
used as breakpoints (see Table 2), and the simulated values are drawn from
uniform distributions in the corresponding classes.

In Figure 2 (left), the cumulative distribution functions (CDF) of personal
net income in the three simulated populations are compared to the empiri-
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cal CDF obtained from the sample. Sample weights are taken into account
by adjusting the step height. For better visibility of the differences, the plot
shows only the main parts of the data (from 0 to the weighted 99% quantile
of the positive values in the sample). The CDFs indicate an excellent fit, in
particular for the MP approach. With the TN approach, there are some devia-
tions for lower income, though. Figure 2 (right) uses box plots to compare the
distributions. The box plots are adapted for semi-continuous variables in the
following way. Box and whiskers are computed only for the non-zero part of the
data and the box widths are proportional to the ratio of non-zero observations
to the total number of observed values. For the sample data, sample weights
are taken into account when computing the box plot statistics and the box
widths. These box plots suggest that the proposed approaches perform well
regarding the proportion of individuals with zero income and the distribution
of non-zero income for the main part of the data.

Figure 3 contains box plots of the conditional distributions of personal net
income with respect to gender (top left), citizenship (top right), region (bottom
left) and economic status (bottom right). The proportions of zeros and the
distributions of the non-zero observations appear to be in general well reflected
in the simulated populations. Only some very small subgroups of economic
status show significant deviations for the two-step regression approaches. This
underlines the good fit of the models and illustrates that the proposed methods
succeed to account for heterogeneities in the data.

Last but not least, the income components are simulated conditional on
income category and economic status (see Section 2.4). Box plots of the re-
sults are shown in Figure 4. Due to the large number of zeros in most income
components, a minimum box width is used in some cases to prevent the cor-
responding boxes from deteriorating into lines. In any case, the plots suggest
that the simulation procedure for splitting variables into components works
very well.

Additional results from simulations restricted to non-negative income, in-
cluding correlation coefficients of the income components, can be found in
Kraft (2009).

3.2 Average results from multiple simulations

In this section, the quality of the proposed methods is further assessed by
simulation. With the parameter settings as described in the previous section,
100 populations are simulated. Certain quantities of interest for the sample
data are thereby compared to the averages of their population counterparts
over all simulation runs. The R package simFrame (Alfons et al 2010a; Alfons
2010) is used to manage the multiple simulations.

The relationships between the categorical variables, including the variables
defining the household structure (age, gender and household size), are eval-
uated using contingency coefficients. Pearson’s coefficient of contingency is
a measure of association for categorical data defined as P =

√
χ2/(n+ χ2),
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where χ2 is the test statistic of the χ2 test of independence and n is the number
of observations (see, e.g., Kendall and Stuart 1967, for more information).

Furthermore, the proposed methodology for the generation of categorical
variables is compared to the framework of Münnich et al (2003) and Münnich
and Schürle (2003). For the simulation of the household structure, the house-
hold sizes in our procedure are obtained in a completely deterministic way
by estimated population totals, whereas they draw the household sizes from
the observed conditional distributions within the strata. However, the age and
gender structure is also generated by resampling households from the corre-
sponding strata. Additional categorical variables are in their framework then
simulated by random draws from the observed conditional distributions of the
multivariate realizations within each combination of stratum, age category and
gender. Keep in mind that this does not allow to simulate combinations that
do not occur in the sample.

Table 3 compares the contingency coefficients obtained from the sample
to the average results over the simulation runs. Note that the values for the
sample are based on weighted distributions. For the proposed procedure, the
relative differences are negligible, except for the coefficient of age and citi-
zenship (pb220a). This exception is a result of using age categories for the
prediction of citizenship, which can be avoided by using more categories or
the original uncategorized age information. On the other hand, this increases
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Table 3 Pairwise contingency coefficients of the categorical variables for the sample data
(top), as well as average results from 100 simulated populations using the proposed method
(middle), and the method of Münnich et al (2003) and Münnich and Schürle (2003) (bottom).

age rb090 hsize pl030 pb220a

Sample db040 0.261 0.019 0.217 0.139 0.161
age 0.118 0.546 0.723 0.194

rb090 0.081 0.385 0.026
hsize 0.404 0.182
pl030 0.172

Proposed db040 0.262 0.019 0.217 0.139 0.160
method age 0.118 0.546 0.716 0.153

rb090 0.082 0.386 0.026
hsize 0.405 0.179
pl030 0.171

Relative db040 0.283 −2.032 0.000 0.142 −0.073
differences age 0.021 0.030 −1.098 −21.220
(in %) rb090 0.339 0.129 −0.580

hsize 0.108 −1.267
pl030 −0.445

Method of db040 0.262 0.019 0.217 0.138 0.160
Münnich et al age 0.118 0.546 0.715 0.151

rb090 0.081 0.386 0.026
hsize 0.366 0.045
pl030 0.172

Relative db040 0.190 −1.139 0.110 −0.536 −0.172
differences age 0.195 0.037 −1.175 −22.164
(in %) rb090 −0.288 0.233 2.091

hsize −9.423 −74.970
pl030 −0.055

computation time considerably, therefore a reasonable tradeoff has been used.
All in all, the correlation structure of the simulated populations is very close
to the expected one. For the method of Münnich et al (2003) and Münnich
and Schürle (2003), the contingency coefficient of age and citizenship also
suffers from using age category as conditioning variable. Moreover, the rela-
tionships between household size (hsize) and the variables economic status
(pl030) and citizenship (pb220a) are not well reflected. This is because these
authors suggest to use only stratum, age category and gender as condition-
ing variables for the simulation of additional categorical variables. Including
household size as conditioning variable in the estimation of the conditional
multivariate distributions leads to an improvement of the contingency coeffi-
cients (results not shown), but causes another problem. Since the size of the
sample is rather small, only 3432 of the possible 51030 combinations of region,
age category, gender, household size, economic status and citizenship exist in
the sample. Hence the resulting populations cannot contain any other combi-
nations either. Even though many of the combinations that do not occur are
structural zeros, such low variation in the population is simply not realistic as
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Table 4 Evaluation of personal net income based on the percentage of zeros, 5% quantile,
median, mean, 95% quantile and standard deviation. Weighted values from the sample data
are compared to average results from 100 simulated populations.

%Zeros 5% Median Mean 95% SD

Sample 11.39 2800.00 15428.26 17084.37 36000.00 11589.52

Averages of MP 11.41 2728.46 15703.79 17135.24 35682.04 11386.47
simulated TR 11.41 3643.36 14858.96 16980.55 37310.49 11257.74
populations TN 11.41 4946.36 14949.58 17118.29 36566.82 10296.96

Relative MP 0.14 −2.55 1.79 0.30 −0.88 −1.75
differences TR 0.19 30.12 −3.69 −0.61 3.64 −2.86
(in %) TN 0.19 76.66 −3.10 0.20 1.57 −11.15

it is very likely that there is a significant number of random zeros resulting
from the small sample size (see Section 3.3). In short, the proposed method has
the advantage that the information from the household size can be included
in the simulation of additional variables since the multinomial models allow
to simulate combinations that do not exist in the sample.

In Table 4, simulated personal net income is evaluated based on various
quantities of interest: the percentage of zeros, 5% quantile, median, mean,
95% quantile and standard deviation. Weighted values from the sample data
are compared to the average results from the simulated populations for each
of the three investigated methods. The relative differences are again used for
evaluation. Clearly, the MP approach performs best with an excellent overall
fit. For the two-step linear regression procedures, there is considerable devia-
tion in the 5% quantile (cf. Figure 2, left). Due to the better fit and the more
accurate standard deviation, the TR approach may be favorable over the TN
approach.

3.3 Influence of sample size and sampling design

In this section, the synthetic population data from Section 3.1 are used to eval-
uate the effect of different sample sizes and sampling designs on the proposed
framework in a simulation study. It may not be optimal to use population data
that have been generated with the same methodology for such an analysis, but
since real population data are not available, this is the only possible way to
investigate these issues.

Concerning the sample size, two different scenarios are considered: (i) 6 000
households, which is roughly the real sample size, and (ii) 1% samples, which
corresponds to about 35 000 households. In addition, the following two sam-
pling designs are investigated, both of which are frequently used for EU-SILC
in practice:

1. Stratified simple random sampling of households by region.
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2. Stratified simple random sampling of individuals by region. Then all indi-
viduals belonging to the same household as any of the sampled individuals
are collected and added to the sample.

The sample sizes were in both cases chosen proportional to the strata sizes.
This leads to approximately equal weights for the first design, and weights
approximately inverse proportional to the corresponding household sizes for
the second design. For each combination of sample size and sampling design,
25 samples are drawn from the initial population. Then 10 populations are
simulated for each sample, resulting in a total of 250 synthetic populations.
Furthermore, calibration using different choices of variables did not have a
strong impact on the characteristics of the resulting variables (results not
shown). Since households are sampled, however, the resulting sample weights
in general do not sum up to the number of individuals in the population.
Therefore, calibration on the marginal totals of the regions is performed.

Since the proposed framework allows to simulate combinations of categor-
ical variables that do not occur in the underlying sample, empty cells in the
contingency tables are analyzed. Table 5 lists the number of empty cells for
the initial population (#Initial), the average percentage of these cells that are
no longer empty for the simulated populations (false nonempties, %FN ), the
average number of of additional random empty cells for the samples introduced
by the sampling process (#Random), and the average proportion of these cells
that are still empty for the simulated populations (false empties, %FE ).

For all scenarios, only a very low percentage of combinations that do not
exist in the initial population are introduced in the simulated populations.
Note that not all empty cells in the contingency table of the initial population
are structural zeros. Just because a certain combination does not occur in a
specific population does not mean that it is impossible to occur. Thus new
combinations introduced in the simulated populations may very well be real-
istic. In any case, the probability for generating a combination that is in fact
a structural zero is very low due to the low percentage of false nonempties.

On the other hand, the large majority of combinations that randomly do
not exist in the corresponding sample due to the sampling process are gener-
ated in the synthetic populations. Nevertheless, in particular for the small real

Table 5 Analysis of empty cells in the contingency tables of the categorical variables.
250 simulated populations are evaluated using the number of empty cells for the initial
population (#Initial) and the respective average percentage of false nonempties (%FN ), as
well as the average number of of additional random empty cells for the samples (#Random)
and the respective average proportion of false empties (%FE).

Size Design #Initial %FN #Random %FE

Real 1 37730 0.61 10006.48 33.80
Real 2 37730 0.63 9540.84 29.59

1% 1 37730 0.99 6782.76 9.29
1% 2 37730 0.99 6327.52 9.74
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sample size, there is a considerable amount of such combinations that still do
not occur in the simulated populations. The main reason for this is that large
households do not occur very frequently in the initial population, hence there
is only a low number of such households in the samples, which in turn makes
it difficult to reproduce the full variation of possible combinations. This also
explains why the first scenario with the real sample size and simple random
sampling of households leads to the largest proportion of false empties, as
it results in the lowest expected absolute frequencies of large households. To
summarize, considering the small sample size for the first two scenarios and
the resulting large number of random empty cells in the contingency tables for
the samples, the proposed procedure performs quite well.

In Table 6, the contingency coefficients between the categorical variables
from the initial population are compared to the average results from the simu-
lated populations for each of the four sampling scenarios. For the real sample
size, there are considerable differences specifically in the contingency coeffi-
cients between the variables region (db040), age and gender (rb090). This is
because the household structure is simulated by resampling households from
the sample, which due to the small size does not account for all the variation
in the initial population. However, since the dependencies within a household
are highly complex, the results with the simple resampling approach can still
be considered very reasonable. In addition, most of the other relationships are
very well reflected. The 1% samples are of course much less affected by the
effect of resampling households, and all in all the results are excellent.

Table 7 contains an evaluation of the simulated personal net income based
on the following quantities of interest: the percentage of zeros, 5% quantile,
median, mean, 95% quantile and standard deviation. It should be noted that
the reference values for the initial population are computed from the income
generated by the MP approach, since this this gave the best fit compared to
the original sample data (see Section 3.1). The results do not suggest a very
strong influence of the sample size or the sampling design and are similar to
those from the comparison to the original sample data in Section 3.2. For the
real sample size, only a small effect of the sampling design on the percentage
of zeros is visible in all methods. Furthermore, the sampling design appears
to have a slight impact on the two-step linear regression methods in general,
most notably on the 5% and 95% quantiles and the standard deviation. In any
case, the MP approach clearly gives excellent results and performs best, while
the TR method is favorable over the TN method for the two-step approach.

4 Conclusions

This paper introduced a flexible framework for simulating population data
for household surveys based on available sample data, which is implemented
along with diagnostic plots in the R package simPopulation. No auxiliary
information is used in the procedure, and stratification allows to account for
heterogeneities such as regional differences.
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Table 6 Pairwise contingency coefficients of the categorical variables for the initial popula-
tion, as well as average results from 250 simulated populations for each of the four sampling
scenarios.

age rb090 hsize pl030 pb220a

Population db040 0.261 0.020 0.217 0.138 0.160
age 0.118 0.546 0.716 0.153

rb090 0.082 0.386 0.026
hsize 0.405 0.179
pl030 0.172

Real size, db040 0.337 0.025 0.256 0.153 0.162
Design 1 age 0.141 0.565 0.717 0.162

rb090 0.086 0.387 0.029
hsize 0.408 0.186
pl030 0.174

Relative db040 29.055 28.335 18.069 10.265 0.740
differences age 19.209 3.512 0.209 6.091
(in %) rb090 5.692 0.355 8.711

hsize 0.835 3.952
pl030 1.316

Real size db040 0.347 0.028 0.239 0.157 0.165
Design 2 age 0.142 0.560 0.716 0.162

rb090 0.080 0.388 0.027
hsize 0.404 0.188
pl030 0.176

Relative db040 32.810 41.592 10.129 13.667 3.091
differences age 20.100 2.631 0.121 6.142
(in %) rb090 −1.475 0.592 2.197

hsize −0.097 4.590
pl030 2.664

1% sample, db040 0.278 0.020 0.223 0.141 0.161
Design 1 age 0.123 0.549 0.716 0.153

rb090 0.082 0.385 0.027
hsize 0.406 0.182
pl030 0.171

Relative db040 6.352 1.480 2.951 1.640 0.577
differences age 4.048 0.611 0.029 0.524
(in %) rb090 0.532 −0.182 1.185

hsize 0.308 1.212
pl030 −0.062

1% sample, db040 0.277 0.021 0.221 0.140 0.161
Design 2 age 0.122 0.549 0.716 0.154

rb090 0.082 0.386 0.026
hsize 0.406 0.179
pl030 0.171

Relative db040 6.024 4.893 1.775 1.067 0.207
differences age 3.720 0.593 0.020 0.755
(in %) rb090 0.101 0.138 0.559

hsize 0.196 −0.065
pl030 −0.525



24

Table 7 Evaluation of personal net income based on the percentage of zeros, 5% quantile,
median, mean, 95% quantile and standard deviation. Values from the initial population are
compared to average results from 250 simulated populations for each of the four sampling
scenarios.

%Zeros 5% Median Mean 95% SD

Population 11.40 2719.73 15700.65 17130.72 35677.48 11390.32

Real size, MP 11.26 2669.72 15667.54 17064.57 35601.94 11232.09
Design 1 TR 11.28 3514.98 14770.39 16900.82 37305.08 11209.41

TN 11.28 4755.06 14990.06 17377.93 38028.43 10935.30

Relative MP −1.15 −1.84 −0.21 −0.39 −0.21 −1.39
differences TR −1.00 29.24 −5.92 −1.34 4.56 −1.59
(in %) TN −1.00 74.84 −4.53 1.44 6.59 −3.99

Real size, MP 11.44 2708.81 15665.23 17136.36 35826.75 11385.18
Design 2 TR 11.45 3397.59 14879.76 17097.54 38101.73 11540.92

TN 11.45 4743.06 15095.90 17610.83 38929.09 11278.78

Relative MP 0.38 −0.40 −0.23 0.03 0.42 −0.05
differences TR 0.45 24.92 −5.23 −0.19 6.79 1.32
(in %) TN 0.45 74.39 −3.85 2.80 9.11 −0.98

1% sample, MP 11.37 2720.79 15695.71 17113.44 35643.94 11279.51
Design 1 TR 11.37 3529.14 14834.87 16948.50 37324.55 11196.36

TN 11.37 4838.43 15049.16 17434.75 38057.47 10907.39

Relative MP −0.22 0.04 −0.03 −0.10 −0.09 −0.97
differences TR −0.19 29.76 −5.51 −1.06 4.62 −1.70
(in %) TN −0.19 77.90 −4.15 1.77 6.67 −4.24

1% sample, MP 11.36 2723.38 15699.97 17134.05 35661.53 11340.96
Design 2 TR 11.37 3406.91 14913.92 17085.76 37937.72 11455.55

TN 11.37 4810.99 15134.27 17628.18 38840.56 11211.61

Relative MP −0.31 0.13 −0.00 0.02 −0.04 −0.43
differences TR −0.25 25.27 −5.01 −0.26 6.34 0.57
(in %) TN −0.25 76.89 −3.61 2.90 8.87 −1.57

The proposed framework is applicable to a broad class of surveys and led to
excellent results in an application to EU-SILC. For simulation of personal net
income, using multinomial models combined with random draws from the re-
sulting categories and generalized Pareto tail modeling performed better than
two-step regression, but is computationally more expensive. The computa-
tion time of the multinomial models thereby strongly depends on the number
of categories used in the discretization. Concerning the two-step approach,
trimming combined with random draws from the residuals appeared to be fa-
vorable. Nevertheless, the choice of method also depends on the purpose. For
simulation studies in survey statistics, it is important not to favor any of the
investigated methods by the underlying data generation procedure in order to
avoid biased simulation results.
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Raghunathan T, Reiter J, Rubin D (2003) Multiple imputation for statistical disclosure
limitation. J Off Stat 19(1):1–16

R Development Core Team (2010) R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0

Reiter J (2009) Using multiple imputation to integrate and disseminate confidential micro-
data. Int Stat Rev 77(2):179–195

Rubin D (1993) Discussion: Statistical disclosure limitation. J Off Stat 9(2):461–468
Sarkar D (2008) Lattice: Multivariate Data Visualization with R. Springer, New York, ISBN

978-0-387-75968-5
Sarkar D (2011) lattice: Lattice Graphics. R package version 0.19-17
Simonoff J (2003) Analyzing Categorical Data. Springer, New York, ISBN 0-387-00749-0
Templ M, Alfons A (2010) Disclosure risk of synthetic population data with application

in the case of EU-SILC. In: Domingo-Ferrer J, Magkos E (eds) Privacy in Statistical



26

Databases, Lecture Notes in Computer Science, vol 6344, Springer, Heidelberg, pp 174–
186

Walker A (1977) An efficient method for generating discrete random variables with general
distributions. ACM Trans Math Softw 3(3):253–256

Weisberg S (2005) Applied Linear Regression, 3rd edn. Wiley, Hoboken, ISBN 0-471-66379-4


