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Compositional explanatory variables should not be directly used in a linear regression model
because any inference statistic can become misleading. While various approaches for this
problem were proposed, here an approach based on the isometric logratio (ilr) transformation
is used. It turns out that the resulting model is easy to handle, and that parameter estimation
can be done like in usual linear regression. Moreover, it is possible to use the ilr variables for
inference statistics in order to obtain an appropriate interpretation of the model.
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1. Introduction

Regression analysis belongs to the most important tools in statistical analysis.
Its goal is to explain the response variable Y using known explanatory variables
x1, . . . , xD. A linear regression model can be written in terms of a conditional
expected value as

E(Y |x) = β0 + β1x1 + · · ·+ βDxD, (1)

with unknown parameters β0, . . . , βD that need to be estimated, e.g., using the
standard least squares method. This approach is fully reasonable when both the
response Y and the covariates x = (x1, . . . , xD)′ carry absolute information (rep-
resented often by variables corresponding to physical units). In many practical sit-
uations, however, the explanatory variables describe rather relative contributions
of the components on the whole. In such a case, the sum of the variables (parts) is
not important and the only relevant information is contained in the ratios between
the parts. Usually, such data (called in the following compositional data or compo-
sitions [1]) are represented in proportions or percentages and are characterized by
a constant sum constraint (1 or 100, respectively). As a consequence, the sample

∗Corresponding author. Email: hronk@seznam.cz

ISSN: 0233-1934 print/ISSN 1360-0532 online
c© 2009 Taylor & Francis
DOI: 10.1080/0266476YYxxxxxxxx
http://www.informaworld.com



November 22, 2011 17:12 Journal of Applied Statistics accepted

2 K. Hron, P. Filzmoser, and K. Thompson

space of D-part compositions x = (x1, . . . , xD)′ is the simplex,

SD =

{
x = (x1, . . . , xD)′, xi > 0,

D∑
i=1

xi = κ

}
.

It can thus be seen that compositional data are by definition singular. In what
follows, under singular data we understand data with a singular covariance matrix.
The sum of the parts, κ, can in principle be chosen arbitrarily because only the
ratios of the parts contain the relevant information.

Historically, there were several approaches for regression models with composi-
tional explanatory variables. Considering compositional data as observations that
sum up to one was a starting point for so called experiments with mixtures [20, 21].
Linear combinations of the parts as well as canonical polynomials are considered,

E(Y |x) = β0 +
D∑

i=1

βixi, E(Y |x) = β0 +
D∑

i=1

βixi +
D−1∑
i=1

D∑
j=i+1

βijxixj ,

the latter mainly for avoiding the singularity of the compositions, arising from their
constant sum constraint, with obvious extensions to higher-degree polynomials.
The parameters are estimated by the usual least squares method, however, the
models are usually characterized by bad conditionality, thus, often some biased
alternative (like Ridge regression [14]) needs to be performed. With mixture models,
there have been many attempts to provide interpretations for the parameters of the
model. Obviously, the source of the difficulties with the interpretation lies in the
constant sum constraint; it is impossible to alter one proportion without altering
at least one of the other proportions.

A big advance in this area was achieved by Aitchison in the early eighties [1, 2] by
introducing the logcontrast, i.e. a term of the form β1 lnx1 + · · ·+ βD lnxD, where
the coefficients fulfill the condition β1+· · ·+βD = 0 in order to follow the definition
of compositions. Specifically, if any two coefficients in the linear combination are
1 and -1 and the remaining coefficients are zero, the logcontrast simplifies to a
logarithm of a ratio, the so called logratio. Linear and quadratic logcontrast models
(with the “logcontrast condition”

∑D
i=1 βi = 0) are defined as

E(Y |x) = β0 +
D∑

i=1

βi lnxi, E(Y |x) = β0 +
D∑

i=1

βi lnxi +
D−1∑
i=1

D∑
j=i+1

βij

(
ln
xi

xj

)2

.

(2)
The parameters within logcontrast models are again estimated using the least
squares method. The estimation of the parameters still leads to numerical diffi-
culties because of the large number of parameters (in the quadratic case), and
the constraint on the parameters that needs to be considered. The problem of the
interpretation of the parameters remains, especially in more complex models.

Compositional data do not follow the usual Euclidean geometry, but they are de-
scribed by the so-called Aitchison geometry on the simplex [4, 18]. The properties
of this geometry are described in detail in various papers (see, e.g., [3, 7, 9, 10, 15]).
Let us just mention that the Aitchison geometry follows the rules of a (D − 1)-
dimensional Euclidean space, and it is thus possible to construct an orthonormal
basis (or a generating system) and to express the compositions therein. Hence,
it is possible to find an isometric transformation to the usual Euclidean geome-
try. Because most statistical methods rely on the usual Euclidean geometry, the
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compositions just need to be moved first isometrically from the simplex with the
Aitchison geometry to the standard real space with the Euclidean one, using an
appropriate logratio transformation that results in a real vector of logcontrasts. In
the context of linear models with compositional explanatory variables the property
of isometry is not directly necessary. Rather, the orthonormality of the resulting
coordinates plays an important role. However, the orthogonality is a consequence
of a regular isometric transformation (ilr transformation).

¿From the point of view of the isometry, the way forward might be provided by
the centred logratio (clr) transformation [1], defined for a composition x as

(y1, . . . , yD)′ =

ln
x1

D

√∏D
i=1 xi

, . . . , ln
xD

D

√∏D
i=1 xi

′ , (3)

that results in a model

E(Y |x) = β0 +
D∑

i=1

βiyi.

The clr transformation corresponds to coordinates with respect to a generating
system on the simplex. For this reason, the resulting clr variables are singular
(
∑D

i=1 yi = 0) and the regression parameters should thus be estimated using the
theory of singular linear models [16]. In addition, also here the interpretation of
the regression coefficients could be misleading. The reason is that each clr vari-
able explains the logratios between the part in the nominator and all parts in the
composition, including itself. Thus, the clr variables as a whole explain some ratios
more than once (which is another reason for the resulting singularity); see the next
section for further discussion. A further problem with the clr transformation is its
so-called subcompositional incoherence: Taking a subset of the parts would result
in a linear regression model which might be incompatible with the full model with
clr variables. A subset would alter each clr variable because all the parts in the
currently used subset are contained in the denominator of (3).

All problems with the above mentioned models are hidden in the fact that the
standard (unconstrained) linear model is meaningful if and only if the compo-
sitional covariates are expressed in an orthonormal basis on the simplex (with
respect to the Aitchison geometry). Such a basis is given by an isometric logratio
(ilr) transformation [8], and this approach will be studied in detail in this paper.
The next section provides the definition and some basic properties of the ilr trans-
formation. Section 3 introduces the linear regression model using ilr coordinates,
and Section 4 shows the advantages of the proposed regression model for testing
hypotheses about the influence of the relative contributions for explaining the re-
sponse variable. The approach is illustrated with a data example in Section 5, and
a discussion concludes the paper.

2. Properties of the isometric logratio transformation

An isometric logratio transformation seems to be the only way to achieve a re-
gression model without the need for constraints on the parameters, and with a
meaningful interpretation of the unknown parameters. The idea is to construct
an orthonormal basis on the simplex, and to use the new coordinates in a stan-
dard linear regression model. Naturally, there are several ways to construct such
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a basis, and in the context of compositional data this can be done with a method
called sequential binary partitioning [9]. The result are coordinates that can be
interpreted in terms of the involved compositional parts; a pre-knowledge on the
studied problem usually leads to their better understanding [5, 6]. One choice which
is used in different contexts ([8, 11, 15]) results in a (D−1)-dimensional real vector
z = (z1, . . . , zD−1)′, where the components are defined as

zi =

√
D − i

D − i+ 1
ln

xi

D−i

√∏D
j=i+1 xj

, i = 1, . . . , D − 1. (4)

The inverse transformation of z to the original composition x is then given, before
closure, by

x1 = exp
(√

D − 1√
D

z1

)
,

xi = exp

− i−1∑
j=1

1√
(D − j + 1)(D − j)

zj +
√
D − i√

D − i+ 1
zi

 , i = 2, . . . , D − 1,

xD = exp

−D−1∑
j=1

1√
(D − j + 1)(D − j)

zj

 .

The variable z1 in (4) represents all the relevant information about the compo-
sitional part x1, because it explains all the ratios between x1 to the other parts
of x [9, 13, 15]. Further, it is easy to see that if we were to permute the parts
x2, . . . , xD in (4), the interpretation of z1 remains unaltered. Even more, note that
the interpretation of z1 holds also when the remaining balances are chosen arbitrary
according to a sequential binary partition of the subcomposition x2, . . . , xD [9] or
another choice of the orthonormal basis on the simplex; however, the presented
form of the balances seems to be most straightforward. Note also that there exists
the linear relation y1 =

√
D

D−1z1 between the first clr and ilr variables, and thus
the same interpretation as for z1 holds also for y1. Obviously, we cannot conclude
that z2 explains all the relative information about x2 (in contrast to the second
clr variable), because the part x1 is not contained therein. In fact, z2 explains the
remaining ratios concerning x2 (analogously for z3, . . . , zD−1), and consequently,
each logratio is uniquely explained by one ilr variable.

It is now straightforward to construct another orthonormal basis where the
first ilr coordinate explains the compositional part we are interested in: It is
sufficient to permute the indices in formula (4) in such a way that the part
of interest plays the role of x1. Consequently, for focusing on the lth part, for
l = 1, . . . , D, we need to construct D different ilr transformations, where the
D-tuple (x1, . . . , xD) in (4) is replaced, e.g., by (xl, x1, . . . , xl−1, xl+1, . . . , xD) =:
(x(l)

1 , x
(l)
2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D ). This results in the ilr transformation

z
(l)
i =

√
D − i

D − i+ 1
ln

x
(l)
i

D−i

√∏D
j=i+1 x

(l)
j

, i = 1, . . . , D − 1, (5)

and obviously we have z(1)
i = zi for i = 1, . . . , D − 1, see (4).
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Note that two different ilr transformations, resulting as expressions of x in differ-
ent orthonormal bases on SD, are orthogonal transformations of each other [8]. This
fact is important in proofs concerning the invariance of the results of regression
models on the choice of the orthonormal basis for the ilr transformation.

3. Linear regression with ilr coordinates

Taking the above considerations into account, a natural way for designing a linear
model between Y and x is to use the ilr transformation z of the composition x by
using Equation (4) for example. One would then obtain a standard multiple linear
regression of Y on the explanatory variables z = (z1, . . . , zD−1)′ as

E(Y |z) = γ0 + γ1z1 + · · ·+ γD−1zD−1. (6)

The regression coefficients γ = (γ0, γ1, . . . , γD−1)′ can be estimated by the least
squares method, where no constraints need to be imposed on the regression co-
efficients. The intercept term γ0 is directly related to the response Y , it is not
connected to the choice of the orthonormal basis on the simplex. Since the re-
maining regression coefficients are directly connected to the ilr coordinates, their
interpretation needs to be adjusted accordingly [9]. As mentioned above, see (5),
we can consider the lth ilr basis, for l = 1, . . . , D, leading to a regression model

E(Y |z) = γ0 + γ
(l)
1 z

(l)
1 + · · ·+ γ

(l)
D−1z

(l)
D−1. (7)

Due to the orthogonality of different ilr bases, the intercept term γ0 (as well as the
model fit) remains unchanged. Since z(l)

1 explains all the relative information about
part x(l)

1 , the coefficient γ(l)
1 can be assigned to this part. The remaining regression

coefficients are not straightforward to interpret since the assigned regressor vari-
ables do not fully represent one particular part. Thus, the only way to interpret
the role of each compositional part for explaining the response Y is to consider
D different regression models according to (7) by taking l ∈ {1, . . . , D}, and to
interpret the coefficient γ(l)

1 , representing part x(l)
1 .

In some applications it is possible to use another sequential binary partition for
constructing orthonormal coordinates, different from those used in model (7). These
orthonormal coordinates are describing certain relations between the compositional
parts, and they have a unique interpretation. Accordingly, when using them in the
regression model (6), all coefficients have a direct interpretation. However, this
approach usually assumes a deeper a-priory knowledge of the underlying data and
the relations between the variables.

Finally, note that comparing with the Aitchison’s log-contrast models (2), each
ilr variable is a log-contrast as well.

Having a sample with n observations of the response and of the explanatory
variables, (x1, Y1), . . . , (xn, Yn), we can write the sample version of the linear model
(6) as

Yi = γ0 + γ1zi1 + · · ·+ γD−1zi,D−1 + εi, i = 1, . . . , n, (8)

where the explanatory variables zi = (1, zi1, . . . , zi,D−1)′ represent the ilr transfor-
mation of xi (including 1 for the intercept). The usual basic assumptions on the
random variables εi (uncorrelated, with the same variance σ2) are assumed. With
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the notation Y = (Y1, . . . , Yn)′, the n×D design matrix Z = (z1, . . . , zn)′, and the
error term ε = (ε1, . . . , εn)′, model (8) can be written as

Y = Zγ + ε. (9)

The regression coefficients γ can be estimated by the least squares (LS) method,
resulting in

γ̂ = (Z′Z)−1Z′Y. (10)

Note that a regression model with the ilr variables z(1)
1 , . . . , z

(D)
1 would not be ap-

propriate because it results in singularity (remember that z(1)
1 , . . . , z

(D)
1 are just

constant multiples of the clr variables). Concretely, here the corresponding design
matrix of the regression model would have not full rank in columns and, conse-
quently, it is not possible to use formula (10) for parameter estimation. Although
one can employ alternative tools like singular value decomposition in order to obtain
the desired estimators, ignoring the above facts would lead to serious restrictions
of the quality of the estimation [12, 16].

Example: An illustration of different approaches is shown in Figure 1 for a small
data set that can still be visualized. We consider the average expenditures of per-
sons from European Union countries (year 2008) on food and for restaurants, which
form the two explanatory variables. Obviously, these predictor variables are of com-
positional nature, since devoting more money to one part usually means that less
money is left for the other part. The response variable is the GDP (gross domes-
tic product) in the year 2008 of the same countries. Since Luxembourg has very
extreme values, it will be excluded in this illustration. The data are available at
http://epp.eurostat.ec.europa.eu/. The upper left panel of Figure 1 shows the
original data in a 3-D plot, together with an LS regression plane resulting from a
regression of the response on the original values of the predictors. Below is a plot
of the response variable GDP versus the predicted response using this model. Ob-
viously, the prediction quality is very poor, and the structure in the plot suggests
that the linear model might not be appropriate. The middle upper and lower panel
show the LS regression of GDP on the ratio of food to restaurants, as well as the
response versus the prediction. A huge outlier (RO - Romania) is visible that is
responsible for levering the LS line. Finally, the right upper and lower panel show
the results of LS regression of GDP on the ilr transformed response variables. Note
that according to (4), the ilr transformation for two parts x1 and x2 simplifies to
z1 = ln(x1/x2)/

√
2. The linear regression model seems to be appropriate. Surely,

this simple model is not very useful for predicting the GDP of the countries, but
the example shows already the problems with the geometry of the space spanned
by the explanatory variables. For the special case of two compositional predictor
variables, the approaches with polynomials or logcontrast models would lead to
comparable results in terms of model fit.

4. Inference in models with compositional explanatory variables

As in the standard multiple linear regression model, one is interested in testing
hypotheses on the parameters γ0, γ1, . . . , γD−1 in model (9). The required assump-
tion for performing such tests is ε ∼ Nn(0, σ2I), i.e., in addition to the previous
assumptions, normal distribution is required. The significance of the individual
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Figure 1. Illustration of different approaches for regressing the GDP on expenditures on food and restau-
rants measured in the countries of the EU. Shown are LS regression models for different transformations of
the explanatory variables (upper plots), and the plot of the response versus the prediction (lower plots). Left
column: regression for the original variables; middle column: regression on the ratio of food to restaurants;
right column: regression on the ilr transformed explanatory variables.

regression parameters can be tested using the following statistics, see, e.g., [22],

T0 =
γ̂0√

S2{(Z′Z)−1}0,0

; Ti =
γ̂i√

S2{(Z′Z)−1}i,i
, i = 1, . . . , D − 1, (11)

where S2 = (Y − Zγ̂)′(Y − Zγ̂)/(n−D) is an unbiased estimator of the residual
variance σ2, and {(Z′Z)−1}i,i denotes the (i+ 1)-th diagonal element of the matrix
(Z′Z)−1, for i = 0, . . . , D− 1. Assuming the validity of the null hypothesis, T0 and
Ti follow a Student t-distribution with n−D degrees of freedom.

As already discussed in Section 2, we are usually not interested in testing hy-
potheses for the parameters γ2, . . . , γD−1, because the corresponding predictor ilr
variables are not straightforward to interpret. Thus, the focus is on the test statis-
tics T0 and T1 which are used for testing the significance of the parameters γ0 and
γ1, or, more generally, of the parameters γ0 and γ(l)

1 , for l = 1, . . . , D, see (7). Here
special interest is on the parameter γ(l)

1 belonging to the coordinate z(l)
1 that carry

all the relative information on the original part xl. Consequently, the goal of the
testing procedure is to find out, if a subcomposition (arising when xl is omitted)
of the given compositional covariate can replace the original composition in the
regression model. Of course, one should be aware of the fact that, according to
the definition of compositions, all the relevant information in a composition is con-
tained in the ratios between the parts; as a consequence, the testing procedure (on
significance of the chosen compositional part through the corresponding parameter
γ

(l)
1 ) would produce different results when moving from the original compositional

covariate to a subcomposition. In addition, the above considerations explain the key
point, why the proposed choice of the balances (5) is of special i! mportance here:
they are directly related to the inclusion or exclusion of a part in the explanatory
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sub-composition. Finally, an alternative interpretation of the testing techniques is
also to see which compositional parts have a significant influence on the response
variable; the results of testing on γ0 and γ

(l)
1 , l = 1, . . . , D, from models (7) using

statistics (11) can be summarized in a table.
Here the main point that needs to be considered is the invariance of the test

statistics T0, T1, used for testing the significance of the parameters γ0 and γ
(l)
1 in

(7), under relevant changes in the ilr basis. Although, for the sake of simplicity, in
the following theorems only the established ilr transformations (5) are taken, the
situation might be considered as a more general one. If we construct an orthogonal
subspace to the first element of the basis, corresponding to coordinate z(l)

1 , it is
possible to take also any other D−2 variables, coefficients of an orthonormal basis
of the subcomposition x1, . . . , xl−1, xl+1, . . . , xD. Such a choice still guarantees that
the resulting variables represent an isometric logratio transformation which enables
to decompose the total variance of the composition [18]. However, note that it is
possible to prove the following theorems also without the assumption of orthonor-
mality of the basis of the subspace, in other words, for logcontrasts z∗2 , . . . , z

∗
D−1

that form an isomorphism between the simplex SD−1 and a (D − 2)-dimensional
real space. Here, however, it is no more possible to obtain a decomposition of the
total variance of the composition as before. This general setting is followed in the
Appendix, where the proofs are provided.

Theorem 4.1 Consider the linear model given in (7). T0 is the test statistic for
testing H0: γ0 = 0 against H1: γ0 6= 0, and T1 is the test statistic for testing H(l)

0 :
γ

(l)
1 = 0 against H(l)

1 : γ(l)
1 6= 0, for a specific l ∈ {1, . . . , D}.

(a) The test statistics T0 and T1 are invariant with respect to a change of the
order of x(l)

2 , . . . , x
(l)
D in (5). As a consequence, the invariance on the choice of the

coordinates holds also for the predicted values of the regression model;
(b) The test statistic T0 is invariant with respect to a change of the order of
x

(l)
1 , . . . , x

(l)
D in (5).

Another important task for inference in regression analysis is whether the values
of Y at all depend on values of the ilr coordinates z1, . . . , zD−1. In other words, we
want to test whether all the parameters γi, for i = 1, . . . , D− 1, are equal to 0. We
may consider the statistic

F =
1

(D − 1)S2
γ̂ ′∗{(Z′Z)−1}(−1,−1)γ̂∗ (12)

where γ̂∗ = (γ̂1, . . . , γ̂D−1)′ and {(Z′Z)−1}(−1,−1) denotes that the first row and the
first column were excluded from the matrix (Z′Z)−1. If the null hypothesis holds,
this test statistic follows the Fisher F distribution with D − 1 and n −D degrees
of freedom.

Also here the invariance of F under the choice of the orthonormal basis is of
primary interest. The proof of the following theorem can also be found in the
Appendix.

Theorem 4.2 The test statistic F is invariant with respect to a change of the order
of x(l)

1 , . . . , x
(l)
D in (5).

Finally, the quality of fit of the regression model (8) can be verified by the
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coefficient of determination R2, given as

R2 =
∑n

i=1(Ŷi − Y )2∑n
i=1(Yi − Y )2

, (13)

where Y = 1
n

∑n
i=1 Yi, and (Ŷ1, . . . , Ŷn)′ = Zγ̂ are predicted values of the response

variable. As usual, the statistic R2 takes on values in the interval [0, 1], where values
close to one indicate a strong linear relation between the explanatory variables to
the response. Note that the above mentioned statistic F in (12) can be expressed
in terms of the coefficient of determination R2,

F =
R2

1−R2

n−D
D − 1

.

5. Examples

The following examples aim to provide more insight into the practical usage
of regression with ilr-transformed regressor variables. The method has been im-
plemented as function lmilr in the R package robCompositions, which can
be freely downloaded from CRAN (the Comprehensive R Archive Network,
http://cran.R-project.org), see [19]. As far as possible, a comparison with the
standard regression approach based on the original data will be made.

5.1 Relation between cancer and age structure

We consider as the response variable Y the number of hospital discharges of in-
patients on neoplasms (cancer) per 100 000 inhabitants (year 2007). This response is
provided for the European Union countries (except Greece, Hungary and Malta) by
Eurostat (http://www.ec.europa.eu/eurostat). As explanatory variables we use
the age structure of the population in the same countries (year 2008). The age struc-
ture consists of three parts, age <15, age 15-60, and age >60 years, and they are ex-
pressed as percentages on the overall population in the countries. The data are pro-
vided by the United Nations Statistics Division (http://unstats.un.org/unsd).
Regressing the response variable on the age structure alone may not be of primary
interest for practitioners, and the resulting model might not be well suited for pre-
diction purposes. Still, the model can give insights, because cancer is known to be
dependent on the age of the persons. Moreover, using these regressor variables is
technically interesting, because they sum up to 100% and thus result in perfect
data singularity.

Figure 2 shows the original age variables drawn against the response variable. A
regression in the original space would not make sense, and here it would not even
be possible because of the singularity problem.

Table 1 shows the result from regression with ilr coordinates, in the form of the
output of our R routine lmilr. The output is in the same style as the usual output
from the R function lm for standard least-squares regression. The first block in the
result listing refers to the parameters of the regression model, i.e. to the parameters
γ0, γ(1)

1 , γ(2)
1 and γ

(3)
1 according to model (7) for l = 1, 2, 3. The columns corre-

spond to the estimated regression parameters (Estimate), their standard errors
(Std. Error), the value of the test statistic (t value) according to equation (11),
and the corresponding p-value (Pr(>|t|)) for the test. It is important to emphasize
that in Table 1 the results of three regression models are given, because in each of
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Figure 2. Plots of the hospital discharges of in-patients on neoplasms (cancer) per 100 000 inhabitants
(vertical axes) versus the compositional parts defining the age structure in the 24 European Union member
states.

them we focus just on the estimation (and testing) of parameters corresponding to
the first coordinate z(l)

1 and the intercept parameter. This is the main difference
from the standard case, where each explanatory variable in the regression has a
straightforward interpretation. Due to Theorem 4.1, the estimated value of the pa-
rameter γ0 (and the corresponding test statistic T0) can be computed using any of
the above models, the same holds also for the test statistic F (Theorem 4.2).

The interpretation of the values of the estimated parameters γ(l)
1 appears from

the form of the coordinates z(l)
1 =

√
D−1

D ln xl

D−1
√Q

j 6=l xj

, whose values reflect besides

the previously mentioned interpretation also the logarithm of the ratio between the
part of interest and the geometric mean of the remaining parts in the composition
(up to a constant that tends to 1 for an increasing number of parts D), i.e. the
logratio of the part xl and an average of the remaining parts. Consequently, the
interpretation can be done in an analogous way as it is done in standard regression,
namely, the value of the estimate indicates how much the response variable changes
in average by a unit change of the above logratio representing the compositional
part of interest.

Accordingly, the age groups < 15 and > 60 have significant contribution for
explaining the response, where age group < 15 has negative influence and age
group > 60 positive influence (see the signs of the estimated parameters). This
outcome corresponds also to the intuition, because the higher the relative amount
of elderly people, the higher the occurrence of cancer in the society will be, and
for a higher relative amount of young people the cancer occurrence is expected to
be lower. Further below in the listing of Table 1 there is information of the model

Table 1. Results from regression of the cancer variable on the ilr coordinates of the age structure. For detailed

explanations see text.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -357.2 693.5 -0.515 0.6119
ilr(Age <15) -2275.8 872.8 -2.607 0.0164
ilr(Age 15-60) 965.7 733.7 1.316 0.2023
ilr(Age >60) 1310.2 581.7 2.252 0.0351

Residual standard error: 460.4 on 20 degrees of freedom
Multiple R-squared: 0.2694, Adjusted R-squared: 0.1998
F-statistic: 3.872 on 2 and 21 DF, p-value: 0.03704

fit. With about 27%, the coefficient of determination is rather low, which can also
be expected because the age structure alone might just be indicative for the trend
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of cancer, but will not be able to fully explain the response. Still the F statistic
shows that explanatory variables and response have significant relation.

A naive approach for least-squares regression with the original explanatory vari-
ables would be to use only two of the three variables, arguing that due to the
constant sum of 100%, any two variables contain the same information as all three
age variables. Using the explanatory variables age <15 and age >60 years result
in the output presented in Table 2. While the coefficient of determination is about
the same as before, now only age <15 is significant. One could also use other two

Table 2. Results from regression of the cancer variable on the original variables age <15 and age >60 years. For

explanations see text.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3310.88 1494.57 2.215 0.0379
Age <15 -132.18 56.50 -2.340 0.0293
Age >60 5.69 19.87 0.286 0.7774

Residual standard error: 463.2 on 21 degrees of freedom
Multiple R-squared: 0.2605, Adjusted R-squared: 0.1901
F-statistic: 3.699 on 2 and 21 DF, p-value: 0.04206

explanatory variables, like age <15 and age 15-60 years. The result is shown in
Table 3. It is interesting to note that the coefficient of determination is unchanged,
but also that the coefficient for age >60 years in Table 2 is the same as that for
age 15-60 years in Table 3, with a different sign, and that the corresponding test
results in the same p-value. This relation becomes clearer by considering the model
corresponding to Table 2, E(Y |x) = β0 + β1x1 + β3x3. Since the explanatory vari-
ables sum up to 100 (percent), we have x3 = 100− x1 − x2, and the model can be
rewritten as E(Y |x) = (β0 + 100β3) + (β1 − β3)x1 − β3x2. Accordingly, the param-
eter estimates and the inference statistics become useless, and an interpretation of
these results is highly incorrect.

Table 3. Results from regression of the cancer variable on the original variables age <15 and age 15-60 years.

For explanations see text.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3879.86 1101.46 3.522 0.0020
Age <15 -137.87 51.49 -2.678 0.0141
Age 15-60 -5.69 19.87 -0.286 0.7774

Residual standard error: 463.2 on 21 degrees of freedom
Multiple R-squared: 0.2605, Adjusted R-squared: 0.1901
F-statistic: 3.699 on 2 and 21 DF, p-value: 0.04206

5.2 Relation between life expectancy and GDP groups

We consider the average life expectancy at birth for women as the response variable
Y , and different compositions of the gross domestic product (GDP) as explanatory
variables. The data are taken from http://unstats.un.org/unsd for the Euro-
pean Union member states. Luxembourg is an outlier and will thus not be used
here. Note that life expectancy at birth is an estimate of the number of years to
be lived by a female newborn, based on current age-specific mortality rates. Ob-
viously, there should be some influence of this characteristic on factors concerning
the economic position of the member states. The GDP compositions are based on
the international standard industrial classification (ISIC) of all economic activities,



November 22, 2011 17:12 Journal of Applied Statistics accepted

12 K. Hron, P. Filzmoser, and K. Thompson

and they are given for the following six categories: agriculture, hunting, forestry,
fishing (ISIC A-B, x1); mining, manufacturing, utilities (ISIC C-E, x2); construc-
tion (ISIC F, x3); wholesale, retail trade, restaurants and hotels (ISIC G-H, x4);
transport, storage and communication (ISIC I, x5); other activities (ISIC J-P, x6).
The last category ISIC J-P contains activities on education, health and social work
as well as other community, social and personal service activities. Accordingly, this
category seems to be important for explaining variability of the response.

The original explanatory variables are expressed in percentages. Aside from the
fact that we deal with compositions, this would cause a singularity problem when
employing least-squares regression directly on the raw data. However, in order to
make a comparison with a regression approach based on the raw data, we can mul-
tiply the values by the GDP per capita (expressed in USD) to obtain total amounts
(per capita) devoted to the six GDP categories. Note that for the compositional
approach such a multiplication does not have any influence on the final results. Ta-
ble 4 shows the resulting output when applying least-squares regression to the ilr
coordinates of the GDP categories, while Table 5 provides the results when using
the raw untransformed data. For the ilr approach we obtain the expected result
that x6 is significant. In addition, for a significance level of 5%, also x5 contributes
significantly, which also seems to be plausible. On the other hand, according to Ta-
ble 5 none of the original variables is significant. The coefficient of determination
is even higher when using the raw data.

Table 4. Results from regression of the life expectancy for women on the ilr coordinates of the GDP categories.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 73.1982 1.9914 36.757 < 2e-16
ilr(x1) -0.7836 1.0642 -0.736 0.470
ilr(x2) -0.6999 1.3312 -0.526 0.605
ilr(x3) 0.5001 1.5373 0.325 0.748
ilr(x4) 0.0834 2.1237 0.039 0.969
ilr(x5) -4.3847 2.0353 -2.154 0.044
ilr(x6) 5.2847 1.8184 2.906 0.009

Residual standard error: 1.798 on 19 degrees of freedom
Multiple R-squared: 0.5958, Adjusted R-squared: 0.4947
F-statistic: 5.896 on 5 and 20 DF, p-value: 0.001664

Table 5. Results from regression of the life expectancy for women on the original variables of the GDP categories.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.726e+01 1.097e+00 70.413 <2e-16
x1 2.208e-05 1.844e-05 1.198 0.246
x2 -1.281e-06 1.964e-06 -0.652 0.522
x3 -2.259e-06 6.106e-06 -0.370 0.715
x4 6.150e-06 4.144e-06 1.484 0.154
x5 -6.935e-06 7.959e-06 -0.871 0.394
x6 1.906e-06 1.178e-06 1.618 0.122

Residual standard error: 1.738 on 19 degrees of freedom
Multiple R-squared: 0.6412, Adjusted R-squared: 0.5278
F-statistic: 5.658 on 6 and 19 DF, p-value: 0.001631

Figure 3 shows the plots of the response variable versus the predicted response,
using the ilr regression model (left) and the model for the original data (right). The
structure in both plots is similar. It is interesting to see two groups, corresponding
to the former so-called Eastern and Western European countries. The quality of
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fit of both models is comparable, and from that point of view one could not give
preference to any of the models. The big difference, however, is the interpretation
of the models using the inference statistics shown in Tables 4 and 5: the results
based on the original data are misleading because the data are not represented in
the usual Euclidean space.
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Figure 3. Response variable versus the predicted response, using the ilr regression model (left) and the
model for the original data (right).

6. Discussion

Regression with compositional explanatory variables can be misleading if the orig-
inal untransformed data are directly used in the regression model. The main prob-
lem with this approach is the geometry: Compositional data are not represented in
the usual Euclidean space, but in the so-called Aitchison geometry on the simplex.
Since there is a non-linear relation between the usual Euclidean and the Aitchi-
son geometry, linear regression in the original data space would correspond to a
non-linear regression in the Euclidean space, and vice versa. While the user might
not be aware of this non-linearity by using the original explanatory variables, the
resulting model might even have a better fit than a model for transformed data.
The important point, however, is the interpretation of the model, and in particular
the inference statistics for the regression parameters of the model, which is only
valid if the data are represented in the appropriate Euclidean space.

For transforming the Aitchison geometry to the usual Euclidean space, the iso-
metric logratio (ilr) transformation has the most preferable properties among all
logratio transformations. In contrast to the centered logratio (clr) transformation,
it avoids data singularity, which is an important issue in regression. A disadvan-
tage of the ilr approach, however, is the difficulty with interpreting the newly
constructed variables. Therefore, it is crucial how the ilr transformation is chosen.
Here we propose to select the ilr basis in such a way that the first basis vector
coordinate contains all the relative information about one particular compositional
part. Hence, the parameter estimation and the inference statistic for this parameter
fully refer to this part. The remaining ilr variables are used for regression, but they
are not useful for the interpretation, because they cannot be assigned to one single
compositional part. Thus, in order to enhance interpretability, another ilr basis



November 22, 2011 17:12 Journal of Applied Statistics accepted

14 REFERENCES

can be chosen, where again the first ilr coordinate contains all information about
another specific part. This can be done for each explanatory variable. Since the
different ilr transformations are orthogonal rotations of the corresponding bases,
the fit of each model is exactly the same.

The proposed approach can be used in a much broader context: Since the con-
tribution of each explanatory variable in the model can be estimated, this ap-
proach is suitable for variable selection techniques such as stepwise variable selec-
tion [22]. Furthermore, since the residuals are non-compositional values, not only
least-squares estimation, but also other objective functions for the residuals could
be used, like robust regression [17]. Outliers in the response variable can be treated
as in the usual case, but outliers in the explanatory variables need to be treated
from a compositional point of view. We will leave these topics for future research.

Acknowledgements The authors are grateful to helpful comments and sugges-
tions of the referee. This work was supported by the Council of the Czech Govern-
ment MSM 6198959214.

References

[1] Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, London.
[2] Aitchison J, Bacon-Shone J (1984) Log contrast models for experiments with mixtures. Biometrika

71(2):323-330.
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7. Appendix

Proof of Theorem 4.1: Without loss of generality we set l = 1, and thus we refer to
the notation used in Equation (8) with the ilr basis defined in (4).
(a) The change of the order of x2, . . . , xD in (4) corresponds to a change of the
orthonormal basis on the simplex [8], i.e., the design matrix Z is multiplied from
the right-hand side by a D ×D orthogonal matrix

P =

1
1

P1

 ,

with values of one in the first two entries of the diagonal, a (D − 2) × (D − 2)
orthogonal matrix P1, and zeros elsewhere. We obtain P′P = PP′ = ID (where
ID stands for identity matrix of order D). Even more, it is also possible to choose
coordinates of a non-orthonormal basis to express the subcomposition x2, . . . , xD

therein, like the additive logratio coordinates [1]. As a consequence, the matrix P
looses the property of orthogonality, which, however, does not restrict the consid-
erations below.

Using the relation

[(ZP)′ZP]−1(ZP)′Y = P−1(Z′Z)−1(P′)−1P′Z′Y = P−1γ̂

we can see that the values of the estimates γ̂0, γ̂1 and S2 as well as the first and
second diagonal elements of the matrix (Z′Z)−1 in (11) remain unchanged under
the mentioned regular affine transformation. It immediatelly follows that for the
statistics T0 and T1 the requested invariance is fulfilled. Finally, an obvious relation
ZPP−1γ̂ = Zγ̂ holds, i.e., the fitted linear regression model is equal irrespective
to the chosen basis (orthogonal or not).

(b) The proof processing is the same as before, where the matrix P is replaced by

Q =
(

1
Q1

)
,

with a (D − 1) × (D − 1) regular matrix Q1 (thus, P is a special case of the
matrix Q). The invariance of γ̂0, S2, of the first diagonal element of (ZZ)−1, and
consequently also of the statistic T0 is obvious. �

Proof of Theorem 4.2:
To show that the F statistic is invariant under the choice of the orthonormal basis
coming from a permutation of x1, . . . , xD in (4), or, more generally, under a change
of any basis on the simplex (orthonormal or not), is proved analogously as in
Theorem 4.1. The design matrix Z is again multiplied by the regular matrix Q,
thus from (12) we obtain that

γ̂ ′∗Q1Q−1
1 {(Z

′Z)−1}(−1,−1)(Q
′
1)−1Q′1γ̂∗ = γ̂ ′∗{(Z′Z)−1}(−1,−1)γ̂∗

and the proof is complete. �


