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Abstract

Compositional data–and most data in geochemistry are of this type–carry

relative rather than absolute information. For multivariate outlier detection

methods this implies that not the given data but appropriately transformed

data need to be used. We use the isometric logratio (ilr) transformation

that seems to be generally the most proper one for theoretical and practical

reasons. In this space it is difficult to interpret the outliers, because the

reason for outlyingness can be complex. Therefore we introduce tools that

support the interpretation of the outliers by representing the multivariate

information in biplots, maps, and univariate scatter plots.
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1. Introduction1

In many practical applications from geosciences one has to deal with com-

positional data, i.e. with multivariate observations describing quantitatively

the parts of some whole. Thus, their components carry exclusively relative

information between the parts (Aitchison, 1986). Typically these observa-

tions are expressed as data with a constant sum constraint like proportions,

percentages, or mg/kg. Standard statistical methods usually fail when they

are applied directly to compositional data (Filzmoser and Hron, 2008; Filz-

moser et al., 2009; Hron et al., 2010). Many authors appear to be under

the impression that the main reason lies in a non-normal distribution of the

samples (for example, of chemical elements in a rock) and thus recommend to

apply a logarithmic transformation in order to achieve normality (Reimann

et al., 2008) of the data set. Depending on the transformation chosen, nor-

mality can often be reached so that the data pass a statistical test. However,

the reality is more severe. The original data follow in fact another geometry

(called usually the Aitchison geometry, see, e.g., Egozcue and Pawlowsky-

Glahn (2006) for details) on the sample space of compositions, the simplex,

defined for a D-part composition x = (x1, . . . , xD)′ as

SD = {x = (x1, . . . , xD)′, xi > 0, i = 1, . . . , D,
D∑

i=1

xi = κ}.

The positive constant κ stands for 1 in case of proportions, 100 (percentages)2

or 106 (mg/kg).3

Due to the fact that geochemical data follow the Aitchison geometry,4

standard statistical methods that rely mostly on the Euclidean geometry5

cannot be used for raw compositional data. Whether or not the data follow6
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a normal distribution is of no importance at all. To transform the data to7

the Euclidean space, the family of log-ratio transformations from the simplex8

SD to the Euclidean real space was proposed. Only following such a trans-9

formation the use of the standard statistical methods is possible. The three10

main types of this family of transformations are: the additive logratio (alr),11

the centered logratio (clr), and the isometric logratio (ilr) transformation.12

alr (Aitchison, 1986) is simple and could be used in the context of outlier13

detection. However, it is not recommended because it does not result in14

an orthogonal basis system, which is necessary for diagnostic tools following15

outlier detection. clr (Aitchison, 1986) results in data singularity, which is in16

conflict with the usual tools for outlier detection. ilr (Egozcue et al., 2003) is17

recommended because it forms a one-to-one relation between the Aitchison18

geometry on the simplex and the standard Euclidean geometry with excellent19

geometrical properties.20

The D − 1 ilr variables are coordinates of an orthonormal basis on the21

simplex (with respect to the Aitchison geometry), thus a proper choice of the22

basis seems to be crucial for their interpretation. Here the big step ahead rep-23

resents the sequential binary partition procedure (Egozcue and Pawlowsky-24

Glahn, 2005) that enables an interpretation of the orthonormal coordinates25

in the sense of balances between groups of compositional parts. Additionally,26

each ilr variable explains all the log-ratios, i.e. terms of type ln(xi/xj), i, j =27

1, . . . , D, between parts of the corresponding groups (Fǐserová and Hron,28

2010); conversely, each log-ratio in the composition is exclusively explained29

by one balance. This point of view seems to be meaningful, because the30

definition of compositions implies that the only relevant information is con-31
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tained in (log-)ratios of compositional parts. Although the sequential binary32

partition can also be made-to-measure for the concrete geochemical prob-33

lem (Buccianti et al., 2008), in practice the following D choices of the or-34

thonormal bases seem to be the most useful (Egozcue et al., 2003; Hron et35

al., 2010). Explicitely, we obtain (D − 1)-dimensional real vectors z(l) =36

(z
(l)
1 , . . . , z

(l)
D−1)

′, l = 1, . . . , D,37

z
(l)
i =

√
D − i

D − i+ 1
ln

x
(l)
i

D−i

√∏D
j=i+1 x

(l)
j

, i = 1, . . . , D − 1, (1)

where (x
(l)
1 , x

(l)
2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D ) stands for such a permutation of the38

parts (x1, . . . , xD) that always the l-th compositional part fills the first po-39

sition, (xl, x1, . . . , xl−1, xl+1, . . . , xD). In such a configuration, the first ilr40

variable z
(l)
1 explains all the relative information (log-ratios) about the orig-41

inal compositional part xl, the coordinates z
(l)
2 , . . . , z

(l)
D−1 then explain the42

remaining log-ratios in the composition (Fǐserová and Hron, 2010). Note43

that the only important position is that of x
(l)
1 (because it can be fully ex-44

plained by z
(l)
1 ), the other parts can be chosen arbitrarily, because different45

ilr transformations are orthogonal rotations of each other (Egozcue et al.,46

2003). Of course, we cannot say that z
(l)
1 is the original compositional part47

xl, but it explains all the information concerning xl, thus, it stands for xl.48

An interesting consequence follows for the known clr transformation from

SD to RD, resulting in

y = (y1, . . . , yD)′ =

ln
x1

D

√∏D
i=1 xi

, . . . , ln
xD

D

√∏D
i=1 xi

′ .
It is easy to see that there exists a linear relationship between yl and z

(l)
1 ,49

namely yl =
√

D
D−1

z
(l)
1 . Thus, up to a constant, the single clr variables have50
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the same interpretation as the corresponding ilr coordinates, they explain all51

log-ratios concerning the l-th compositional part. However, as a consequence,52

some of the log-ratios are explained more than once by the D clr variables53

(in contrast to the ilr transformation). This is also an intuitive reason for54

the resulting singularity y1 + . . .+ yD = 0 of clr variables, what makes, e.g.,55

the use of robust multivariate statistical methods not possible. On the other56

hand, the clr transformation is a corner stone of the compositional biplot57

(Aitchison and Greenacre, 2002) that will be employed further in the paper.58

From the above mentioned properties of log-ratio transformations it is59

visible that the ordered D-tuple of the ilr coordinates, z
(l)
1 , l = 1, . . . , D, can60

be obtained from clr-transformed data as
√

D−1
D

y. Nevertheless, note that it61

would be not meaningful to interpret the relations between the clr variables62

or even between the variables z
(l)
1 using their correlation structure; here the63

subcompositional incoherence (it means that the results of the statistical64

modeling might be incompatible if only a subset of the parts is used, see,65

e.g., Aitchison (1986); Filzmoser et al. (2010) for details) could lead to wrong66

conclusions. Some kind of “incompatibility” is obtained also for the single67

z
(l)
1 , l = 1, . . . , D, variables, however, here as a natural consequence of the68

fact that the information available in x was reduced just to a subcomposition.69

In contrast to univariate outliers, where their identification as extreme

observations is straightforward, for multivariate outliers the covariance struc-

ture of the data set needs to be considered as well (Filzmoser et al., 2005).

Moreover, when working with compositional data, one has to consider the

data structure in the view of the Aitchison geometry, see, e.g., Hron et al.

(2010); Filzmoser and Hron (2011). For example, an elliptical point cloud
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arising from a multivariate normal distribution in the usual Euclidean ge-

ometry can look very different in the Aitchison geometry, depending on its

position in space (see, for instance, the back-transformed ellipses in Figure

1(B) to the Aitchison geometry in Figure 1(A)). This is important for multi-

variate outlier detection methods, which are usually based on distances from

an elliptically symmetric distribution. Moreover, each compositional data

point can be shifted along the line from the origin through the point with-

out changing the ratios of the compositional parts. Formally, an observed

composition x = (x1, . . . , xD)′ is defined as a member of the corresponding

equivalence class of x,

x = {cx, c ∈ R+}.

Thus, two compositions which are elements of the same equivalence class x70

(we call them also compositionally equivalent, see Egozcue and Pawlowsky-71

Glahn, 2006) contain the same information and have zero Aitchison distance72

(Aitchison, 1986). From this point of view, the “extremeness” of the outliers73

can be even more misleading than in case of standard (Euclidean) multivari-74

ate outliers.75

The methods for outlier detection of compositional data will be discussed76

in the following Section 2, where both theoretical aspects and possibilities for77

graphical representations will be considered. Section 3 proposes several tools78

for the interpretation of multivariate outliers that have been implemented in79

the statistical software environment R (R Development Core Team, 2011).80

In Section 4 we show how the tool is used for real problems, and how results81

can be interpreted. The final Section 5 concludes.82

6



2. Methods for multivariate outlier detection and graphical repre-83

sentation84

As well as for the other multivariate methods applied to compositional85

data, it is important to use an appropriate data transformation first. Both86

the clr transformation or a proper choice of the ilr transformation can be87

used for this purpose, see Filzmoser and Hron (2008).88

2.1. Theoretical aspects of outlier detection for compositional data89

A representation of the compositional data in coordinates (i.e. the repre-90

sentation following an ilr transformation) allows to apply all methods devised91

for an unconstrained sample space. In particular, multivariate outlier detec-92

tion can be based on Mahalanobis distances, defined for a sample z1, . . . , zn93

of (D− 1)-dimensional observations (resulting for instance from an ilr trans-94

formation of the corresponding compositional sample) as95

MD(zi) =
[
(zi − T )′C−1(zi − T )

]1/2
, i = 1, . . . , n. (2)

Here, T = T (z1, . . . , zn) and C = C(z1, . . . , zn) are location and covariance96

estimators, respectively. The choice of the estimators is crucial for the quality97

of multivariate outlier detection. Taking the classical estimators arithmetic98

mean and sample covariance matrix often leads to useless results, because99

these estimators themselves are influenced by deviating data points. For this100

reason, robust counterparts need to be taken that downweight the influence101

of outliers on the resulting location and covariance estimation statistics. For102

this purpose several approaches were proposed, see, e.g., Maronna et al.103

(2006). A popular choice is the MCD (Minimum Covariance Determinant)104
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estimator (Rousseeuw and Van Driessen, 1999) which has also the affine105

equivariance property. This means that for any nonsingular (D−1)×(D−1)106

matrix A and for any vector b ∈ RD−1 the conditions107

T (Az1 + b, . . . ,Azn + b) = AT (z1, . . . , zn) + b,

C(Az1 + b, . . . ,Azn + b) = AC(z1, . . . , zn)A′

are fulfilled. Thus, the estimators transform accordingly, like in case of the108

arithmetic mean and sample covariance matrix, and it can be easily seen that109

the Mahalanobis distances remain unchanged under regular affine transfor-110

mations, i.e.111

MD(Azi + b) = MD(zi), i = 1, . . . , n. (3)

The identified outliers will thus be the same, independent of the choice of112

A and b for the affine transformation. This is important in the context of113

log-ratio transformations, because there exists an orthogonal relationship be-114

tween different isometric log-ratio transformations. Affine equivariance thus115

guarantees that the identified outliers are invariant with the choice of such116

a transformation, see Filzmoser and Hron (2008). Under the assumption of117

multivariate normal distribution on the simplex, i.e. normal distribution of118

the orthonormal coordinates (Mateu-Figueras and Pawlowsky-Glahn, 2008),119

the (classical) squared Mahalanobis distances follow a chi-square distribution120

with D−1 degrees of freedom, see, e.g., Maronna et al. (2006). This distribu-121

tion might also be considered for the robust case, and a quantile, e.g. 0.975,122

can be used as a cut-off value separating regular observations from outliers.123

A more advanced approach for the cut-off value was introduced by Filzmoser124

et al. (2005). This method accounts for the actual numbers of observations125
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and variables in the data set, and it tries to distinguish among extremes of126

the data distribution and outliers coming from a different distribution. This127

approach will be used for the graphical tools introduced in the next section.128

2.2. Graphical representations129

The procedure of outlier detection would not be comprehensive without130

displaying the results graphically. Because compositional data are multivari-131

ate observations by definition, it seems to be not possible to display their132

parts in univariate plots as it is usual for standard multivariate observa-133

tions. Nevertheless, the isometric log-ratio transformation enables to display134

univariately relative information coming from all log-ratios to the l-th com-135

positional part through the variables z
(l)
1 , l = 1, . . . , D (Fǐserová and Hron,136

2010). Although such plots will differ from displaying “raw” parts (in mg/kg137

or even in percentages), they represent the only meaningful way to visualize138

the relative information on single compositional parts. One should carefully139

decide, which log-ratios will be covered up by the variable z
(l)
1 , because they140

can counteract and thus influence the overall statement on the behavior of141

the compositional part in the corresponding context. Then we can determine142

through values of z
(l)
1 , where the part xl dominates in the corresponding log-143

ratios and where its influence is suppressed in the study area.144

A popular graphical tool to visualize patterns in the multivariate data145

structure is the biplot (Gabriel, 1971), which is based on a rank-two approxi-146

mation of the observations in terms of loadings and scores of a principal com-147

ponent analysis. The biplot was adapted to compositional data by Aitchison148

(1997), where the clr transformation was favored; however, to robustify the149

compositional biplot, an ilr transformation needs to be utilized (Filzmoser150
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et al., 2009). The compositional biplot differs from the standard one in the151

interpretation of rays, coming from loadings of the principal component anal-152

ysis. While usually, the main interest is devoted just to rays, their length153

and in particular angles between them that represent an approximation of154

the Pearson correlation coefficient, here we need to be careful because the155

clr space was used as the starting point for the principal component analy-156

sis. For this reason, the main interest in the compositional case is devoted157

to links (distances between rays) connected to single clr variables. Here the158

link between rays of the i-th and j-th clr variables (i.e. distance between the159

corresponding vertices) approximates the variance of the log-ratio ln(xi/xj).160

Consequently, if the vertices coincide, or nearly so, the ratio xi/xj is constant,161

or nearly so. Additionally, from the linear relationship between z
(l)
1 and yl162

it follows that the directions of the rays signalize where the corresponding163

compositional parts dominate in the compositions (represented by scores of164

the PCA).165

3. Tools for interpreting multivariate outliers166

The tools discussed in the following are implemented and freely avail-167

able in the R package mvoutlier, see Filzmoser and Gschwandtner (2011).168

Mainly, there are two functions that are relevant for the user:169

• mvoutlier.CoDa() requires an untransformed input data matrix with170

at least three compositional parts. Robust location and covariance171

estimations are derived using the adaptive approach of Filzmoser et al.172

(2005) (with sensible default values) for the ilr transformed data. These173

are used for computing robust Mahalanobis distances, for grouping the174
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data into regular observations and outliers, and for robust PCA. The175

latter loadings and scores are back-transformed to the clr space for the176

compositional biplot (Aitchison and Greenacre, 2002). Moreover, the177

univariate ilr variables z
(l)
1 , for l = 1, . . . , D are computed, see Equation178

(1), for univariate presentations. Finally, symbol colors and gray scale179

values are derived that can be optionally used in all preceeding plots.180

The colors and gray levels should reflect the magnitude of the median181

element concentration of the observations, compare Filzmoser et al.182

(2005). This is done by computing for each observation along the single183

ilr variables the distances to the medians. The median of all distances184

determines the color (or grey scale): a high value, resulting in a red185

(or dark) symbol, means that most univariate parts have higher values186

than the average, and a low value (blue or light symbol) refers to an187

observation with mainly low values. This characterization helps to188

interpret multivariate outliers. The output of this routine is an object189

of class “mvoutlierCoDa”, and it can be visualized by the plot function190

below.191

An example for simulated data with three parts (Figure 1) shows in192

more detail how the colors are determined. The original compositional193

data in Figure 1(A) result in the data structure Figure 1(B) after an ilr194

transformation. The univariate scatter plots in Figure 1(C) refer to the195

univariate ilr variables, where the color for the symbols is determined.196

The symbols with large “+” which are in fact the multivariate outliers,197

are on average (median) far away from the origin (univariate median)198

and thus receive red color. The large open circles are close to the origin199
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in all three univariate presentations, and thus their color is blue or dark200

green.201

• plot.mvoutlierCoDa() makes plots of the object resulting from the202

function mvoutlier.CoDa(). The available plots can be selected via203

the parameter “which”, and the options are:204

– which="biplot" shows a compositional biplot (Aitchison and Greenacre,205

2002) by using the robust PCA loadings and scores from the ilr206

transformed data, and back-transformation to the clr space.207

– which="map" represents the symbols in the map at the geograph-208

ical coordinates of the sample locations, and plots a background209

map–if available.210

– which="uni" plots all univariate ilr variables z
(l)
1 , l = 1, . . . , D as211

univariate scatter plots, i.e. the variables are shown in parallel212

vertical plots, and the horizontal position of the observations in213

each plot is random in order to make the symbols better distin-214

guishable.215

– which="parallel" draws a parallel coordinate plot (Reimann et216

al., 2008, see, e.g.), with the univariate ilr variables as parallel217

vertical axes, and the multivariate observations as line combining218

the values of the axes.219

FIGURE 1220
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The representation of the observations/symbols in the plots is con-221

trolled in the same way:222

– onlyout=TRUE shows only the outlying observations; otherwise, if223

onlyout=FALSE, all observations are shown.224

– bw=TRUE shows all symbols (or lines for the parallel coordinate225

plot) in gray scale; otherwise the colors computed from the func-226

tion mvoutlier.CoDa() are used.227

– symb=TRUE represents the plot symbols according to their outly-228

ingness (except for the parallel coordinate plot), as done in Filz-229

moser et al. (2005). The example in Figure 1 illustrates the choice230

of the plot symbols. The original compositional data in Figure231

1(A) are ilr-transformed, resulting in Figure 1(B). Here the ro-232

bust squared Mahalanobis distances are computed and split by233

four values: the quantiles 0.25, 0.5, 0.75, and the outlier cut-off234

mentioned in Section 2.1. By default, the symbols for the resulting235

five groups (in the above order) are large open circle, small open236

circle, point, small “+”, large “+”. If symb=FALSE, the symbols237

are according to the definition of obj.cex; if this is not provided,238

a default symbol is used.239

– symbtxt=TRUE presents the object number rather than symbols in240

the plots. For the parallel coordinate plot the numbers are shown241

in the left and right plot margins.242
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4. Examples243

In this section we demonstrate the use of the outlier tools for two data244

sets from geochemistry.245

4.1. Example 1: GEMAS246

We consider a data set from the GEMAS project (Reimann et al., 2009).247

For illustration purposes we focus on the 473 observations that are available248

from Scandinavia, and we use the concentrations of the elements As, Au, Bi,249

Cu, Mo, Sb, and Sn. These elements can be considered as being indicative250

for the variety of mineral deposits that occur in the area. Suppose the data251

set is available in R as object x, a matrix (or data frame) with 473 rows252

and 7 columns. After loading the package with library(mvoutlier), the253

procedure for multivariate outlier detection is applied with254

> res <- mvoutlier.CoDa(x)255

using all default parameters (see help(mvoutlier.CoDa)). The results are256

stored in the object res, which can be now used for plotting.257

A compositional biplot is generated by258

> plot(res,which="biplot",onlyout=FALSE,symb=TRUE,symbtxt=FALSE)259

and the result is shown in Figure 2 (left). Here, all observations (not only260

the outliers) are plotted with special symbols: the color of the symbols cor-261

responds to the size of the median element concentration, and the symbol262

itself corresponds to the outlyingness (see above for details). If the focus is263

on the outliers, the command264

> plot(res,which="biplot",onlyout=TRUE,symb=TRUE,symbtxt=TRUE)265
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shows the same biplot projection, but only outliers are shown with an iden-266

tification number, see Figure 2 (right). Here the number is printed with the267

same color as the symbol in the previous plot.268

FIGURE 2269

The biplots in Figure 2 explain about 60% of the total variability, and270

thus further principal components could be of interest for the inspection271

(they can be selected by the plot parameter choice). The elements Sn, Bi272

and Sb show a strong relation (i.e. their ratios are nearly constant). The273

directions of the rays signalize where observations with dominance of the274

corresponding compositional part are located. For example, Au is dominant275

in relative sense for many of the outliers plotted in red. Because of the rather276

low explained variability we will provide a more rigorous interpretation for277

the observations in the univariate scatter plot, see Figure 4.278

The observations, and in particular the multivariate outliers, can be pre-279

sented in a map:280

> plot(res,which="map",coord=XY,map=coo,onlyout=FALSE,symb=TRUE,281

symbtxt=FALSE)282

The object XY contains the geographical coordinates of the observations, and283

coo includes the information of the background map in form of a matrix with284

two columns. An example is included in the help page of the function. The285

result in Figure 3 (left) shows the locations of the observations in the survey286

area, and the symbols are in the same style as in Figure 2 (left). Focusing287

only on the outliers is possible with288
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> plot(res,which="map",coord=XY,map=coo,onlyout=TRUE,symb=TRUE,289

symbtxt=TRUE)290

and the resulting representation in the map is in Figure 3 (right), using the291

same numbers and colors as in Figure 2 (right).292

FIGURE 3293

The multivariate outliers are concentrated in certain areas. Especially in294

the northern part of the survey area several outliers are visible (red large295

“+”). According to the biplot in Figure 2 (right), these outliers are dom-296

inated by the element Au. Not surprisingly they mark areas where known297

gold deposits occur. On the other hand, also single outliers are identified, like298

the observations numbered by “1” and “2”, which seem to be rather unusual299

when compared to the observations in the local neighborhood.300

A more detailed interpretation of the multivariate outliers with respect301

to the single elements is possible in the plot of the univariate ilr variables.302

> plot(res,which="uni",onlyout=FALSE,symb=TRUE,symbtxt=FALSE)303

generates Figure 4 (top), and304

> plot(res,which="uni",onlyout=TRUE,symb=TRUE,symbtxt=TRUE)305

results in Figure 4 (bottom), where the symbols and colors are the same as306

in the previous plots.307

FIGURE 4308
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The multivariate outliers are not necessarily in the extremes of the uni-309

variate variables, but they can be found in the whole range. By definition310

of the colors, there are mainly blue symbols in the central parts of the ilr311

variables, and red symbols in the extremes. One can now go into more details312

for the interpretation. The outliers in the northern part of the survey area313

have high values at “ilr(Au)”, i.e. Au is a dominating compositional part.314

Observation “39” is very exceptional for its ratio of Au to the other elements,315

and this location would definitely be of interest to exploration geochemists.316

Observation “1” is rather exceptional for As, and number “2” has the lowest317

value for “ilr(Au)” and the highest for “ilr(Cu)”.318

A final graphical representation is the parallel coordinate plot, generated319

by320

> plot(res,which="parallel",onlyout=FALSE,symb=TRUE,321

symbtxt=FALSE,transp=0.3)322

or323

> plot(res,which="parallel",onlyout=TRUE,symb=TRUE,324

symbtxt=TRUE,transp=0.5)325

and shown in Figure 5. The parameter trans allows to change the trans-326

parency of the colors (default to 1 for non-transparent).327

FIGURE 5328

Compared to the univariate plots of Figure 4, the parallel coordinate plots329

allow to better grasp the multivariate information of the observations via the330

connecting lines. Figure 5 (top) shows the more general data trends, while331
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Figure 5 (bottom) makes the details visible. Certain streams of lines are332

visible, like for the outliers in the northern part of the survey area, revealing333

that these observations have similar characteristics. A comparison of the334

multivariate outlier map with the map of mineral deposits in Scandinavia335

(Eilu et al., 2008) shows the power of the approach even with the very low336

density sampling used for the GEMAS project many of the most important337

mineralized areas are clearly indicated by multivariate outliers.338

4.2. Example 2: Kola339

The Kola data set has been studied in many publications, it is also ex-340

plained in detail and used in Reimann et al. (2008). The data come from341

the Kola Peninsula in Northern Europe, and the concentration of more than342

50 chemical elements has been measured in four soil layers. The data set is343

available in the R package mvoutlier, and an updated version in the package344

StatDA. Here we consider the concentration of the elements As, Cd, Co, Cu,345

Mg, Pb, and Zn in the O-horizon (organic surface soil). Co and Cu are typi-346

cal elements emitted from the Ni-smelters, As, Cd and Pb are elements that347

are emitted in minor amounts. Mg and Zn are not in this emission spectrum348

but they may be influenced by other processes. The concentrations of Mg,349

for instance, are affected by the steady input of marine aerosols from the350

coast, see also Filzmoser et al. (2005).351

After applying mvoutlier.CoDa() to the selected data, an output object,352

say res1, is created, and we start the visual inspection with the parallel353

coordinate plot:354

> plot(res1,which="parallel",bw=TRUE,onlyout=FALSE,symb=FALSE,355
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symbtxt=FALSE)356

produces Figure 6. Here we show all data by the lines, and the grey level357

corresponds to regular observations (light) and outliers (dark).358

FIGURE 6359

The multivariate structure of the outliers is quite different from the other360

observations. It is also possible to see common streams corresponding to361

groups of observations with similar data structure.362

For the further analysis we exclusively focus on the outliers. The R363

commands for the following plots are in analogy to Example 1, and are thus364

not shown. Figure 7 presents the outliers with the special symbols in a biplot365

and in the map. The biplot of the first two principal components explains366

now more than 70% of the total variability, but some elements are poorly367

represented (short rays). Co and Cu are highly related (in fact they are368

overplotted in the figure), and a number of outliers are dominated by these369

two elements. These outliers are observed at the locations of the Ni-smelters370

(Nikel/Zapolyarnij, Monchegorsk). Some further outliers near the coast are371

dominated by Mg. The remaining outliers are difficult to interpret with these372

plots, but they can be further inspected with the univariate scatter plot in373

Figure 8.374

FIGURE 7375

The univariate scatter plot shown in Figure 8 confirms the above findings:376

The outlier group located at the Ni-smelters indeed have high values for377
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“ilr(Co)” and “ilr(Cu)”, and Magnesium dominates the outliers on the coast.378

Outlier “20” is located at the sea harbor Murmansk, its ratio of As to the379

other elements is very low, for Zn it is rather high, and for the remaining380

elements the ratio is more in the average. Obviously, this behavior makes381

this observation special and thus outlying. Very exceptional is observation382

“33”, with low ratios for As, Co and Cu, high ratio for Mg, but very high383

ratio for Pb, which is rather surprising.384

FIGURE 8385

5. Conclusions386

Multivariate outliers are often the most interesting data points because387

they show atypical phenomena. Several methods have been proposed for the388

identification of multivariate outliers, making use of the technology of robust389

statistics (Maronna et al., 2006). Also in the context of compositional data390

such tools have been developed (Filzmoser and Hron, 2008). As a result, the391

data investigator gets the information of the samples being potential mul-392

tivariate outliers, but not the information, for which reason these samples393

are identified as being atypical. The tools proposed in this paper help to394

better understand the multivariate compositions of these outliers. Several395

exploratory tools have been developed for this purpose: representations in396

maps, in a compositional biplot, in univariate scatter plots, and in parallel397

coordinate plots. In all plots, the same special colors and symbols can be398

selected, referring to the relative position of the outliers in the multivari-399

ate data cloud and thus supporting an interpretation of these observations.400
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Since the considered data are compositional data, a relation to the single401

compositional parts can be established only by special ilr transformations.402

The new ilr variables are in fact related to the variables resulting from a403

clr transformation. Analysis and interpretations in the clr space (see, e.g.404

Grunsky, 2010) are thus useful in this context.405

The developed tools are freely available in the R package mvoutlier. The406

function mvoutlier.CoDa() computes the multivariate outliers, and it pre-407

pares the information for the symbols and colors. The resulting object can408

then be used for the plot function. The argument which allows to select409

among the four types of graphical presentations. All other arguments are410

consistent for the presentations, which makes it possible to see the same411

symbol and color choices in different views, revealing the structure of the412

multivariate outliers. The help page to the plot function contains several413

examples how to generate the different plots. The examples can be easily414

executed by example(plot.mvoutlierCoDa).415
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Figure captions493

Figure 1: Illustration of the determination of plot symbols and colors: (A)494

shows simulated three-part compositional data, (B) is the representation in495

the ilr space, and (C) are univariate scatter plots of the single univariate496

ilr variables. The symbols are determined by certain quantiles of the ro-497

bust Mahalanobis distances, visualized by the ellipses in (B). The colors are498

determined by computing the distance of the points to the medians of the499

univariate ilr variables in (C). The median of the three resulting distances500

determines the color for each observation.501

Figure 2: Compositional biplot for selected GEMAS data. Left: all data are502

shown by the special symbols; right: only outliers are shown by identification503

numbers using the symbol color.504

Figure 3: Maps for selected GEMAS data. Left: all data are shown by the505

special symbols; right: only outliers are shown by identification numbers506

using the symbol color.507

Figure 4: Univariate scatter plots for selected elements of the GEMAS data.508

Top: all data are shown by the special symbols; bottom: only outliers are509

shown by identification numbers using the symbol color.510

Figure 5: Parallel coordinate plots for selected elements of the GEMAS data.511

Top: all data are shown by lines with the special colors; bottom: only outliers512

are shown, and identification numbers using the symbol colors are in the513

margins.514

26



Figure 6: Parallel coordinate plots for the selected Kola data set. Regular515

observations are in light gray, multivariate outliers in dark gray.516

Figure 7: Biplot (left) and map (right) for the selected Kola data set. Only517

the outliers are shown, and special symbols are used.518

Figure 8: Univariate scatter plot for the selected Kola data set. Only the519

outliers are shown, and special symbols are used.520
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Figure 1: Illustration of the determination of plot symbols and colors: (A) shows simulated

three-part compositional data, (B) is the representation in the ilr space, and (C) are

univariate scatter plots of the single univariate ilr variables. The symbols are determined

by certain quantiles of the robust Mahalanobis distances, visualized by the ellipses in (B).

The colors are determined by computing the distance of the points to the medians of the

univariate ilr variables in (C). The median of the three resulting distances determines the

color for each observation.
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Figure 2: Compositional biplot for selected GEMAS data. Left: all data are shown by the

special symbols; right: only outliers are shown by identification numbers using the symbol

color.
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Figure 3: Maps for selected GEMAS data. Left: all data are shown by the special symbols;

right: only outliers are shown by identification numbers using the symbol color.
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Figure 4: Univariate scatter plots for selected elements of the GEMAS data. Top: all

data are shown by the special symbols; bottom: only outliers are shown by identification

numbers using the symbol color.
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Figure 5: Parallel coordinate plots for selected elements of the GEMAS data. Top: all

data are shown by lines with the special colors; bottom: only outliers are shown, and

identification numbers using the symbol colors are in the margins.
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Figure 6: Parallel coordinate plots for the selected Kola data set. Regular observations

are in light gray, multivariate outliers in dark gray.
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Figure 7: Biplot (left) and map (right) for the selected Kola data set. Only the outliers

are shown, and special symbols are used.
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Figure 8: Univariate scatter plot for the selected Kola data set. Only the outliers are

shown, and special symbols are used.
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