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Abstract

General ideas of robust statistics, and specifically robust statistical methods
for calibration and dimension reduction are discussed. The emphasis is on an-
alyzing high-dimensional data. The discussed methods are applied using the
packages chemometrics and rrcov of the statistical software environment R.
It is demonstrated how the functions can be applied to real high-dimensional
data from chemometrics, and how the results can be interpreted.
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1. Introduction

Statistical methods are usually based on model assumptions, like normal
distribution of the underlying data, or independence of the observations. In
practice, however, such assumptions may be violated and invalid for the data
set that needs to be analyzed. Practical data can include outliers, they can
be plagued with heavy-tailed distributions, and they can have other problems
such that strict model assumptions are not fulfilled. It is then questionable
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if the application of “classical” statistical methods relying on these assump-
tions lead to valid results, or if the results are even misleading. Especially
for high-dimensional data this issue is difficult, because it is practically im-
possible to “see” data outliers with exploratory data analysis techniques, or
to actually check the model assumptions. It is then also difficult to judge on
the consequences of deviations from idealized model assumptions.

Robust statistics attempts to provide solutions to the above mentioned
problems. Robust statistical methods aim to give reliable results even if the
strict model assumptions that are needed for the classical counterparts are
not fulfilled. The formal approach to robustness also allows to character-
ize the robustness properties of a statistical estimator. Important concepts
in this context are the influence function or the breakdown point [see, e.g.,
1]. The influence function assesses an estimator with respect to infinitesi-
mal contamination. The breakdown point, on the other hand, deals with
the problem of large contamination. It characterizes the smallest amount of
contamination that can cause an estimator to yield arbitrary values. Robust
estimators have a positive breakdown point, meaning that a certain part of
the data could be “outliers”, and the estimator gives still useful results. The
arithmetic mean, for example, has a breakdown point of zero, because mov-
ing even a single observation towards plus or minus infinity would lead to
a meaningless result. The median has a breakdown point of one half, since
even an arbitrary shift of (approximately) half of the data can still not have
a disastrous effect on the result–in contrary, usually we observe only a small
change of the result. Consequently, robust statistical estimators focus on the
homogeneous data majority, but not on the minority formed by deviating
outlying data points. After applying robust estimators, deviating observa-
tions can be identified as outliers, because the deviation of each observation
to an estimated value or model is now reliable.

A further important concept is the statistical (asymtptotic) efficiency of
an estimator. It depends on the considered data distribution and on the
(asymptotic) variance of the estimator [e.g. 2]. It can be shown that the
efficiency is in the interval [0, 1], where 1 refers to a highly efficient estima-
tor. For example, under normal distribution, the arithmetic mean has an
efficiency of 1, whereas the median only achieves a value of about 0.64. In
other words, for obtaining the same precision of the location estimation, we
need about one third more data for the median than for the mean.

Outliers in multivariate data are not necessarily values that are extreme
along one coordinate. Figure 1 shows an example in two dimensions, where
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the data are elliptically symmetric around the origin, and one observation
(marked by +) is deviating from the data structure. This data point is
neither extreme along x1 nor along x2. Not a univariate but a multivariate
treatment is necessary in order to identify this observation as outlier. In
addition to the data points, Figure 1 shows a so-called tolerance ellipse that
is supposed to include the “inner” 97.5% observations of a bivariate normal
distribution. The parameters for constructing the tolerance ellipse are the
robustly estimated location and covariance. Since the ellipse reveals the
shape of the data structure, the multivariate outlier immediately becomes
visible. In this example, also classical estimates would be able to identify
this outlier, but in other situations the outliers themselves could affect the
classical estimates, and thus the appearance of the ellipse. In the worst case,
the ellipse could get inflated such that the outlier is even within the ellipse.
This unwanted effect is called masking effect. Moreover, if other non-outlying
observations are falling outside the ellipse, they would be erroneously declared
as outliers. This phenomenon is called swamping effect [see, e.g., 3]. The use
of robust estimators can avoid such problems.
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Figure 1: Two dimensional data set with one outlier, and tolerance ellipse revealing the
outlier.

Since robust statistics is a rapidly developing field, it would be impossible
to mention and describe all the major aspects. We refer to the book Maronna
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et al. [2] which contains also more recent important areas of robustness, and
to Frosch-Møller et al. [4] for a review of robust multivariate methods. Here
we focus on the main ideas of robust statistics, and explain these concepts for
robust regression and principal component analysis. For both subjects we pay
attention to dealing with high-dimensional data. A further important aspect
is the application of the methods using the software environment R [5]. The
freely available statistical software has gained highest importance not only in
the “world of statistics” but also in many other fields. It includes the latest
developments of statistical methods in form of documented functions, and
offers plenty of possibilities also for robust estimation.

2. Basic concepts of robust linear regression

Consider the multiple linear regression model

yi = xtiβ + εi for i = 1, . . . , n (1)

with n observations yi of the response and of the explanatory variables xi =
(xi1, . . . , xip)

t (an intercept term is included by setting xi1 = 1), the vector
of regression coefficients β, and the error term εi. The most widely used
estimator for the regression coefficients is the least-squares (LS) estimator,
which is defined as

β̂LS = argmin
β

n∑
i=1

(
yi − xtiβ

)2
. (2)

The solution β̂LS is thus obtained by minimizing the sum of squared devi-
ations from the values yi to a projection of xi on any p-dimensional vector
β. The LS estimator is known as the best linear unbiased estimator (BLUE)
if the errors ε1, . . . , εn are independent identically distributed according to
N(0, σ2), with the same residual variance σ2 [see, e.g., 6]. Naturally, if these
strict assumptions are violated, the LS estimator loses its good properties,
and another estimator could be preferable.

Figure 2 (left) illustrates the problem of violations from model assump-
tions for LS regression with one predictor and one response variable. The
majority of data points follows a linear trend, and for these observations also
the above assumptions seem to be valid. However, a group of points, named
“vertical outliers”, is deviating in the direction of the response variable, and
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another group called “leverage points” forms outliers along the explanatory
variable. Vertical outliers usually have a smaller effect on the LS estimation,
but leverage points can attract (“lever”) the LS regression line that would be
valid for the data majority. This effect is shown in Figure 2 (right), where
the LS estimation using all data points is not useful at all, neither for the
data points following the linear trend, nor for predicting outliers. The line
denoted by “robust fit” follows the linear trend formed by the data major-
ity. Ideally it would correspond to the LS regression line computed from the
data subset without vertical outliers and leverage points. However, in real
problems–and especially if more than one predictor variable is involved–it
would be difficult or even impossible to judge which observations form ver-
tical outliers or leverage points, even though the latter have to be identified
in the p-dimensional space of the explanatory variables. Thus an automatic
procedure is desirable that allows to downweight outlying observations in an
appropriate manner.
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Figure 2: Linear regression problem with vertical outliers and leverage points (left); result
of LS regression and robust regression (right).

The estimation of the regression parameters, as well as inference statis-
tics and diagnostics, take into account the residuals, which are defined as
ri(β) = yi − xtiβ, for i = 1, . . . , n, and depend on the parameter vector β.
For the estimated regression parameters from Figure 2 (right) we can inspect
the residuals in Figure 3. For the LS fit (left) the residuals of the outliers
are large, but also residuals of the regular observations following the linear
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trend are increasing towards the boundary points. This will make it difficult
to distinguish outliers from regular points later on. The distribution of the
residuals may even look like a normal distribution. In contrast, for the robust
fit (right) the residuals of the regular observations are very small, and only
the residuals of the outliers are large, making it easy to identify them. Par-
ticularly the residuals from the leverage points are large, and it is thus easy
to see that within the LS criterion (2) their square would lead to very large
values that increase the objective function. An alternative solution (given by
the LS fit) finds a compromise that can also reduce the value of the objective
function.
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Figure 3: LS regression with residuals (left), and robust regression with residuals (right).

The performance of a regression model can be evaluated using an appro-
priate performance measure like the standard error of prediction (SEP)

SEP =

√√√√ 1

n− 1

n∑
i=1

(yi − ŷi − bias)2 with bias =
1

n

n∑
i=1

(yi − ŷi), (3)

or the root mean squared error (RMSE)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2. (4)
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Here, ŷi = xtiβ̂ are the predicted values of the response variable, using the
estimated regression parameters β̂ [see, e.g., 7]. When evaluating the per-
formance measures for the example data set above (i.e. we are using the
original “calibration” data), the SEP and RMSE values are shown in Table
1. Both measures lead to comparable results, but the values for the LS fit is
smaller than that for the robust fit. Accordingly, the practitioner would pre-
fer LS regression. However, note that the performance measures in (3) and
(4) are not robust against outliers, because each observation gets the same
contribution in the formulas. The influence of outliers to the performance
measures can be reduced by trimming for example the 10% of the largest
contributions. The results for the example are shown in Table 1, and they
lead to a contrary picture: the values of the criteria for the robust fit are
much smaller than for the LS fit. This is also visible in Figure 3, where an
exclusion of 10% of the largest residuals would clearly give preference to the
robust fit. The trimming value 10% is rather subjective here, and it could
be taken higher if the data quality is worse.

A regression model is usually used for the prediction of new test data.
Suppose we have given for the above example test data following the linear
trend formed by the majority of data points in Figure 3, without any outliers.
There are, however, still two different models, and only the robust model will
lead to small residuals (prediction errors). A check for normal distribution
of the test set residuals can be done by a Q-Q plot [see, e.g., 7], and it may
look as shown in Figure 4. These plots indeed suggest that the assumption
of normal distribution is valid for both models. However, the scale of the
residuals from both fits is very different.

The above performance measures can also be evaluated for test data, and the
results are shown in Table 1. Here the robust fit leads to much smaller values
than the LS model. Note that since the test data contain no outliers, the
SEP and the RMSE as well as their 10% trimmed versions are comparable
and lead to the same conclusions.

3. Methods for robust linear regression

One of the main problems of the non-robustness of LS regression is the
square in the objective function (2), and that large values would dominate
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Figure 4: Q-Q plots of outlier-free test set residuals from LS regression (left) and robust
regression (right).

Table 1: Performance measures for the calibration data and an outlier-free test data set,
see Figures 2 and 4.

Calibration data Test data
LS fit robust fit LS fit robust fit

SEP 2.09 2.66 1.42 0.20
RMSE 2.07 2.68 1.41 0.20
SEP 10% 1.14 0.18 1.12 0.14
RMSE 10% 1.13 0.18 1.10 0.14

the sum. An idea for a more robust estimation of the regression parameters
is to use an M estimator for regression [8, 9], defined as

β̂M = argmin
β

n∑
i=1

ρ
(
yi − xtiβ

)
= argmin

β

n∑
i=1

ρ (ri(β)) . (5)

The function ρ can be seen as a loss function applied to the residuals. Clearly,
for LS regression ρ(r) = r2, and thus the LS criterion (2) is a special case
of the criterion (5). The idea is to downweight large (absolute) residuals.
Figure 5 shows two choices of the ρ function: the left picture is the quadratic
function, corresponding to the LS criterion, where large (absolute) residuals
can become very dominating in the used criterion for obtaining the regression
estimates. In the right picture the residuals within [−c, c] (for a constant c)
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have the same contribution to the criterion as before, but for larger (absolute)
values it remains bounded. The choice of the ρ function will also affect the
properties of the resulting regression estimator [see 2, for more details].

r

ρ(r)

Unbounded loss function

r

ρ(r)

c−c

Bounded loss function

Figure 5: Different choices of the ρ function for the M estimator. Left: quadratic function
as used for LS regression; right: bounded ρ function according to Huber [10].

The criterion (5) has the disadvantage that it is not “regression equiv-
ariant”, meaning that rescaling the response variable with a multiplicative
factor h does not lead to regression coefficients hβ̂M . Therefore, the general
definition of the M estimator for regression is

β̂M = argmin
β

n∑
i=1

ρ

(
ri(β)

σ̂

)
. (6)

σ̂ is a robust scale estimator of the residuals which, however, depends on the
unknown regression coefficients β. For finding a solution, Equation (6) can
be differentiated, which gives

n∑
i=1

ψ

(
ri(β)

σ̂

)
xi = 0, (7)

with ψ = ρ′. Putting W (r) = ψ(r)/r allows to write (7) as

n∑
i=1

wi
(
yi − xtiβ

)
xi = 0, (8)
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with wi = W (ri(β)/σ̂). This shows that the problem can be written in terms
of the normal equations with weights for the observations. For the solution
one can use an iterative scheme called iteratively reweighted least-squares
(IRLS), but the problem is that usually many local minima exist. Therefore
it is crucial to initialize the procedure with a good (i.e. robust) starting value
β̂0.

A further problem is how to obtain σ̂, and how to define a robust scale
estimator. One possibility is to use an M estimator of scale, defined as the
solution σ of the equation

1

n

n∑
i=1

ρ

(
ri(β)

σ

)
= δ, (9)

for a certain ρ function and a constant δ [see 8, 9]. Using a weight function
Wσ(z) = ρ(z)/z2, Equation (9) can be rewritten as

σ2 =
1

nδ

n∑
i=1

wir
2
i (β), (10)

with weights wi = Wσ(ri(β)/σ). By taking an appropriate starting value σ0,
the estimator σ̂ can be obtained by an iterative procedure [2]. Using this
robust scale estimator for the problem

β̂S = argmin
β

σ̂ (r1(β), . . . , rn(β)) (11)

results in the regression S estimator β̂S. The S estimator achieves the max-
imum breakdown point, but has low efficiency [2]. A combination of both,
robustness and controllable efficiency, can be obtained by the following pro-
cedure:

• compute an initial estimator β̂0, using a regression S estimator,

• compute a robust scale σ̂ of the residuals ri(β̂0), using Equation (9) for
the M estimator of scale,

• take an M estimator of regression to obtain the MM estimator of re-
gression as

β̂MM = argmin
β

n∑
i=1

ρ

(
ri(β)

σ̂

)
(12)

as a local solution within an iterative algorithm, starting from β̂0.
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The MM estimator of regression has the breakdown point of β̂0 and an ef-
ficiency that can be controlled by tuning parameters (e.g. 0.85). For more
details we refer to Maronna et al. [2].

Example: MM regression in R

As an example we consider the milk data set, available in the R package
robustbase as data set milk. For 86 containers of milk several characteristics
were analyzed. We consider as the response variable (named X4) the casein
content and as explanatory variable the cheese dry substance measured in the
laboratory (named X6). We only use one explanatory variable in order to
visualize the resulting regression lines. The R code for generating the left plot
in Figure 6 is shown below. Since MM regression boils down to computing
appropriate weights for the observations, the right plot of Figure 6 visualizes
these weights as symbol size of the observations: the smaller the weight, the
larger the symbol. It can be seen that the clear outliers receive very low
weight, but also that points being not so far from the MM regression line are
downweighted.

> library(robustbase)

> data(milk)

> plot(X4~X6,data=milk,xlab="Casein content",ylab="Dry substance")

> reslm <- lm(X4~X6, data=milk) # LS regression

> reslmrob <- lmrob(X4~X6, data=milk) # MM regression

> abline(reslm,lty=2) # plot LS regression line

> abline(reslmrob,lty=1) # plot MM regression line

> legend("topright",leg=c("LS","MM"),lty=c(2,1))

Details of the MM estimation can be seen by the following command:

> summary(reslmrob)

The resulting (shortened) output is shown in Table 2. The structure of
the output is similar to that of LS regression, including information of the
residuals and robust inference statistics. The weights for the observations
resulting from MM regression are also summarized, and this information was
already displayed in Figure 6 (right). Note that robust regression methods,
like the well-known Least Trimmed Squares (LTS) regression [see 11] assign
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Figure 6: LS and MM regression for the milk data set. The symbol size in the right panel
refers to the weight received from MM regression: a large symbol means a small weight,
which is assigned to an outlying observation.

weights of zero or one to the observations, which is still robust but leads to
(considerably) lower efficiency than MM regression [see 2].

Regression is typically applied in situations where the number of obser-
vations is much larger than the number of variables. LS regression becomes
numerically instable if the number of regressor variables comes close to the
number of observations because of singularity problems. MM regression has
even stricter constraints on the number of variables relative to the number
of observation. In any case, typical applications in chemometrics have many
more variables than observations, and they cannot be handled with these
regression methods. In the next section, however, we will discuss a robust
regression method that can handle the case n < p.

4. Robust linear regression in high dimension

Regression problems become challenging when the number p of explana-
tory variables exceeds the number of observations. Methods for dealing with
this kind of problems are described for instance in Hastie et al. [12]. Only in
recent years, robust counterparts to such methods were introduced, like Khan
et al. [13] for robust linear model selection, or approaches as proposed in [14]
for robustifying partial least squares (PLS) regression [see also 7]. Here we
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Table 2: Part of the summary of MM regression for the milk data set.

Weighted Residuals:
Min 1Q Median 3Q Max

-9.91375 -0.19793 -0.03457 0.12813 0.76380

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.91138 0.81009 2.359 0.0206 *
Casein 0.96743 0.03248 29.787 <2e-16 ***
---
Robust residual standard error: 0.2568
Convergence in 11 IRWLS iterations

Robustness weights:
4 observations c(1,2,41,70) are outliers with |weight|=0 (<0.0012)
7 weights are ~= 1. The remaining 75 ones are summarized as
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.2722 0.8642 0.9532 0.9028 0.9858 0.9989

focus on a robust PLS method called partial robust M (PRM) regression [15].
The main idea is to use an M estimator for regression (see Section 3) not on
the complete but only for a partial information of the explanatory variables.
This partial information is obtained via so-called latent variables that need
to be extracted in a robust manner.

The linear regression model from (1) can be written in matrix notation
as

y = Xβ + ε, (13)

where the vector y contains the n observations of the response variable, the
n × p matrix X has in its rows the observations xi, and ε includes all the
error terms εi. In PLS regression we switch to a latent variable model

y = Tc+ δ, (14)

with the score matrix T of dimension n × a, regression coefficients c, and
error terms δ. The number a of latent variables is smaller than p, and usually
even much smaller. The latent variables wj (and thus the columns of T ) are
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obtained sequentially, for j = 1, . . . , a, by

wj = argmax
w

Cov(y,Xw) (15)

under the constraints

‖w‖ = 1 and Cov(Xw,Xwk) = 0 for 1 ≤ k < j. (16)

The score matrix is obtained by T = XW , where W contains in its columns
the latent variables wj.

For classical PLS,“Cov” in (15) and (16) is taken as the sample covariance
matrix. In the robust case, the estimation of the covariance needs to be
robustified. For PRM this is done by M estimation. According to Equation
(6), the model (14) can be written as

ĉ = argmin
c

n∑
i=1

ρ

(
yi − ttic

σ̂

)
, (17)

where ti denotes the ith row of T , and σ̂ is an estimator of the residual scale.
As it has been shown in Equation (8), the solution boils down to deriving
weights wi for each observation. These weights can be used to robustify the
estimation of the covariance. Accordingly, (15) and (16) can be written as

wj = argmax
w

1

n

n∑
i=1

wiyi(x
t
iw) (18)

under the constraints

‖w‖ = 1 and
1

n

n∑
i=1

wi(x
t
iw)(xtiwk) = 0 for 1 ≤ k < j, (19)

assuming that response and explanatory variables have been (robustly) cen-
tered. The final solution can be found within an iterative scheme, and it is
again crucial to have good starting values [see 15, for details]. This procedure
has the advantage that it yields robust solutions that are fast to compute.

Example: PRM regression in R

We use a data set included in the R package chemometrics, containing the
concentration of glucose and ethanol (in g/L) for n = 166 alcoholic fermen-
tation mashes of different feedstock (rye, wheat and corn) [see 16]. For the
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mashes the first derivatives of near infrared spectroscopy (NIR) absorbance
values at 1115-2285 nm are available, leading to 235 explanatory variables.
Glucose will be used as the response variable. The data are prepared in R
by:

> library(chemometrics)

> data(NIR)

> X <- NIR$xNIR

> y <- NIR$yGlcEtOH$Glucose

For choosing an optimal number of PRM components, 10-fold cross-validation
(CV) is used for a maximum of a = 40 components (this high number is only
taken for illustrative purposes):

> res.prmcv <- prm_cv(X, y, a = 40)

This command also generates a plot for the optimal number of components,
which is shown in Figure 7. The SEP value, see (3), and its 20% trimmed
version are used as performance measures. The indicated intervals correspond
to mean plus/minus one standard error of the 20% trimmed SEP values
resulting from 10-fold CV. The optimal number of components is selected
as the lowest number whose prediction error mean is below the minimal
prediction error mean plus one standard error [see 7]. Here, 20 components
are selected, leading to a prediction error of 5.12 (±0.9).

Using the computed 20 PRM components, the predicted values of the re-
sponse and the residuals can be computed. Plots of measured versus pre-
dicted values, and predicted values versus residuals can be visualized with

> plotprm(res.prmcv, y)

(not shown here). The regression coefficients, weights, scores, and loadings
for the optimal number of components can be obtained by:

> prm(X, y, a = res.prmcv$optcomp)

A more careful and detailed model selection can be done with repeated
double cross-validation (rdCV) [see 17, 18, for details]. The procedure is
rather time consuming. Within an “inner loop”, k-fold CV is used to deter-
mine an optimal number of components, which then is applied to a “test set”
resulting from an “outer loop”. The procedure is repeated a number of times.
rdCV with 20 replications is run by
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Figure 7: Output of function prm_cv, computing PRM regression models with 1 to 40
components. Dashed line: mean of SEP values from CV. Solid part: mean and standard
deviation of 20% trimmed SEP values from CV. Vertical and horizontal line correspond
to the optimal number of components (after standard-error-rule) and the according 20%
trimmed SEP mean, respectively.

> res.prmdcv <- prm_dcv(X, y, a = 40, repl = 20)

but it requires about four hours on a standard PC (compared to about four
minutes for single CV for PRM). The frequencies of the optimal numbers of
components can be seen by

> plotcompprm(res.prmdcv)

and they are shown in Figure 8. There is a clear peak at 20 components,
meaning that a model with 20 components has been optimal in most of the
experiments within rdCV. Note that here we obtain the same result as for
single CV.

In a next plot the prediction performance measure, the 20% trimmed
SEP, is shown:

> plotSEPprm(res.prmdcv, res.prmdcv$afinal, y, X)

The result of executing the above command is shown in Figure 9. The gray
lines correspond to the results of the 20 repetitions of the double CV scheme,
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Figure 8: Output of plotcompprm for rdCV of PRM. The optimal number of components
is indicated by the vertical dashed line.

while the black line represents the single CV result. Obviously, single CV
is much more optimistic than rdCV. The estimated prediction error for 20
components is 5.86 (±0.9).
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Figure 9: Output of plotSEPprmdcv for PRM. The gray lines result from repeated double
CV, the black line from single CV.

Using the optimal number of 20 components, predictions and residuals
can be computed. However, for rdCV there are predictions and residuals
available for each replication (we used 20 replications). The diagnostic plot
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> plotpredprm(res.prmdcv, res.prmdcv$afinal, y, X)

shows the predicted versus measured response values, see Figure 10. The
left picture is the prediction from a single CV, while in the right picture the
resulting predictions from rdCV are shown. The latter plot gives a clearer
picture of the prediction uncertainty.
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Figure 10: Predicted versus measured response values as output of predprmdcv for PRM.
The left picture shows the results from single CV, the right picture visualizes the results
from repeated double CV.

A similar plot can be generated with

> plotresprm(res.prmdcv, res.prmdcv$afinal, y, X)

for predicted values versus residuals (not shown here).
The package chemometrics has also implemented R functions to perform

single CV and rdCV for classical PLS. Using the same parameters for rdCV,
classical PLS requires 14 components, and results in a prediction error of
6.52. Thus, although this example data set does not contain huge or visible
outliers but probably only slight inhomogeneities, the robust approach leads
to an improved prediction model. Further details are provided in the vignette
to the package.

5. Robust Principal Component Analysis (PCA)

Principal component analysis (PCA) is a widely used technique for dimen-
sion reduction achieved by finding a smaller number k of linear combinations
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of the originally observed p variables and retaining most of the variability
of the data. These new variables, referred to as principal components are
uncorrelated with each other and account for decreasing amount of the total
variance, i.e. the first principal component explains the maximum variance
in the data, the second principal component explains the maximum variance
in the data that has not been explained by the first principal component and
so on. Dimension reduction by PCA is mainly used for: (i) visualization of
multivariate data by scatter plots (in a lower dimensional space); (ii) trans-
formation of highly correlated variables into a smaller set of uncorrelated
variables which can be used by other methods (e.g. multiple or multivariate
regression); (iii) combination of several variables characterizing a given pro-
cess into a single or a few characteristic variables or indicators.

The classical approach to PCA measures the variability through the em-
pirical variance and is essentially based on computation of eigenvalues and
eigenvectors of the sample covariance or correlation matrix. Therefore the
results may be extremely sensitive to the presence of even a few atypical
observations in the data. The outliers could artificially increase the variance
in an otherwise uninformative direction and this direction will be determined
as a PC direction. These discrepancies will carry over to any subsequent
analysis and to any graphical display related to the principal components
such as the biplot.

The following example shown in Figure 11 illustrates the effect of outliers
on classical PCA. We generate n = 60 observations of two variables x1 and
x2 from a bivariate normal distribution with zero means, variances of 1, and
a correlation between the two variables 0.8. The sample correlation of the
generated data set is 0.84. We sort the data by the first coordinate x1 and
modify the first four observations with smallest x1 and the last four with
largest x1 by interchanging their first coordinates. Thus (less than) 15% of
outliers are introduced which are undistinguishable on the univariate plots
of the data. However, the sample correlation changes even its sign and be-
comes -0.05. The upper left panel (a) of Figure 11 shows a scatter plot of
the clean data with the first principal component PC1, and the upper right
panel (b) shows the same for the altered data. We see that the first principal
component is tilted by the outliers in an almost perpendicular direction. The
lower left panel (c) shows the plot of the scores on the two classical principal
components. Most of the outliers lie within the 97.5% tolerance ellipse and
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thus they are influential on the classical covariance estimation. The lower
right panel (d) shows the same plot based on robust estimates. We see that
the estimate of the center remains the same as the classical one (as should
be expected since we have not changed the values of the single variables) but
the outliers are clearly separated by the 97.5% tolerance ellipse. In terms of
dimension reduction, the results from classical PCA are not useful, because
neither PC1 nor PC2 follow the main data structure but they are affected
by the outliers. In contrast, robust PC1 indicates the direction of the data
majority, and robust PC2 reveals the outliers.

Consider an n × p data matrix X. Further, m denotes the (robust) center
of the data and 1 is a column vector with all n components equal to 1. We
are looking for linear combinations tj that result from a projection of the
centered data on a direction pj,

tj = (X − 1mt)pj (20)

such that
pj = argmax

p
Var(Xp) (21)

subject to ‖pj‖ = 1 and Cov(Xpj,Xpl) = 0 for l < j and j = 1, . . . , k with
k ≤ min (n, p). The solutions of these maximization problems are obtained by
solving a Lagrangian problem, and the result is that the principal components
ofX are the eigenvectors of the covariance matrix Cov(X), and the variances
are the corresponding eigenvalues lj = Var(Xpj). Classical PCA is obtained
if the sample covariance matrix S = 1

n−1

∑n
i=1(xi −m)(xi −m)t is used

for “Cov”, with m being the arithmetic mean vector. PCA based on robust
covariance estimation will be discussed in Section 5.1. Here, not only “Cov”
but also the data center m need to be estimated robustly. Usually the
eigenvectors are sorted in a decreasing order of the eigenvalues and hence
the first k principal components are the most important ones in terms of
explained variance. A more general and usually recommended algorithm for
PCA is singular value decomposition (SVD), for further details see Jolliffe
[19]. However, SVD is not straightforward to robustify, see Croux et al. [20].
Finally, the vectors tj are collected as columns in the n× k scores matrix T ,
and the vectors pj as columns in the loadings matrix P . The eigenvalues lj
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(b) Data with 15% outliers
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Figure 11: Plot of the principal components of the generated data: the upper two panels
show scatter plots of the clean (a) and the altered (b) data with the first principal compo-
nent. The lower two panels show plots of the scores obtained by classical (c) and robust
(d) PCA together with the corresponding 97.5% tolerance ellipses.

are arranged in the diagonal of the k × k diagonal matrix Λ. This allows to
represent the covariance matrix as

Cov(X) = PΛP t. (22)
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The original X matrix can be reconstructed from the scores T in the orig-
inal coordinate system (using k principal components) preserving the main
structure of the data:

X̃ = 1mt + TP t +E, (23)

where the error or residual matrix E will be zero if all principal components
are used.

PCA was probably the first multivariate technique subjected to robus-
tification, either by simply computing the eigenvalues and eigenvectors of a
robust estimate of the covariance matrix or directly by estimating each princi-
pal component in a robust manner. The different approaches to robust PCA
are presented in the next sections and examples are given how these robust
analyses can be carried out in R. Details about the methods and algorithms
can be found in the corresponding references.

5.1. PCA based on robust covariance matrix estimation

The most straightforward and intuitive method to obtain robust PCA is
to replace the classical estimates of location and covariance by their robust
analogues. In the earlier works, M estimators of location and scatter were
used for this purpose [see 21, 22] but these estimators have the disadvantage
of low breakdown point in high dimensions. To cope with this problem,
the MVE estimator [23] and the MCD estimator [24] were used. Croux
and Haesbroeck [25] investigated the properties of the MCD estimator and
computed its influence function and efficiency.

The package stats in base R contains the function princomp() which
performs a principal components analysis on a given numeric data matrix
and returns the results as an object of S3 class princomp. This function has
a parameter covmat which can take a covariance matrix, or a covariance list
as returned by cov.wt, and if supplied, it is used rather than the covariance
matrix of the input data. This allows to obtain robust principal components
by supplying the covariance matrix computed by cov.mve or cov.mcd from
the package MASS. Much easier and more flexible is the interface provided
in package rrcov. The essential value added of this package, apart from
implementing many new robust multivariate methods, is the unification of
the interfaces by leveraging the object orientation provided by the S4 classes
and methods. The function PcaCov() computes robust PCA by replacing
the classical covariance matrix with one of the robust covariance estimators
available in the framework—MCD, OGK, MVE, M, MM, S or Stahel-Donoho
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[for details, see 26], i.e., the parameter cov.control can be any object of a
class derived from the base class CovControl. This control class will be used
to compute a robust estimate of the covariance matrix. If this parameter
is omitted, MCD will be used by default. Of course any newly developed
estimator following the concepts of the framework can be used as input to
the function PcaCov().

> library(rrcov)

> pc <- PcaCov(X) # X is the input data matrix

> P <- getLoadings(pc) # robust PCA loadings

> T <- getScores(pc) # robust PCA scores

Unfortunately, while highly robust and very intuitive, this method is lim-
ited to relatively low-dimensional data. For example, the MCD estimator is
defined as the mean and covariance matrix of the h observations whose covari-
ance matrix has smallest determinant (here h is roughly n/2). If h ≥ p, where
p is the number of variables, the MCD is not defined since the determinant of
any h-subset will have determinant zero. This condition could be weakened
by setting h to a larger value, e.g. h = 0.75n, but in any case we must have
p ≤ n. An additional limitation is the fact that all high breakdown point
estimators of location and covariance matrix (with the appropriate equiv-
ariance properties) are computationally intensive and even the best available
algorithms cannot handle very large data sets with dimensions in the number
of thousands as they are often encountered in chemometrics.

5.2. PCA based on projection pursuit

The second approach to robust PCA uses projection pursuit (PP) and
calculates directly the robust estimates of the eigenvalues and eigenvectors
without passing by a robust covariance estimation. Directions are sought
for, which maximize the variance of the data projected onto them. The
advantage of this approach is that the principal components can be computed
sequentially, and that one can stop after k components have been extracted.
Thus, this approach is appealing for high-dimensional data, in particular for
problems with p > n.

Using the empirical variance in the maximization problem would lead
to classical PCA, and robust scale estimators result in robust PCA. Such
a method was first introduced by Li and Chen [27] using an M estimator
of scale, see Equation (9). They showed that the PCA estimates inherit
the robustness properties of the scale estimator. Unfortunately, in spite of
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the good statistical properties of the method, the algorithm they proposed
was too complicated to be used in practice. A more tractable algorithm in
these lines was proposed by Croux and Ruiz-Gazen [28], and they also com-
pleted the theoretical results of Li and Chen [27] by computing the influence
functions of the estimators of the eigenvalues, eigenvectors and associated
covariance matrix as well as by computing the asymptotic variances. This
algorithm centers the data matrix with the spatial median or L1–median,
which is fast to compute and has a 50% breakdown point [see, e.g., 29].
When solving the maximization problem the algorithm does not investigate
all possible directions but considers only those defined by a data point and
the robust center of the data. The robust variance estimate is computed for
the data points projected on these n directions and the direction correspond-
ing to the maximum of the variance is the searched approximation of the first
principal component. After that the search continues in the same way in the
space orthogonal to the first component. An improved version of this algo-
rithm, being more precise especially for high-dimensional data, was proposed
by Croux et al. [30]. The space of all possible directions is scanned more
thoroughly. This is done by restricting the search for an optimal direction
on a regular grid in a plane.

The PCA projection pursuit algorithms Croux and Ruiz-Gazen [28] and
Croux et al. [30] are represented in R by the classes PcaProj and PcaGrid,
respectively. Their generating functions provide simple wrappers around the
original functions from the package pcaPP and return objects of the corre-
sponding class, derived from PcaRobust.

> pc <- PcaGrid(X, k=2, scale=mad)

> # k=2 PCs are computed, MAD is the robust scale measure

> P <- getLoadings(pc) # robust PCA loadings

> T <- getScores(pc) # robust PCA scores

5.3. The method ROBPCA

This robust PCA method proposed by Hubert et al. [31] tries to com-
bine the advantages of both approaches—PCA based on a robust covariance
matrix and PCA based on projection pursuit. A brief description of the al-
gorithm follows, for details see the relevant references [32]. After robustly
centering the data, an SVD is applied to express the information in the n-
dimensional space (useful if p > n). Then for each observation a measure
of “outlyingness” is computed. The h data points with smallest outlyingness
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measure are used to compute the robust covariance matrix and to select the
number k of principal components to retain. With an eigendecomposition of
this covariance matrix, the space spanned by the first k eigenvectors is used to
project all data points. Finally, location and covariance of the projected data
are computed using the reweighted MCD estimator, and the eigenvectors of
this scatter matrix yield the robust principal components.

The algorithm ROBCA is implemented in the R package (rrcov) as the
function PcaHubert().

5.4. Spherical principal components

The spherical principal components procedure was first proposed by Lo-
cantore et al. [33] as a method for functional data analysis. The idea is
to perform classical PCA on the data, projected onto a unit sphere. The
estimates of the eigenvectors are consistent if the data are elliptically dis-
tributed [see 34] and the procedure is extremely fast. Although not much is
known about the efficiency of this method, the simulations of Maronna [35]
show that it has very good performance. If each coordinate of the data is
normalized using some kind of robust scale, like for example the MAD, and
then spherical principal component analysis is applied, we obtain “elliptical
PCA”, but unfortunately this procedure is not consistent. To compute the
PCA estimates by the ROBPCA method in R, the function PcaLocantore()

is used.

5.5. Visualization of PCA results and diagnostic plots

The results of all PCA methods implemented in the R package (rrcov)
can be visualized using exactly the same plotting functions. The screeplot,
comparing the variances of the principal components [see, e.g., 7] can be
visualized by

> screeplot(pc, type="lines")

where pc is the result of a PCA method. The biplot [36] represents both the
observations and variables in the plane of (the first) two principal compo-
nents allowing the visualization of the magnitude and sign of each variable’s
contribution to these principal components. This plot is generated by:

> biplot(pc)
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Besides scatter plots of the first few principal components that allow to
reveal the multivariate structure of the data and to discover data groups
and structures, a diagnostic plot is especially useful for identifying outlying
observations. The diagnostic plot is based on the score distances and orthog-
onal distances computed for each observation. Note that in chemometrics,
the score distance is also known under the name Hotelling’s T 2, and the or-
thogonal distance under the abbreviation Q. The score distance is defined
by

SDi =

√√√√ k∑
j=1

t2ij
lj
, i = 1, . . . , n, (24)

where tij are the elements of the score matrix T . It measures the distance of
each observation to the subspace spanned by the first k principal components.
The orthogonal distance is defined by

ODi = ||xi −m− Pti||, i = 1, . . . , n (25)

where ti is the ith row of the score matrix T . This measure corresponds to
the distance of the projection of each observation into the space spanned by
the first k principal components. The diagnostic plot shows the score versus
the orthogonal distance, and indicates with a horizontal and vertical line
the cut-off values that allow to distinguish regular observations from the two
types of outliers [for details, see 31].

5.6. Example: Robust PCA in R

We consider a data set originating from 180 glass vessels [37]. In total,
1920 characteristics are available for each vessel, coming from an analysis by
an electron-probe X-ray micro-analysis. The data set includes four different
materials comprising the vessels, and we focus on the material forming the
larger group of 145 observations. Columns with MAD equal to zero were
removed, resulting in a matrix with 1905 columns. It is known from other
studies on this data set [15, 38] that these 145 observations should form
two groups, because during the measurement process the detector efficiency
has been changed. So, in principle PCA should reveal the two clouds of
data points. We assume that the package rrcov has been loaded and that
X contains the data. Depending on the PCA algorithm, k = 2 to k = 4
components explain more than 90% of the data variability. For reasons of
comparability we use k = 4 for all methods.
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> pcC <- PcaClassic(X, k=4) # classical PCA

> pcG <- PcaGrid(X, k=4) # see Section 5.2

> pcH <- PcaHubert(X, k=4,alpha=0.5) # see Section 5.3

> pcL <- PcaLocantore(X, k=4) # see Section 5.4

Details of the PCA results can be seen with the function summary() applied
to the result objects.

A scatter plot of the first two PCA scores (first two columns of T ) can
be seen with

> rrcov:::pca.scoreplot(pcC, main = "(a) Classical PCA")

> rrcov:::pca.scoreplot(pcG, main = "(b) PCA based on PP")

> rrcov:::pca.scoreplot(pcH, main = "(c) ROBPCA")

> rrcov:::pca.scoreplot(pcL, main = "(d) Spherical PCA")

and the results are shown in Figure 12. All PCA methods show the two
data groups, but additionally several other inhomogeneities are visible. PCA
based on PP (b) clearly shows three data groups.

The diagnostic plots mentioned in Section 5.5 are shown for the resulting
PCA objects by

> plot(pcC, main = "(a) Classical PCA")

> plot(pcG, main = "(b) PCA based on PP")

> plot(pcH, main = "(c) ROBPCA")

> plot(pcL, main = "(d) Spherical PCA")

which gives the plots in Figure 13. The symbols used in the plots refer to
the information from other studies [15, 38] if an observation was identified
as outlier (×) or not (◦). It can be seen that classical PCA (a) shows some
outliers, but also regular observations are declared as outliers. In addition,
there is no clear grouping structure visible. The robust PCA methods all
show two groups and in addition some deviating data points. PCA based on
PP using the algorithm of Croux et al. [30] clearly flags the group with the
different detector efficiency as outliers in terms of both the orthogonal and
the score distance. ROBPCA finds almost the same answer, but the contrast
between the two groups is not as clear as for PP-based PCA. For the result
of spherical PCA, the score distance is reliable but the orthogonal distance
is misleading.
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Figure 12: Plots of the first two PCA scores for classical PCA (a), and robust PCA based
on projection pursuit (b), for the ROBCA algorithm (c), and for spherical PCA (d).

6. Conclusions

Robust statistical methods are available for various purposes needed espe-
cially in chemometrics: for dimension reduction, for modeling and model eval-
uation, for outlier detection, etc. Robust methods focus on modeling the data
majority, and they downweight deviating or outlying observations. Down-
weighting with weights of zero and one would correspond to omitting outly-
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Figure 13: Diagnostic plots for classical PCA (a), and robust PCA based on projection
pursuit (b), for the ROBCA algorithm (c), and for spherical PCA (d).

ing observations from the analysis. However, especially for high-dimensional
data this would result in a severe loss of information as long as the outliers
still contain some valuable information, and thus“intelligent”robust methods
adapt the weights according to the outlyingness or inconsistency of the ob-
servations. This allows to increase the statistical efficiency of the estimator,
leading to more precise results and to better models.

All methods discussed in this contribution are available in the statistical
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software environment R, freely available at http://cran.r-project.org/.
The main functions discussed here are implemented in the packages chemo-
metrics of Filzmoser and Varmuza [39] and rrcov of Todorov [40], which can
also be downloaded from the above web page. One aim of this contribution
was to demonstrate how the functions can actually be used, which results
are produced, and how they can be interpreted. However, they include many
more possibilities than mentioned here, and we refer to the package docu-
mentations for an overview. Methods for analyzing high-dimensional data
are available only recently, and it is work in progress to include functions for
other purposes, like discriminant analysis.
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