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Robust regression methods have advantages over classical least-squares (LS)
regression if the strict model assumptions used for LS regression are violated.
We briefly review LMS and LTS regression as robust alternatives to LS re-
gression, and illustrate their advantages. Furthermore, it is demonstrated how
robust regression can be used if the response variable contains relative rather
than absolute information.
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1 Introduction

In multiple linear regression we consider a linear combination of several ex-
planatory variables, and use this aggregated information to predict a response
variable. It results in estimations of parameters of a linear functional that
reveal how the response depends on the set of explanatory variables. The
least-squares method that is commonly used to obtain the estimations, leads
to the best statistical efficiency if certain model assumptions are fulfilled. On
the other hand, this method is also very sensitive to outlying observations
that could completely destroy the results and thus make any interpretation
meaningless. For this reason, many robust counterparts were proposed in the
literature. They are usually less efficient than the classical approach, but they
are in general substantially more resistant to outliers or other deviations from
the underlying regression model assumptions. The robust methods thus rep-
resent a practical and meaningful alternative to the classical approach, as far
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as both the response variable and the covariates carry absolute information.
However, in many areas data occur which include only relative information
(known nowadays under the term compositional data) where all the relevant
information is contained in the ratios rather then in the absolute values as in
the usual case. As these data induce another sample space, they need to be
transformed before regression analysis is carried out.

This contribution is organized as follows. In Section 2 a brief review of the
classical and robust regression estimators is provided. In Section 3 the basic
concepts of compositional data are presented. The final section shows how
the relative information can be used in (robust) regression analysis using a
real data example.

2 Classical and Robust Linear Regression

Multiple regression analysis forms a tool for prediction of values of a quantity,
the response variable, using known (independent) variables. The main task is
to find a functional relationship (here assumed to be a linear one) between the
response and covariates, i.e. to estimate parameters of the regression function
[4]. Let x1, . . . , xq be the q variables that we use for prediction of the response
variable y. Under the standard regression assumptions, y is a random variable
and x1, . . . , xq are assumed to be non-random. Having n observations of both
y and the explanatory quantities, the linear multiple regression model is

yi = β0 + β1xi1 + β2xi2 + · · ·+ βqxiq + εi, for i = 1, . . . , n, (1)

or in matrix form
y = Xβ + ε, (2)

with the n-dimensional vector y containing the observations of the response
variable, the random vector of errors ε (are assumed to have mean zero), and
the n × (q + 1) dimensional design matrix X with full column rank. Under
the assumption of uncorrelated components εi, with variance var(εi) = σ2,
the vector of unknown parameters can be estimated using the least-squares
(LS) method as

β̂LS = (X ′X)−1X ′y. (3)

Obviously, the estimate β̂LS minimizes the term

n∑

i=1

ε2i (β) = (y −Xβ)′(y −Xβ) = ε′ε. (4)

It is easy to verify that β̂ is the best linear unbiased estimator of β, and under
the additional assumption of normality of ε it is also the maximum-likelihood
estimator of β. Consequently, it can be used to obtain the predicted values
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ŷLS of y as

ŷLS = Xβ̂LS = X(X ′X)−1X ′y = Hy, (5)

where H = X(X ′X)−1X ′ is known as the hat matrix. The estimated resid-

uals are

ε̂LS =

√√√√
n∑

i=1

ε2i (β̂LS) = y − ŷLS = (I −H)y, (6)

where I stands for identity matrix of order n.
LS-estimation may fail if the model assumptions are violated. Data points

deviating from the linear trend can have a strong influence on the estimation
because LS regression is based on the squares of the residuals, which then
can become very large. We now illustrate this effect in linear regression with
one predictor variable.

Figure 1 (left) shows five points that approximately follow a linear trend.
Moving one observation in y-direction has a strong influence on the LS param-
eters, because also the regression line follows this movement in y-direction
(right). Also the robust regression method LTS regression (see below) has
been applied here, and the movement of the point has no effect on this esti-
mate: the dashed line representing the resulting LTS line coincides with the
LS-line of the original data (dotted).

1 2 3 4 5 6 7

0
1

2
3

4
5

6

x

y

1 2 3 4 5 6 7

0
1

2
3

4
5

6

x

y

LS (modified data)
LS (original data)
LTS (modified data)

Fig. 1 Influence of an outlier in y-direction on classical LS and robust LTS regression.

An even worse behaviour is shown in Figure 2, where in the left picture
a similar design is presented as in Figure 1 (left). When now an observation
is moved in x-direction, the LS regression line is completely changed (right).
For this reason, x-outliers are also called leverage points because they can
“lever” the LS regression line. This undesirable behaviour of LS regression
can be avoided by robust regression. The solution of LTS regression for the
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modified data is almost the same as that for LS regression for the original
data.

0 5 10

0
1

2
3

4

x

y

0 5 10

0
1

2
3

4

x
y

LS (modified data)
LS (original data)
LTS (modified data)

Fig. 2 Influence of an outlier in x-direction on classical LS and robust LTS regression.

The basic principle of robust regression is to fit the model to the data
majority that follows the linear trend [5]. Accordingly, for Least Median of

Squares (LMS) regression the function

mediani ε
2
i (β) (7)

is minimized. Here, the sum from (4) is simply replaced by a median. However,
any explicit solution for the regression coefficients as for LS regression is
not available, it has to be found using approximative algorithms. For LMS
regression it turns out that up to 50% of the data points can be moved
arbitrarily without any substantial change of the regression coefficients. This
behaviour is expressed by the breakdown point which equals 0.5.

Another very robust regression method is Least Trimmed Sum of Squares

(LTS) regression, where the term

h∑

i=1

(ε2i (β))(i) (8)

is minimized, again using a numerical procedure. Here (ε2i (β))(1) ≤ · · · ≤
(ε2i (β))(n) are the sorted squared residuals. By taking h ≈ n/2, the method
has a breakdown point of about 0.5, for larger h it moves to (n− h)/n.
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3 Relative Information and Compositional Data

As far as the response variable y carries absolute information, the preceding
considerations can be used directly. However, in many practical situations
the information is not absolute but relative, often expressed in proportions or
percentages. Examples of relative information are the unemployment rate in
selected countries, proportions of people working in agriculture, percentages
of inhabitants with tertiary education, or proportions of the household budget
spent on foodstuff. Here the usual model assumptions fail because the values
of the response variable are bounded in a certain interval, e.g. in (0, 100)
in case of percentages, and the assumption of normal distribution is thus
not meaningful. However, the problem is in fact a conceptual one and it is
inherent to the nature of the data. Namely, here the idea of the relative scale
is quite an intuitive concept of differences for them. While the difference
between 5% and 10% is the same as between 45% and 50%, the proportions
show a quite contrasting relation, because 5% is half of 10%, while 45% is
0.9 of 50%. Thinking in terms of differences in ratios is natural for this kind
of data, called in general compositional data (or compositions for short) [1],
where only the relative information is of interest. They induce the simplex
as the sample space with an own geometry, called nowadays the Aitchison
geometry. Thus, compositional data need to be moved from the simplex to
the usual Euclidean space isometrically before any statistical analysis can be
carried out. This causes in fact that the relative information is transformed
into absolute information. The best transformation for this purpose seems
to be the isometric logratio (ilr) transformation [2], for both theoretical and
practical reasons.

Here we consider a situation where only the response variable includes
relative information, but not the explanatory variables. Thus we deal with
the problem of an univariate analysis of compositional data [3]. In this case,
the ilr transformation of the response variable y simplifies to a new variable
(that reminds to the well-known logit transformation)

z =
1
√
2
ln

y

c− y
, (9)

where c corresponds to the total value of the whole (1, 100%, total amount of
inhabitants working in agriculture, total household budget in Euro) for each
observation. After ilr transformation, the values can already be used for re-
gression analysis in the sense of the previous section. After regression analysis
and a corresponding prediction for z, the results can be back-transformed to
obtain an interpretation in the sense of the original variable y.
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4 Use of Robust Regression for Compositional Data

To demonstrate the theoretical considerations numerically, we apply regres-
sion analysis to an example where the relation between the percentage of
employees in the tertiary sector and the value of the Gross Domestic Prod-
uct (GDP) per capita in the member states of the European Union is inves-
tigated. The considered data are from the year 2009. The tertiary sector is
also called “service” sector, where service provision is defined as an economic
activity that does not result in ownership, and this is in contrast to providing
physical goods. The GDP is a basic measure of a country’s overall economic
output. It is the market value of all final goods and services made within the
borders of a country in a year. The data were obtained from public sources of
the internet encyclopedia Wikipedia. Figure 3 (left) shows the data without
Luxembourg, where the response variable is already ilr-transformed. Thus
both variables contain absolute information and the regression analysis in
sense of the previous section can be applied. In the lower right corner of the
plot an outlier is clearly visible: Ireland, with a GDP of 30.900 Euro per
capita, but with only 49% of employees in tertiary sector. This outlier can
be considered as y-outlier, because it is still not exceptional in x-direction.
Still, a strong effect on LS estimation (solid line) is visible, LTS regression
is not affected by the outlier, and when excluding Ireland from the analysis,
LS would practically coincide with the LTS line.
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Fig. 3 Regression analysis for the percentage of employees in the tertiary sector after ilr
transformation (response variable) and the GDP per capita (explanatory variable) in the

member states of the European Union.

Figure 3 (right) shows the original data, together with the regression lines
from the left picture back-transformed to the original space. Note that the
back-transformation is unique, because from Equation (9) we obtain y by
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y =
c · exp(

√
2z)

1 + exp(
√
2z)

. (10)

Due to the different geometry of the simplex, the back-transformed regression
lines are no longer linear. To make the effect of the ilr transformation visible,
classical and robust regression is also applied in the wrong geometry using
the original y-variable. The results are shown by gray lines. Now Luxembourg
is projected into the plot. The GDP of Luxembourg is exceptionally high
with 65.009 Euro per capita, and 86% of the employees are in the tertiary
sector. The prediction from LTS regression in the ilr-space is closest to the
true value, while LS regression, as well as regression analysis (classical and
robust) applied in the wrong geometry differ substantially. The reasonability
of the robust approach applied in the ilr-space is confirmed by the fact that
the resulting regression line is almost unchanged if the outlier Luxembourg
is included already at the beginning of the analysis.
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