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The focus is on robust regression methods for problems where the predictor
matrix has full rank and where it is rank deficient. For the first situation, var-
ious robust regression methods have been introduced, and here an overview
of the most important proposals is given. For the latter case, robust partial
least squares regression is discussed. The way of downweighting outlying ob-
servations is important. Using continuous weights (leading to “soft” robust
methods) has advantages over 0/1 weights in terms of statistical efficiency of
the estimators. This will be illustrated for both types of regression problems.
Soft methods are particularly useful in high-dimensional settings.
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1 Introduction

The term “soft computing” was coined by Lotfi Zadeh in 1991, and it refers
to the design of intelligent systems to process uncertain, imprecise and in-
complete information. Since that time, many methods for soft computing
have been developed, and their application offers more robust and tractable
solutions than conventional techniques. The term “robust” can be seen under
various aspects. In this contribution it will be treated in the light of “robust
statistics” which includes statistical approaches that are less influenced by
outlying observations and deviations from strict statistical model assump-
tions [3]. Soft computing, and hence soft methods, are also common practice
in this field, and they refer to the way how data information is prepared
for the statistical methodology. While classical methods give equal weight
to each data point, robust methods downweight atypical observations. The
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weights could either be chosen as 0 or 1, corresponding to rejecting the ob-
servation or not, or continuously in the interval [0,1]. The latter case can be
associated with soft methods in robust statistics. Such methods should ideally
only discard data points if they are extremely distinct from the bulk of the
data. In all other cases, the information contained in the data should to some
extent be taken into account. The advantage of such a procedure is usually
an increase in statistical efficiency of the resulting estimator.

In this contribution we will focus on robust regression. Section 2 pro-
vides an overview of the most important proposals and explains the choice of
the weight functions. Section 3 contains methods that can be used for high-
dimensional problems. Here the choice of the weights is even more important.
In section 4 we compare the efficiencies of the robust regression methods by
a simulation study.

2 Robust Regression

In a multiple linear regression model we consider the observations y =
(y1, . . . , yn)t of a response variable and an n × p matrix X of non-random
predictor variables with elements xij . For a regression model with intercept
the first column of X is a column of ones. The i-th observation of the predic-
tor variables is denoted by the column vector xi = (xi1, . . . , xip)

t. The linear
regression model is then given by

yi = xt
iβ + ei for i = 1, . . . , n, (1)

with β = (β1, . . . , βp)t the unknown regression coefficients, and ei the error
terms which are assumed to be i.i.d. random variables. The goal is to estimate
the regression coefficients. For a given estimator β̂ the resulting i-th residual
is ri = ri(β̂) = yi−xt

iβ̂. The classical least squares (LS) estimator is defined
as

β̂LS = arg min
β

n∑
i=1

ri (β)2 . (2)

Under the assumptions of normally distributed errors with the same variance,
and if X has full rank, this estimator is known to have excellent statistical
properties. However, if the assumptions are violated, and in particular if
outliers are contained either in the response, in the predictors, or in both,
the performance of the LS estimator can be very poor [3].

2.1 Regression M Estimates

For this reason, the M estimator for regression was introduced as



Soft Methods in Robust Statistics 3

β̂M = arg min
β

n∑
i=1

ρ

(
ri (β)
σ̂

)
, (3)

where σ̂ is a robust scale estimator of the residuals, which makes the regres-
sion estimator scale equivariant [2]. The function ρ controls the weighting
of the scaled residuals, and it needs to be chosen carefully. It should be a
bounded function such that very large residuals will have a limited influ-
ence on the estimator. A popular choice is the bisquare (also called biweight)
family, with

ρ (r) =

{(
r
k

)2 (3− 3
(

r
k

)2 +
(

r
k

)4) for |r| ≤ k

1 otherwise
. (4)

The value k is a tuning parameter, balancing efficiency and robustness. For
k →∞, the corresponding estimate tends to LS and hence it becomes more
efficient but at the same time less robust. Differentiation of (3) with respect
to β gives a robustified version of the normal equations,

n∑
i=1

wi(β)(yi − xt
iβ)xi = 0 (5)

with the weights wi(β) = ψ
(

ri(β)
σ̂

)
/
(

ri(β)
σ̂

)
where ψ = ρ′. The solution

can be found by the IRWLS (iteratively reweighted least squares) algorithm.
However, the resulting estimator is only robust with respect to outliers in the
residuals, but it is still not robust against outliers in the predictor variables.
This can be seen in the definition of the weights wi, where only outliers in the
residual space are considered. The crucial point is the way how the residual
scale (σ̂ in Equation (3)) is estimated.

2.2 Regression S Estimates

A possibility to estimate the residual scale is to use an M estimator of scale,
which is defined as the solution σ of the equation

1
n

n∑
i=1

ρ
(ri
σ

)
= δ, (6)

where ρ is a bounded ρ-function (e.g. the bisquare function) and δ is a fixed
constant with δ ∈ (0, ρ (∞)) . Dividing Equation (6) by (ri/σ)2 yields

σ2 =
1
nδ

n∑
i=1

ρ
(

ri

σ

)(
ri

σ

)2 r2i =
1
nδ

n∑
i=1

wir
2
i (7)
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with weights wi = ρ
(

ri

σ

)
/
(

ri

σ

)2. Given some starting value σ0, an iterative
procedure can be implemented to find the M estimator of scale σ̂. Using this
robust scale estimator, a robust regression estimator can be defined as

β̂S = arg min
β

σ̂
(
r1(β), . . . , rn(β)

)
(8)

resulting in the regression S estimator [1]. In can be shown that regression S
estimators satisfy Equation (5), which implies that they can be computed by
an IRWLS algorithm. Although regression S estimators achieve highest pos-
sible robustness, the efficiency of this estimator with ρ taken as the bisquare
function is only 29%, and in general it cannot exceed 33%.

2.3 Regression MM Estimates

A way to obtain the highest possible robustness with controllable efficiency
is given by regression MM estimators [8]. The procedure for the computation
is as follows [5]:

• Compute an initial estimator β̂0; this is done by a regression S estimator
(8) which is robust but inefficient.

• Compute a robust scale σ̂ of the residuals ri(β̂0); this is done by an M
estimator of scale (6).

• Compute β̂MM as a local solution of (3) using the IRWLS algorithm start-
ing from β̂0. The resulting MM estimator inherits its robustness from β̂0,
and the efficiency can be controlled by the parameter k from the bisquare
function (4). Using k = 3.44 in this step yields an asymptotic efficiency
of 0.85. A higher value is not recommended because this would lead to an
increase of the bias [3].

2.4 Hard Rejection of Outliers for Regression

Regression MM estimators use weights for the observations from the interval
[0, 1]. The further the weights are away from 1, the less information is used
from these observations. A popular regression estimator using weights of 0
and 1 for hard rejection of outliers is the LTS (least trimmed sum of squares)
estimator [4]. Similar to Equation (7), this estimator minimizes a measure of
scale, namely the trimmed squares scale

σ =

(
1
n

h∑
i=1

|r|2(i)

)1/2

, (9)
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where |r|(1) ≤ ... ≤ |r|(n) are the ordered absolute values of the residuals.
Here, h determines the trimming proportion, and for obtaining the highest
possible robustness one has to take h equal to (the integer part of) (n+ p+
1)/2. Similar to Equation (8), the LTS estimator β̂LTS is given by σ̂ that
results from minimizing (9). The asymptotic efficiency of the LTS estimator
is only about 7%. Thus, although hard rejection of outliers results in a robust
estimator, the efficiency is much lower than that of the MM estimator which
uses “soft” weights corresponding to the “useful” data information.

3 Partial Robust Regression

There exist many problems where the number of the explanatory variables is
much higher than the number of observations. This situation frequently oc-
curs in chemometrics, biostatistics, in applications of marketing and econo-
metrics, and in various other fields. Because of singularity, neither the LS
estimator could be used here, nor any of the discussed robust regression
methods. Partial least squares (PLS) regression, a method originally coming
from chemometrics, can deal with this situation, see, e.g. [7]. The idea is to
use only partial information for regression. Hence, rather than considering
the regression model (1), a so-called latent variable model

yi = ut
iγ + ei for i = 1, . . . , n, (10)

is used, where ui are score vectors of length h < p, γ are the regression coeffi-
cients, and ei the error terms. The scores ui include only partial information
contained in the original xi’s because they are of lower dimension. They are
computed by ut

i = xt
iA, with the so-called loading matrix A of dimension

p× h. The columns ak, k = 1, . . . , h, of A are obtained sequentially by

ak = arg max
a

Cov(y,Xa) (11)

under the constraints ‖a‖ = 1 and Cov(Xa,Xaj) = 0 for 1 ≤ j < k. Once
γ̂ is obtained, the final estimate for β for the original model (1) is directly
obtained as β̂ = Aγ̂.

The crucial point is the estimation of ‘Cov’ in Equation (11). For classical
PLS regression, the sample covariance is used. For the robust case, several
proposals were made, including robust covariance estimation, see [7]. Here
we refer to a highly robust and efficient method called partial robust M
regression [6]. The idea is to use for ‘Cov’ the sample covariance for weighted
observations wixi and wiyi with weights wi =

√
wu

i w
r
i , for i = 1, . . . , n. In

terms of the latent variable model (10), the weights originate from
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γ̂RM = arg min
γ

n∑
i=1

wu
i w

r
i

(
yi − ut

iγ
)2
. (12)

‘RM’ stands for robust M regression, because Equation (12) corresponds to
an M estimator (3) with weights wr

i for outliers in the residuals, but has
additional weights wu

i for outliers in the scores. The latter weights make the
estimator fully robust against all types of contamination. The weights can be
chosen according to the so-called Fair function f(z, c) = 1/

(
1 + | zc |

)2, where

wr
i = f

(ri
σ̂
, c
)

and wu
i = f

(
‖ui − ũ‖

mediani‖ui − ũ‖
, c

)
(13)

with c = 4, see [6]. Here, ri = ri(γ) = yi − ut
iγ are the residuals from

(12), σ̂ is a robust scale estimate of the residuals, and ũ denotes the robust
center of the scores. Using initial robust weights, an iterative procedure can
be formulated to obtain the solution β̂RM = Aγ̂RM, see [6]. The need for an
iterative procedure is also the reason why this rather simple weighting scheme
is recommended. An MM estimator would achieve higher efficiency, but–
depending on the dimensionality of the problem–it would cause a substantial
increase in computation time.

The weights in (13) are chosen from the interval [0, 1], and thus this is
another example of “soft weighting”. It is easy to modify the weights in
order to get hard rejection of the outliers by replacing f(z, c) in (13) by

f̃(z, c) =
{

1 if |z| ≤ c
0 otherwise (14)

with c = 2.5. The resulting estimator has the advantage that large values of
|z| have no effect, but the disadvantage that intermediate outliers are either
completely rejected of fully included.

4 Soft Versus Hard Rejection: A Simulation Study

The use of a continuous weight function, or of weights 0 and 1, will affect
the efficiency of the regression estimator. It seems obvious that soft rejection,
i.e. the use of “soft” weights, is able to include information that is potentially
relevant to improve the statistical precision of the estimator, while hard rejec-
tion may fail to use this information. Note that with both types of weighting
schemes it is possible to achieve highest possible robustness.

In the following simulation study the effects of different choices of the
weights on the efficiency of the estimators will be illustrated. For the regres-
sion model (1) we generate standard normally distributed values, forming the
elements of the n× p matrix X. For the latent variable model (10) an n× h
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score matrix U and a p× h loading matrix A are generated, both filled with
random standard normal numbers, and the predictor matrix is obtained by
X = UAt. Thus, for h < p a situation with perfect collinearity is simulated.
For each considered n and p, the predictor part is fixed. For both cases, the
true regression parameters are denoted by β0, with components randomly
drawn from a standard normal distribution, leading to a model

yi = xt
iβ0 + ei for i = 1, . . . , n. (15)

The error terms ei are simulated from various distributions: standard normal,
Laplace, Student t with 5 and 2 degrees of freedom, Cauchy, and Slash. The
latter two are heavy-tailed distributions. From every generated sample with
specific values of n, p, and h (for the latent variable model), the estimate β̂

j

is computed for j = 1, . . . ,m, using m = 1000 replications. The precision of
the estimator is measured by the mean squared error (MSE), given by

MSE =
1
m

m∑
j=1

‖β̂
j
− β0‖2. (16)

The results are shown in Figure 1 (for the regression model) and in Figure
2 (for the latent variable model). For the regression model we compare LS,
LTS, S, and MM estimation. The LS estimator performs very poor under
heavier-tailed distributions, while the robust regression methods are not much
affected by the different error distributions. Overall, the MM estimator shows
the best efficiency among the robust estimators, and it is able to compete with
LS regression under normal errors.
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Fig. 1 Simulated MSEs for LS, LTS, S, and MM regression, using different error distri-
butions (legend on the bottom), and different dimensions of the predictor matrix (legend

on top).
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For the latent variable model we compare in Figure 2 the results of clas-
sical estimation (PLS) and robust estimation using the weight function (13)
for soft rejection (PRM) and the weights (14) for hard rejection (PRM01).
Again, classical estimation dramatically fails for heavy-tailed error distribu-
tions. The efficiencies based on hard and soft weighting differ more and more
with increasing dimensionality of the predictor matrix: while they differ by
a factor of 1.1 to 1.8 for dimensions up to p = 20, the ratio increases to a
value of 2.5 to 2.8 for p = 1000. “Intelligent” robustness–in contrast to ro-
bustness based on outlier rejection–thus becomes particularly important for
high-dimensional problems, which occur frequently nowadays in practice.
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Fig. 2 Simulated MSEs for classical (PLS) and robust partial least squares regression

based on soft (PRM) and hard rejection (PRM01), using different error distributions (leg-
end on the bottom), and different dimensions and ranks of the predictor matrix (legend

on top).


