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Abstract. 

Classical PLS regression is a well-established technique in multivariate data 

analysis. Since classical PLS is known to be severely affected by the presence 

of outliers in the data or deviations from normality, several PLS regression 

methods with robust behavior towards data contamination have been proposed. 

We compare the performance of the classical SIMPLS approach with the partial 

robust M regression (PRM). Both methods are applied to three different data 

sets including outliers intentionally created. A simulated data set with known 

true model parameters allows insight in the modeling performance with 

increasing data contamination. QSPR data are modified with a cluster of 

outlying observations. A third data set from near infrared (NIR) spectroscopy is 

likely to include noise and experimental errors already in the original variables, 

and is further contaminated with outliers. To provide a sound comparison of the 

considered methods we apply repeated double cross validation. This validation 

procedure judiciously optimizes the model complexity (number of PLS 

components) and estimates the models’ prediction performance based on test 

set predicted errors. All studied robust regression models outperform the 

classical PLS models when outlying observations are present in the data. For 

uncontaminated data the prediction performance of both the classical and the 

robust model are in the same range.  

 

 

Keywords: partial robust M-regression (PRM), PLS regression; repeated 

double cross validation (rdCV), outliers, R 
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1.  INTRODUCTION 

Partial Least Squares (PLS) regression is a well-known and often successfully 

applied technique in multivariate data analysis. The typical task of regression is 

to model a response y by means of a set of explanatory variables (“features”) 

x1, …, xm. 

 

Many different PLS algorithms have been developed over the last 25 years, and 

have been implemented in various software products. For the “classical PLS” 

method as referred to in this work, we choose the SIMPLS algorithm introduced 

by de Jong [1]. Essential advantages of the PLS approach are its ability to deal 

with collinear variables and numerous x-variables, and it allows to optimize the 

model’s complexity [2]. These properties are especially useful with modern 

analytical instruments such as spectrometers, where many and strongly 

correlated x-variables are recorded.  

 

However, the classical PLS procedures are known to be severely affected by 

the presence of outliers in the data or deviations from normality [3]. The non-

robustness of PLS was justified theoretically in [4]. Outliers are different from 

the majority of the data, but they are not necessarily incorrect. Often the 

outlying observations were made under exceptional circumstances or they 

belong to another statistical population. In general, classical methods usually 

fail in identifying the outliers. Consequently, the resulting model may be fitting 

the outlying observations thus “masking” their erroneous nature (masking 
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effect). By contrast, some good data points might show up as outliers 

(swamping effect).  

Several robust alternatives to classical PLS have been proposed. Their 

common goal is to detect data contamination and estimate a regression model 

that primarily fits the “good” data. Outliers can then be identified easily by their 

residuals from this robust fit.  

 

The two main strategies for robust PLS regression are (1) downweighting of 

outliers and (2) robust estimation of the covariance matrix. The early 

approaches for robust regression by downweighting of outliers are considered 

semi-robust: they had, for instance, non-robust initial weights [5] or the weights 

were not resistant to leverage points [6]. Based on the second strategy, a robust 

covariance estimation, the robust SIMPLS method [7] provides resistance to all 

types of outliers including leverage points. The latter also applies to the “Partial 

Robust M Regression” (PRM), introduced in 2005 by Serneels et al [8]. As the 

name suggests, it is a partial version of the robust M-regression. In an iterative 

scheme, weights ranging between zero and one are calculated to reduce the 

influence of deviating observations in the y space as well as in the space of the 

regressor variables. PRM is very efficient in terms of computational cost and 

statistical properties, and therefore the robust method of choice in this paper.  

 

The objective is to compare the predictive performance of classical and robust 

PLS regression by a judicious validation method. We apply the repeated double 
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cross validation (rdCV) procedure to both regression types, and study the 

models resulting from three data sets with different characteristics. 

 

2.  METHODS 

 

2.1. Partial Robust M-Regression 
 
The PRM approach is “partial” because it follows the idea of dimensionality 

reduction by using a few latent variables. The original regressor variables are 

replaced with orthogonal latent variables with maximum covariance with y, as in 

classical PLS regression. Suppose that observations xi = (xi1, …, xim) and yi, for 

i = 1, …, n, are available, forming the (n × m) matrix X and the vector y, 

respectively. For simplicity, we assume mean-centered y. Then the original 

regression problem 

yi  = xi β + εi           (1) 

with the coefficients β = (β1,…, βm)T and the error terms εi is reduced to the 

latent variables regression model 

yi  = ti g + δi           (2) 

with the new regression coefficients g = (g1,…,ga)
T and the error terms δi. The 

new model is of lower dimension a < m, and it is in fact a regression on the 

score vectors ti, which are to be determined.  

 

In general, two types of outliers can be influential to the estimation of the 

regression coefficients: Leverage points, which are multivariate outliers in the 

space of the regressor variables, and vertical outliers, which are not atypical in 
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the regressor space but have large residuals. PRM offers good robustness 

properties by taking into account both types of outliers: a weight wx
i is 

responsible for dealing with leverage points, while a weight wr
i is relevant for 

vertical outliers. For each observation, these continuous weights are iteratively 

adjusted, in order to diminish the negative influence of outlying objects on the 

regression model. The total weight to multiply each object with is then defined 

as 

r

i

x

ii www            (3) 

Note that all PLS regressions are performed on weighted observations wi xi and 

wi yi. 

 

A brief description of the PRM algorithm: 

Step 1: Compute robust starting values for weights from data xi and yi. 

Step 2: Perform classical PLS on weighted observations wi xi and wi yi. 

Step 3: Recompute weights wr
i (from residuals), wx

i (from PLS scores), and total 

weights wi 

Step 4: Iterate step 2 and 3 until convergence of the regression coefficients 

Step 5: Obtain final regression coefficients bPRM directly from last PLS step 

 

In the first and crucial step, the weights are initialized – in a robust manner. 

Therefore, “robust autoscaling” is applied to the X matrix as well as the y vector. 

Instead of the usually applied measures mean and standard deviation, their 

robust counterparts median and median absolute deviation (MAD) are used [3]. 

The data is centered to the median, and then divided by MAD.  
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Robust autoscaling in y thus results in the intermediate distances hi  

mediani
i

mediani
i

yymedian

yy
h




         (4) 

The robust center of X can be calculated by a multidimensional median 

estimator such as the column-wise median or the L1-median x~  [9]. Then we 

yield each objects’ Euclidean distance xx ~i  to the robust center x~ . The 

robust autoscaling in X results in the intermediate distances gi  
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Note that in all subsequent steps of the algorithm, the distances gi are 

computed in the score space, i.e. according to the scores ti. 

 

By passing the intermediate distances hi and gi to a weight function, they are 

transformed to values between 0 and 1. Observations with large distances to 

the data majority receive a weight close to zero, so to have reduced influence 

on the regression model. Observations among the data majority get a weight 

close to one. We choose the “Fair” weight function [6] with a tuning constant set 

to four, which is reported to have good performance properties. The residual 

weight wr
i and the leverage weight wx

i for object i is then calculated as:  
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The transforming character of the Fair function is shown in Figure 1. By 

choosing continuous weights the dilemma of an all-or-nothing decision – the 
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object is an outlier: yes or no – can be avoided. The weight given to each object 

is corresponding to its degree of outlyingness.  

 

Once the robust starting weights are computed, we construct a model using 

classical SIMPLS on the weighted rows of X and weighted y. This analysis 

yields a first estimate of the regression coefficients g and the PLS scores ti. 

Note that the resulting scores have to be corrected by division by the total 

weight wi. At this point the residuals ri are computed: 

ri = yi - ti g           (7) 

The residual weights wr
i are then updated according to equation (4) and (6), by 

substituting yi with the residuals ri. For an update of the leverage weights wx
i, we 

replace the original x-variables in equation (5) by the current set of score 

vectors ti and apply the Fair function given in (6). The original data matrix X as 

well as vector y is reweighted with the updated total weights, and the next 

classical SIMPLS regression step is performed until convergence of the 

regression coefficients g. If the difference between the regression coefficients of 

two consecutive PLS steps is smaller than a certain threshold value, here 10-2, 

the iterative procedure is terminated. From the last regression step, the robust 

PLS model is obtained.  
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2.2. Performance criteria 
 

SEP. We estimate the prediction performance of the models based on many 

test set predicted errors (residuals), that is the difference between the 

experimental value yi and the predicted (modeled) value ŷi for an object i. The 

standard deviation of these prediction errors - usually abbreviated to standard 

error of prediction - SEP, is defined by 

 

 

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The SEP used within this work is equivalent to SEPTEST, because all predicted ŷi 

values are derived from test set objects. Applying the rdCV approach (see 

Section 2.3) the number of available ŷ-values, nSEP, is the number of objects 

times the number of repetitions. The bias is the arithmetic mean of the 

prediction errors; especially for large nSEP it is near zero.  

 

SEPTRIM. The SEP criterion becomes illusive when applied to robust models 

fitted to contaminated data. A good robust fit leads to large residuals for the 

outlying objects, whilst a classical model tends to describe outliers better - 

sometimes even better than the regular observations. Since we intend to 

assess the robust model’s performance in fitting the good data but not the 

outliers, a robust SEP measure is necessary [3]. The exclusion of a certain 
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percentage of unusually large (absolute) residuals leads to an acceptable 

robust performance criterion SEPTRIM. We choose a trimming constant of 20 %. 

This choice was also made in other papers [10], as with real data the 

percentage of outliers is unknown. Note that for data sets where only few 

outliers are expected, a smaller trimming constant can prevent too optimistic 

estimates of the prediction performance. 

 

MSE. Another statistical error criterion based on residuals computed from 

(repeated double) cross validation is the mean squared error (MSE). 

 



MSEn

i

ii
MSE

yy
n

1

2ˆ
1

 MSE         (10) 

A trimmed version of this measure, MSETRIM, is easily computed by excluding 

20 % of the largest squared residuals. In the robust repeated double cross 

validation algorithm, MSETRIM is used for an estimation of the optimum number 

of PLS components.  

 

RMSE of regression coefficients. We expect a good regression method to 

find the true underlying linear function relating X and y. Given a defined set of 

true model coefficients β and a random data set X, the calculation of a perfectly 

corresponding response y is straightforward. It is an easy task to solve the 

linear regression problem of perfectly related X and y data, obtaining estimated 

regression coefficients b that are (almost) identical with β. In case of data 

contamination or noise, however, the estimated coefficients will deviate from β. 

The RMSE indicates to what extent the predefined coefficients β are correctly 

estimated by the considered method.  



 11 

The RMSE of the estimated regression parameters b = (b1,…,bm)T is introduced 

as:  

 




m

j

jj b
m

1

21
 RMSE          (11) 

where β denotes the true model coefficients. Ideally, the RMSE value is close to 

zero. 

 

2.3. Repeated double cross validation (rdCV) 

Model evaluation is of high importance in chemometrics. For that purpose, we 

use repeated double cross validation [11]. This procedure allows a reasonable 

estimation of the optimum model complexity (number of PLS components) as 

well as the prediction performance. A randomly chosen subset of data – the 

calibration set – is subjected to a k-fold cross validation loop, yielding a first 

suggestion for the optimum model complexity. Subsequently, a model for the 

entire calibration set is constructed and applied to the left out test data. Due to 

the repetitive nature of rdCV, the variability of optimum model complexity as 

well as the variability of test set predicted errors with different data subsets is 

accessible. The rdCV procedure combined with classical PLS is published in 

detail in [11], and an application is presented in [12]. A fair comparison of 

classical and robust PLS models requires a comparable validation technique. 

Therefore, we implemented the robust PRM method into the three nested loops 

of the rdCV procedure. The pseudo-code is as follows: 
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Repetition loop: FOR  = 1 TO nREP  

 (1)  Split all n objects randomly into SEGTEST segments (typically 3-10) of  

 approximately equal size. 

 (2)  Outer loop: FOR  = 1 TO SEGTEST  

  (a)  Test set = segment with number  (nTEST objects) 

  (b)  Calibration set = other SEGTEST - 1 segments (nCALIB objects) 

  (c)  Split calibration set into SEGCALIB segments (typ. 4-10) of  

  approximately equal size. 

  (d)  Inner loop: FOR  = 1 TO SEGCALIB 

   (i)  Validation set = segment with number  (nVAL objects) 

   (ii)  Training set = other SEGCALIB - 1 segments (nTRAIN  

   objects) 

   (iii)  Make PRM models from the training set, with a = 1, ...,  

   aMAX  components 

(iiii)   Apply the PRM models to the validation set, resulting 

in ŷCV  for the objects in segment  for a = 1, ..., aMAX 

         NEXT   

  (e)  Estimate optimum number of components, aOPT, from ŷCV of  

  the calibration set by the “one-standard error” method (see below),  

  giving aOPT () for this outer loop. 

  (f)  Make PRM models from the whole calibration set  

for a = 1, ..., aMAX components 

  (g)  Apply the models to the current test set, resulting in test-set  
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  predicted ŷ for nTEST  test set objects and a = 1, ..., aMAX   

  components. 

       NEXT  

 (3)  After completing the outer loop, we have one test-set predicted ŷ for 

 each of the n objects for aMAX different model complexities 

NEXT   

 

(A.) After completing the repetition loops, a 3-dimensional data array consisting 

of test-set predicted ŷ for each object, every repetition, and all considered 

numbers of components is available. The calculation of the corresponding 

prediction errors is straightforward.  

(B.) The choice of a final optimum number of PLS components, aFINAL, is based 

on all (SEGTEST times nREP) available values for aOPT and picks the value with 

the highest frequency. Note that aFINAL is determined without using test set 

predicted values. 

(C.) Eventually, the residuals at aFINAL for all the repetitions are summarized in 

the performance criterion SEPTRIM.  

 

Steps (f) and (g) are primarily important for model diagnostic plots, and could be 

omitted to speed up calculations. Having finished the rdCV procedure, a final 

regression model for future use is built from all objects with aFINAL components. 

Unless this robust model is applied to new samples that are from a very 

different data population, the future prediction errors can be expected within the 

range of  2 SEPTRIM.  
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Note: The optimum number of PLS components is based on a „one-standard 

error“ rule [3,13]. The error criterion used to estimate the optimum number of 

components, aOPT, is the MSETRIM. With, for instance, seven segments in the 

inner rdCV loop (SEGCALIB) there are seven MSETRIM values available. For each 

model complexity a, the mean as well as the standard deviation of MSETRIM is 

computed. The least complex model within one standard error of the best is 

chosen as optimum. The pseudo-code given for PRM also applies to PLS; 

except that non-trimmed MSE values are used within the one-standard error 

rule for PLS models. 
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3.  SOFTWARE AND DATA 

 

3.1. Software 

The free software R offers an environment with focus on statistical data analysis 

and graphical representation [14]. It is licensed under the GNU General Public 

License (GPL) and available from the Comprehensive R Archive Network 

(CRAN). R is an open source programming language that is easily extended by 

freely available collections of functions (“packages”). The package “pls”, for 

instance, provides routines for principal component regression (PCR) and the 

partial least-squares regression (PLS) used within our rdCV functions [15]. We 

employ the rdCV function “mvr_dcv” for classical PLS as available in the R-

package “chemometrics” [16]. The function manages the data and passes the 

settings for the nested loops in rdCV, e. g. number of segments for creation of 

test, calibration and validation sets. The package “chemometrics” also provides 

the partial robust M regression algorithm in the function “prm”. Additionally, a 

single k-fold cross-validation procedure for PRM is implemented in “prm_cv”. 

We developed “prm_dcv”, the robust counterpart to “mvr_dcv” employing the 

above-mentioned subfunctions for the robust method in the repetitive validation 

scheme. A typical call of both the classical and the robust PLS evaluated by 

rdCV is: 

 

library(chemometrics)      # load package “chemometrics” 

data(PAC)                  # load PAC dataset 
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class.result <- mvr_dcv(y~X, data=PAC, ncomp=20, 

method="simpls") 

rob.result <- prm_dcv(y~X, data=PAC, ncomp=20) 

 

By default, no scaling of the data is provided; the number of repetitions is 100; 

the data set is split into four segments in the outer and seven segments in the 

inner loop. This call will consider models up to 20 PLS components. Further 

parameters of "mvr_dcv" and “prm_dcv” are explained in their help files. 

 

In this work, all classical PLS models are run with 100 repetition loops. To 

reduce computational cost, the repetitions for all robust PRM models are 

reduced to 25. A comparison of computation time will be given in the Results 

section. 

 

3.2. Data 

The performance of robust and classical PLS models is compared by three 

different types of data that are intentionally contaminated with outliers.  

 

ART. This artificial data set is intended to compare the modeling capability of 

PLS and PRM. The data set contains 500 samples described by 10 x-variables 

and a defined underlying model with fixed coefficients β. The x-variables 

contain random numbers of a uniform distribution U(0,10) in the range of 0 to 

10. The model coefficients are randomly drawn from the uniform distribution U(-
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50,50). The corresponding response y results from a linear relationship defined 

by β (without intercept) and yields values between 0 and 1539. 

 

PAC. The second data set is associated with quantitative structure-property 

relationship (QSPR). It is available in the R-package “chemometrics” by calling 

data(PAC), and contains data for 209 polycyclic aromatic compounds. Each 

compound is characterized by 467 numerical descriptors of its approximated 3-

dimensional molecular structure (x-variables) calculated by software Dragon 

[17,18]. The goal is to model the gas chromatographic retention index as 

dependent y-variable [19]. As the molecular descriptors are calculated from the 

molecular structures, they are not prone to experimental error. Outliers are 

more likely to appear in the response variable y, the experimentally determined 

retention index, ranging from about 200 to 500.  

 

NIR. The third data set is from 166 mash samples withdrawn from bioethanol 

fermentation experiments that varied with respect to enzymatic pretreatment 

and type of feedstock (wheat, corn or rye). The samples span the range of 22 to 

88 g/L ethanol concentration, which was determined by HPLC and serves as 

the property of interest (y-variable). The first derivatives of near infrared (NIR) 

absorbance spectra in the wavelength range of 1100 to 2300 nm provide 235 x-

variables for each sample [12]. In this data experimental errors are possible in 

both X and y. 
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3.3. Creating Outliers 

Preliminary regression tests showed the absence of strong outliers in the 

above-mentioned data sets. Hence, some perturbing observations are artificially 

generated.  

 

Leverage points are constructed by substituting a fraction of the original x-

variables with a considerably higher value (“X outlier”). Therefore, the maximum 

of an x-variable xj is calculated. According to equation (12), xj,max is then 

multiplied with a random value chosen from the uniform distribution U(3,10). 

)10,3(Umax,,  joutij xx          (12) 

Typically, the first 3 % of the objects are contaminated; for instance, the first 15 

samples in the artificial data set ART, having in total 500 objects. For generating 

the outlying observations, always and only the first three x-variables (j = 1, 2, 3) 

were contaminated. This choice is rather arbitrary for the PAC and NIR data set; 

however, with the ART data it gives some interesting insights for assessing the 

final model. 

 

Vertical outliers are not contaminated in the X-space, but their original values in 

y are changed (“y outlier”) according to equation (13), which worked well for the 

used data. 

)2,(U max, meaniouti yyyy          (13) 

An outlying observation yi,out is calculated by adding or substracting (randomly) 

a value drawn from a uniform distribution of values ranging between the 
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maximum, ymax, and twice the mean, ymean. In case of a resulting negative value 

of yi,out, it is set to zero instead. 

 

A third type of outlier, belonging to the class of leverage points, is introduced by 

combination of data contamination in X and y. The creation of these three types 

of outliers is shown schematically in Figure 2 for ART data. 
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4. RESULTS 

 

4.1. ART 

The artificial data set consists of 500 samples described by 10 regressor 

variables and one response. As long as no outlying observations contaminate 

the data, the classical PLS model performs equally to the robust PRM model. 

This is primarily reflected in the RMSE value for the estimated regression 

coefficients, which is zero for the classical PLS model, and close to zero for 

PRM. With respect to the prediction performance the classical model performs 

perfectly (SEP = 0), while the robust model is slightly worse with a SEPTRIM of 2 

(Table I). 

 

If we add leverage points with errors in the first three x-variables, xi1, xi2, and xi3, 

the classical PLS method estimates regression coefficients with considerable 

deviations from the real model parameters β (see Figure 3). Evidently, the 

regression coefficients having the largest deviations are associated with the first 

three x-variables. The RMSE of the estimated regression coefficients results in 

10.1 for classical PLS, and yields 1.5 for the robust PRM method (Table I). 

Hence, the robust method succeeds in downweighting the influence of 

erroneous x data, even if the outliers are not completely excluded from the 

regression.  

 

Once we introduce not only leverage points but also vertical outliers, the 

prediction performance of classical PLS deteriorates drastically with a SEP of 
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247. Comparing the trimmed SEP values of both considered methods, the 

classical model yields about ten times higher values (SEPTRIM = 76) than the 

robust model (SEPTRIM = 8). In the investigated data set, 9 % of the samples are 

outliers – 15 samples with errors in x, another 15 with errors in y, and additional 

15 samples with errors in both x and y. In Figure 4 test set predicted y versus 

experimental (simulated) y-values for classical PLS (4a, b) and robust PRM (4c, 

d) are shown. All models discussed result from a repeated double cross 

validation procedure with an optimum model complexity determined by applying 

the one-standard error rule (see Section 2.3). For the classical PLS models, the 

validation yields 100 test set predicted y-values for every object. Due to the 

iterative reweighting loops in the robust method, the computational effort of 

PRM within the rdCV algorithm is elevated. Therefore, the number of repetitions 

for validation of the robust PLS models is reduced to 25, giving 25 test set 

predicted y-values for each sample. With the given rdCV settings the classical 

method takes 30 seconds, whilst the robust method takes 6 minutes for the 

ART data. 

 

The predicted values ŷi for all repetitions are included in Figure 4a and 4c as 

gray crosses, and give a picture of the variability of the predicted responses. 

The mean of all predicted values for each object is denoted by a black cross. In 

Figure 4a, the data points are notably spread, and the cloud containing the 

majority of data is systematically distorted from the 45° line. It would be difficult 

to select candidates for outliers based on this regression result. In contrast, the 

robust model in Figure 4c gives superior results with a distinct fit of the majority 
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of data to the optimum 45° line. Furthermore, the variation of predicted values 

with every repetition is smaller. In Figure 4b (PLS) and 4d (PRM) only the mean 

of the predicted values for each object is shown, and marked individually 

according to the type of outlier. It can be seen that the robust method computes 

exceptionally large residuals for some outlying observations, while the good 

data are fitted almost perfectly. The dangerous influence of outliers on classical 

PLS models, namely “pulling” a model towards their direction, can be observed 

in Figure 4b.  

 

4.2. PAC 

The second data set is composed of 467 molecular descriptors (x-variables) 

calculated from the 3-dimensional structure of 209 polycyclic aromatic 

compounds. As molecular descriptors will never be prone to experimental error, 

we assume error sources such as data manipulation errors, the inclusion of a 

partly wrong molecular structure, or modeling errors caused by choosing the 

wrong descriptor model. All outlying observations are computed according to 

the concept presented in Section 3.3. The outliers are allowed to be physical 

impossibilities, because in this work the focus is on observing effects of outliers 

rather than interpreting their physical meaning.  

 

The contamination of this data set is exceptional in that it is designed to affect 

only samples with low values of the gas chromatographic retention index, here 

used as dependent y-variable.  
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Evidently, the prediction performance of the classical PLS models - measured 

by SEP - deteriorates with increasing number of outliers (Table II). While the 

original data set gives a SEP of 11, the strongly contaminated data give a ten 

times higher value. The robust model becomes slightly worse by adding more 

outliers too, but it is still in the same range of prediction quality as the classical 

model without outlying observations.  

 

It is notable that the optimum number of PLS components decreases from 11 to 

1 for the classical models, once outliers are present. One might claim a higher 

model complexity for a better prediction performance; for fairness, even a value 

comparable to the robust PRM models’ optimum complexity (aFINAL = 5 and 7, 

respectively). To confirm, we consult the available diagnostic plot on SEP as a 

function of the number of PLS components (Figure 5). The optimum complexity 

is marked with the vertical dashed line at one PLS component. With higher 

model complexity, e.g. a = 4, the mean value of SEP (black line) of all 100 

repetitions (gray lines) is slightly lower. The price to be paid is having drastically 

larger variations in SEP for different test sets (repetitions), which indicates 

overfitting.  

 

The included 12 leverage objects as well as 6 vertical outliers strongly affect the 

classical PLS model. First, data points denoted as X-outliers in Figure 6a seem 

well fitted to the rest of the data. However, the regression line is definitely 

twisted by the leverage objects, especially because they form a strong cluster in 

the low value range of y and mask each other. A further effect of the outliers is 
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that the relationship between estimated and predicted y-values even indicates 

non-linearity in the data. The best achievable classical model has one PLS 

component. 95 % of the prediction errors for the gas chromatographic retention 

index are expected in the range of  2 SEP = 230, which is about 70 % of the 

mean retention index.  

 

The robust method reveals all leverage objects and downweights the flawed 

observations with weights below 0.3 (Figure 7). These samples have only a 

small influence on the modeling process, while the “good” data prevail and allow 

for a good regression model. Consequently, the test set predicted values for 

outliers have large residuals (Figure 6b). Excluding these large absolute 

residuals from the performance criterion, we get a 95 % error range for future 

prediction errors of  2 SEPTRIM = 30, which equals 8 % of the mean retention 

index y.  

 

4.3. NIR 

The third data set used comes from near-infrared spectroscopy measurements 

in 166 different liquid fermentation samples. Apart from a large range of ethanol 

concentration covered by the samples, they differ from each other with respect 

to the feedstock used and the enzymatic pre-treatment applied in the production 

process. Consequently, the original data may include observations from 

different statistical populations, which might show outlying behavior in the 

regression. Additionally, 15 outliers are created on purpose. As for the PAC 

data, the optimum model complexity decreases with increasing number of 
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outliers, in particular for the classical PLS model (Table III). Using more than 

two PLS components for the classical method promotes over-fitting of the 

outliers present in the calibration data, and gives even worse results for the 

prediction quality. In Figure 8a the X-outliers are well fitted to the data majority, 

while observations with errors in y and errors in both X and y are easily 

detectable. A systematic deviation of points being perpendicular to the 45° line 

can be observed for “good” samples with high values in experimental y. As they 

are not conspicuous in regression results of the original data (without 

contamination added), we encounter the so-called swamping effect. Because of 

the presence of outliers, good data is incorrectly fitted. 

 

The total weights assigned to each NIR sample are displayed in Figure 9. The 

robust method detects most of the introduced outliers (sample 1 to 15). In 

contrast to the results presented for the other two data sets, the influence of X-

outliers in NIR data is reduced only moderately. These outliers are influenced 

by a group of samples with slightly different multivariate data structure (samples 

16 to 52), which are withdrawn from experiments with the particular feedstock 

rye.  
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4.4. Summary 

We compared a classical PLS regression method with the partial robust M 

regression method by application of repeated double cross validation. The rdCV 

procedure is published in a previous work with focus on classical PLS (SIMPLS) 

[11], and it is freely available in the package “chemometrics” for the R 

programming environment. For this study, we extended the rdCV algorithm to 

robust PLS regression (PRM) to provide a common ground for a fair and careful 

comparison of both the considered methods.  

 

Even if the main settings for the rdCV procedure (e.g., number of segments for 

creating test, calibration, and validation sets; maximum number of considered 

PLS components) are the same for both regression methods, the robust method 

PRM needs more time for computation due to the iterative adjustment of 

weights. The compromise chosen in this work is to reduce the number of 

repetitions from 100 to 25 for PRM. The computational effort for a typical data 

set in chemometrics, such as the NIR data set, is two minutes for the classical 

PLS model and 30 minutes for the robust PLS model. Since PRM yields better 

prediction results in all investigated data sets with outliers being present, the 

higher computation time is justified. However, the rdCV procedure can be 

accelerated by omitting some calculation steps only necessary for model 

diagnostics plots. 

 

Repeated double cross validation is a reliable validation technique that provides 

a realistic estimation of the models’ prediction performance, and allows 
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optimizing the model complexity. Apart from profound model diagnostic plots 

made available by rdCV, the weights plot calculated by PRM is useful for data 

inspection, in particular for the detection of outliers. We present three data sets 

with different characteristics. The artificial data ART is simulated following a 

perfect linear relationship between x and y variables, and contain neither errors 

nor noise. The PAC data is likely to contain experimental errors and/or noise in 

the y-variables only. The most realistic chemical data set NIR is prone to 

experimental error and noise for both x- and y-variables.  
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5. CONCLUSIONS 

 

Whenever outliers are probable in the data the application of a robust method 

should be considered. The main advantage of the presented robust PRM 

method including repeated double cross validation is that no outlier detection is 

necessary prior to model creation, and a realistic estimation of the model’s 

future performance is made available. If no outliers are present in the data, the 

robust method is practically as good as the classical method. It is shown for 

artificial data that the true underlying model parameters are estimated correctly 

by PRM; in particular with aberrant observations being present in the calibration 

data the robust methods clearly outperforms classical PLS. Consequently, the 

robust models give better prediction results for non-outliers than the classical 

models. Nevertheless the problem of detecting outliers in new data remains. A 

straightforward way is to perform robust autoscaling in X (equation (5)) for both 

the new data and data used for model creation, and then calculate the robust 

weights wi
x (equation (6)). Other more sophisticated robust outlier detection 

methods are available, see for example [20]. 
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Table I.  

Regression results for ART data (n = 500, m = 10) with classical PLS and 

robust PRM regression. The data is contaminated with varying number of 

outliers in X, y and both X and y. RMSE indicates to what extent the considered 

method estimates the real model parameters correctly. Ideally, RMSE is 0. The 

models’ prediction performance is assessed by SEP and SEPTRIM, respectively, 

based on test set predicted errors. The optimum model complexity, aFINAL, is 

determined by rdCV. 

 

no. of outliers in  RMSE aFINAL SEP SEPTRIM 

X y X & y PLS PRM PLS PRM PLS PLS PRM 

0 0 0 0.0 0.1 8 4 0 0 2 

25 0 0 10.1 1.5 4 3 124 67 11 

0 25 0 7.2 2.0 3 3 190 19 6 

25 25 0 10.3 1.9 3 3 231 71 16 

15 15 15 11.0 0.7 3 3 247 76 8 
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Table II.  

Regression results for PAC data (n = 209, m = 467) with classical PLS and 

robust PRM regression using original data as well as data including vertical 

outliers and leverage points. The optimum model complexity, aFINAL, is 

determined by rdCV. The models’ prediction performance is assessed by SEP 

and SEPTRIM, respectively, based on test set predicted errors. 

 

no. of outliers in  aFINAL SEP SEPTRIM 

X y X & y PLS PRM PLS PLS PRM 

0 0 0 11 14 11 6 6 

0 10 0 1 5 108 29 14 

6 6 6 1 7 115 28 15 
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Table III:  

Regression results for NIR data (n = 166, m = 235) with classical PLS and 

robust PRM regression. The original data might contain experimental error and 

noise, and is further contaminated with each 3 % of outliers in X, y and both X 

and y. The optimum model complexity, aFINAL, is determined by rdCV. The 

models’ prediction performance is assessed by SEP and SEPTRIM, respectively, 

based on test set predicted errors. 

 

no. of outliers in  aFINAL SEP SEPTRIM 

X y X & y PLS PRM PLS PLS PRM 

0 0 0 14 15 2 1 1 

5 5 5 2 5 20 5 4 
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Figures 

 

Figure 1.  

Weight wx (or wr) to account for outliers - calculated by the Fair function. The 

origin can be considered the robust data center (median). Observations far from 

the origin are downweighted by weights much smaller than 1.  
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Figure 2.  

Scheme for creating outliers, shown for the ART data set. The first three x-

variables are changed for creation of leverage points, while the y-value is 

unchanged (sample 1-15). Additional 15 observations are contaminated in the 

y-value (vertical outliers, sample 16-30). Samples 31-45 have outliers in both xi 

and yi.  
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Figure 3.  

5 % of outlying observations in the first three x-variables of the simulated data 

set ART severely influence the estimated regression coefficients (b1, b2, b3) of 

the classical PLS model. Deviations to the real model parameters β are 

considerably lower for the robust PRM model.   
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Figure 4.  

Test set predicted y versus experimental (simulated) y-values for classical PLS 

(a, b) and robust PRM (c, d) for the simulated data set ART. The predicted y for 

every repetition is included in (a) (100 repetitions) and (c) (25 repetitions) as 

gray cross; the mean of all repetitions is denoted by black crosses. Equivalently, 

these mean values with good data and outliers marked individually are shown in 

(b, d). In all plots, a 45° line is included as target line. 
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Figure 5.  

SEP of the classical PLS model as a function of the number ob PLS 

components for PAC data with 18 outlying observations. Gray lines are for each 

of 100 repetitions. The black line is the mean of the 100 repetitions. The dashed 

lines indicate the computed optimum at one PLS component with SEP = 115. 

Higher number of components yields much larger variation in the prediction 

errors for different repetitions. 
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Figure 6.  

PAC data with 18 outliers: Test set predicted y versus experimental y-values for 

classical PLS (a) and robust PRM (b). The predicted y-values are means of 100 

repetitions for PLS and 25 repetitions for PRM, respectively. Good data and 

different types of outliers are marked individually.  
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Figure 7.  

Total weight wi assigned to each PAC sample by the robust PRM method. The 

first 18 samples are outliers created intentionally; they are unveiled and 

downweighted by PRM. Three y outliers, however, are found close to the data 

majority.  
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Figure 8.  

NIR with 15 outliers: Test set predicted y versus experimental y-values for 

classical PLS (a) and robust PRM (b). The predicted y-values are means of 100 

repetitions for PLS and 25 repetitions for PRM, respectively. Good data and 

different types of outliers are marked individually. 
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Figure 9.  

Total weight wi assigned to each NIR sample by the robust PRM method. The 

first 15 samples are outliers created intentionally that are mostly unveiled and 

downweighted. In addition, the regular samples 16 to 52 appear as outliers, too. 

Indeed, all these samples are withdrawn from experiments with a particular 

feedstock. 

 

 


