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Abstract

New imputation algorithms for estimating missing values in compositional data are introduced. A first
proposal uses the k-nearest neighbor procedure based on the Aitchison distance, a distance measure especially
designed for compositional data. It is important to adjust the estimated missing values to the overall size
of the compositional parts of the neighbors. As a second proposal an iterative model-based imputation
technique is introduced which initially starts from the result of the proposed k-nearest neighbor procedure.
The method is based on iterative regressions, hereby accounting for the whole multivariate data information.
The regressions have to be performed in a transformed space, and depending on the data quality classical or
robust regression techniques can be employed. The proposed methods are tested on a real and on simulated
data sets. The results show that the proposed methods outperform standard imputation methods. In
presence of outliers the model-based method with robust regressions is preferable.

Key words: missing values, logratio transformations, balances, robust regression, k-nearest neighbor
methods

1. Introduction

Most statistical methods cannot directly be applied to data sets including missing observations. While
in the univariate case the observations with missing information could simply be deleted, this can result in a
severe loss of information in the multivariate case. Multivariate observations usually form the rows of a data
matrix, and deleting an entire row implies that cells carrying available information are lost for the analysis.
In both cases (univariate and multivariate), the problem remains that valid inferences can only be made if
the missing data are missing completely at random (MCAR) (see, e.g., Little and Rubin, 2002). Instead of
deleting observations with missing values it is thus better to fill in the missing cells with appropriate values.
This is only possible if additional information is available, i.e. only in the multivariate case. Once all missing
values have been imputed, the data set can be analyzed using the standard techniques for complete data.

Many different methods for imputation have been developed over the last few decades. While univariate
methods replace the missing values by the coordinate-wise mean or median, the more advisable multivariate
methods are based on similarities among the objects and/or variables. A typical distance based method is
k-nearest neighbor (knn) imputation, where the information of the nearest k ≥ 1 complete observations is
used to estimate the missing values. Another well-known procedure is the EM (expectation maximization)
algorithm (Dempster et al., 1977), which uses the relations between observations and variables for estimating
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the missing cells in a data matrix. Further details, as well as methods based on multiple regression and
principal component analysis are described in Little and Rubin (2002) and Schafer (1997). Most of these
methods can deal with both, MCAR and missing at random (MAR) missing values mechanisms (see, e.g.,
Little and Rubin, 2002). Moreover, one usually assumes that the data originate from a multivariate normal
distribution, which is no longer valid in presence of outliers in the data. In this case the “classical” methods
can give very biased estimates for the missing values, and it is more advisable to use robust methods, being
less influenced by outlying observations (see, e.g., Beguin and Hulliger, 2008; Serneels and Verdonck, 2008).
Classical or robust imputation methods turned out to work well for standard multivariate data, i.e. for data
with a direct representation in the Euclidean space (see, e.g., Yucel and Demirtas, 2009). This, however, is
not the case for compositional data, and thus a different approach for imputation has to be used.

Compositional data occur frequently in official statistics (tax components in tax data, income compo-
nents, wage components, expenditures, etc.), in environmental and technical sciences, and in many other
fields. An observation x = (x1, . . . , xD)t is by definition a D-part composition if, and only if, all its compo-
nents are strictly positive real numbers, and if all the relevant information is contained in the ratios between
them (Aitchison, 1986). As a consequence of this formal definition, (x1, . . . , xD)t and its c > 0 multiple
(cx1, . . . , cxD)t contain essentially the same information. A typical example for compositional data are data
arising from a chemical analysis of a sample material. The essential information is contained in the relative
amounts of the element concentrations, and not in the absolute amounts which would depend on the weight
of the sample material. One can thus define the simplex, which is the sample space of D-part compositions,
as

x = (x1, . . . , xD)t, xi > 0, i = 1, . . . , D,

D∑
i=1

xi = κ. (1)

The constant κ represents the sum of the parts. Since only ratios between the parts are of interest, κ
can be chosen as 1 or 100, because then the parts of a composition can be interpreted as probabilities
or percentages. Note that the constant sum constraint implies that D-part compositions are only D − 1
dimensional, so they are singular by definition. This causes limitations for the statistical analysis, but the fact
that compositional data have no direct representation in the Euclidean space but only in the simplex sample
space has even more severe consequences. Applying standard statistical methods like correlation analysis or
principal component analysis directly to compositional data would give misleading results (Pearson, 1897;
Aitchison, 1986; Filzmoser and Hron, 2009; Filzmoser et al., 2009). This is also true for imputation methods
(Bren et al., 2008; Mart́ın-Fernández et al., 2003; Van den Boogaart et al., 2006; Palarea-Albaladejo and
Mart́ın-Fernández, 2008).

In this paper we introduce procedures to estimate missing values in compositional data. For this purpose,
more details on the nature and geometry of compositional data have to be provided in Section 2. Section
3 introduces an algorithm based on the k-nearest neighbor technique, and an iterative algorithm for the
estimation of missings in compositional data. A modification of the latter algorithm will allow to deal with
data that are contaminated by outliers. A small data example in Section 4 demonstrates the usefulness
of the new routines. In simulation studies in Section 5 the new procedures are compared with standard
imputation methods that are directly applied to the raw compositional data. The final Section 6 concludes.

2. Further properties of compositional data

Although compositional data are characterized by the constant sum constraint, the value of κ in Equation
(1) can be different for different observations. For example, when sample materials are only analyzed for
some chemical elements but not analyzed completely, the sum of the element concentrations of the different
samples will in general not be the same. This, however, should not affect the imputation method, because
all the relevant information is contained in the ratios between the parts of the observations.

An example is shown in Figure 1 (left). Each data point consists of two compositional parts. The dashed
line indicates the constant sum constraint, and according to Equation (1) it is chosen at κ = 1. The sum of
the compositional parts of the data points is smaller than κ. Each point could be shifted along the line from
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Figure 1: Left plot: Two-part compositional data without the constraint of constant sum. The points could be varied along
the lines from the origin without changing the ratio of the compositional parts. Right plot: According to the relative scale, the
points close to the boundary are more different than the central points, although the Euclidean distances are the same. The
Aitchison distance accounts for this fact.

the origin through the point without changing the ratio of the two compositional parts. More formally, an
observed composition x = (x1, . . . , xD)t is defined as a member of the corresponding equivalence class of x,

x = {cx, c ∈ R+}.

Thus two compositions which are elements of the same equivalence class x, contain the same information
and they are also called compositionally equivalent (Pawlowsky-Glahn et al., 2007). Therefore we could even
project the data points along the lines from the origin to the dashed line without changing the information
of the compositional data. This fact has to be considered for an appropriate choice of a distance measure.

A further geometrical peculiarity of compositional data is that data points close to the boundary of the
sample space are related in a different way than data points in the center. This fact has to be considered for
example in outlier detection (Filzmoser and Hron, 2008), but also for designing a distance measure. Figure
1 (right) shows for two-part compositional data two data points close to the boundary and two points in
the center of the sample space. Although the data pairs visually have the same distance (because we are
thinking in terms of Euclidean distances), the increase along the vertical axis of the boundary points is much
larger than that of the points in the center (for the boundary points the increase is by a factor 2 from 0.1 to
0.2, whereas for the central points the increase is only by a factor 1.2 from 0.5 to 0.6). A distance measure
that is accounting for this relative scale property is the Aitchison distance (Aitchison et al., 2000), defined
for two compositions x = (x1, . . . , xD)t and y = (y1, . . . , yD)t as

dA(x, y) =

√√√√ 1
D

D−1∑
i=1

D∑
j=i+1

(
ln

xi

xj
− ln

yi

yj

)2

. (2)

As an example, the two boundary points in Figure 1 (right) have an Aitchison distance of 0.57, whereas the
two central points have Aitchison distance 0.29.

Replacing the Euclidean distance by the Aitchison distance is necessary because the simplex sample
space has a different geometrical structure than the classical Euclidean space. Principles on this geometry
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were introduced in Aitchison (1986), and the resulting so-called Aitchison geometry holds the vector space as
well as Hilbert space properties (see, e.g., Egozcue and Pawlowsky-Glahn, 2006). This allows to construct
a basis on the simplex, and consequently standard statistical methods designed for the Euclidean space
can be used. Out of several proposals for the construction of a basis (Pawlowsky-Glahn et al., 2007), the
isometric logratio (ilr) transformation (Egozcue et al., 2003) seems to be the most convenient one. The
ilr transformation results in a D − 1 dimensional real space, and it offers good theoretical and practical
properties (Egozcue and Pawlowsky-Glahn, 2005). One important property is the isometry, meaning that
the Aitchison distance of two compositions x and y is the same as the ordinary Euclidean distance dE for
their ilr images ilr(x) and ilr(y), i.e.

dA(x, y) = dE(ilr(x), ilr(y)). (3)

Thus, the ilr transformation allows to represent compositional data in terms of the standard Euclidean
geometry, and therefore standard statistical methods can be applied. Note that this property is also ful-
filled for the centered logratio (clr) transformation (Aitchison, 1986), but this transformation results in
singular data, causing problems for robust estimation. The third well-known logratio transformation, the
additive logratio (alr) transformation (Aitchison, 1986) also yields a (D − 1)-dimensional real space. This
transformation, however, is not isometric and thus not recommended for analyzing compositional data (e.g.
Pawlowsky-Glahn et al., 2007).

An example is shown in Figure 2. The original two-part compositional data are shown in the left plot
with symbols ◦, 4, and +. Introducing a constant sum constraint would correspond to projecting the data
as indicated, resulting in data with the filled symbols. The ilr transformation reduces the dimensionality by
one, and the resulting univariate data are shown on the right-hand side of Figure 2. As it can be seen, the ilr
transformation for the original data (upper part) is the same as for the data scaled to constant sum (lower
part). The ilr transformed data clearly reveal an outlier group, originating from the data points + in the
left plot. Although Figure 2 (left) shows three data clouds, only the cloud with symbols + forms outliers,
because the other two clouds cannot be distinguished when thinking in terms of equivalence classes. This
fact has to be considered also for the estimation of missing parts in compositional data.

The ilr transformation raises a problem because the new coordinates (often called balances) have no
interpretation in the sense of the original compositional parts. This is due to the definition of compositional
data which contain only relative information, thus making a meaningful interpretation of such variables
impossible. A possible solution is to split the parts into separated groups and to construct balances repre-
senting the groups and balances representing the relations between the groups. This construction procedure
is called sequential binary partitioning (Egozcue and Pawlowsky-Glahn, 2005). The resulting balances are in
fact just orthogonal rotations, but they have the advantage that groups of variables can be directly assigned
to groups of balances.

Sequential binary partitioning is also useful in the context of estimating missing values. For example, if
the missing values are mainly contained in the first compositional part of the data, one can choose the ilr
transformation as

ilr(x) = (z1, . . . , zD−1)t, zj =

√
D − j

D − j + 1
ln

D−j

√∏D
l=j+1 xl

xj
, for j = 1, . . . , D − 1 . (4)

This choice of the balances separates all the relative information of the part x1 from the remaining parts
x2, . . . , xD. The balance z1 contains all the relative information of part x1 to all the remaining parts,
represented by z2, . . . , zD−1. This choice of the balances will be very useful for estimating missing values in
x1 by regression on the remaining variables, see Section 3.

3. Imputation methods for compositional data

In Mart́ın-Fernández et al. (2003) the estimation of missing values in compositional data was done in
the sense of the Aitchison geometry, but with the constraint of constant sum of the parts. We follow
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Figure 2: Left plot: Two-part compositional data consisting of three groups, and their projection on the line indicating constant
sum 1. While the relative information of the groups with symbols ◦ and 4 is similar, the data points of the group with symbol
+ contain very different information. Right plot: In the upper part the ilr transformed original data are shown. The lower
plot shows the ilr transformed data with constant sum constraint. This demonstrates that the constant sum constraint does
not change the ilr transformed data.

directly the definition of compositions by considering only ratios between the parts. This is realistic because
compositional data include the information in the ratios, and in many practical cases the sum of the parts
is not constant (see the example in Section 4). If the constant sum constraint is required, one can divide
all data values (the observed and the imputed values) by their sum and multiply by the desired constant.
Alternatively, Mart́ın-Fernández et al. (2003) suggested to modify only the nonmissing values.

The easiest way to impute missing values in compositional data is to replace the missing value of a part
by the geometric mean of all available data in this part. Here, one has to correct the geometric mean by the
ratio of the sum of the parts of the incomplete observation and the sum of the elements of the geometric
mean vector (center of compositional data set, see Pawlowsky-Glahn and Egozcue, 2002). This approach,
however, does not account for the multivariate data structure, although it is often used for imputation of
missing values for compositional data sets. Another approach was introduced by Palarea-Albaladejo and
Mart́ın-Fernández (2008). Here the EM-algorithm (Dempster et al., 1977) for alr-transformed compositional
data was used for the imputation. Although this algorithm was originally introduced for replacing rounded
zeros, it can be adapted for estimating missing values. In the following, this algorithm will be denoted by
alr-EM.

In the following we present two new approaches that use the multivariate data information for imputation.

3.1. k-nearest neighbor (knn) imputation
knn imputation turned out to be successful for standard multivariate data (Troyanskaya et al., 2001).

The idea is to use a distance measure for finding the k most similar observations to a composition containing
missings, and to replace the missings by using the available variable information of the neighbors. In the
context of compositional data we have to use an appropriate distance measure, like the Aitchison distance
(Section 2).

Suppose that a composition contains missing values in several cells. Then the imputation can be done
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(1) simultaneously for all cells, by
(a) searching the k-nearest neighbors among all complete observations,
(b) searching the k-nearest neighbors among observations which may be incomplete, but where the

information in the variables to be imputed plus some additional information is available;
(2) sequentially (one cell after the other), by

(a) searching the k-nearest neighbors among observations where all information corresponding to the
non-missing cells plus the information in the variable to be imputed is available,

(b) searching the k-nearest neighbors among observations where in addition to the variable to be
imputed any further cells are non-missing.

For estimating the missing parts of a composition, the approaches in (1) use the information of the same
k observations, whereas for the approaches in (2) the k observations can change during the sequential
imputation. In the following we will use the approach (2a) because in general more neighbors will be
considered for imputation, and requesting more information per observation will lead to a more reliable
imputation result.

For imputing a missing part of a composition we use the median of the corresponding cells of the k-
nearest neighbors. However, we first have to adjust the cells according to the overall size of the parts. This
was not necessary for finding the k-nearest neighbors, because the Aitchison distance is the same for any
compositions x and y belonging to equivalence classes x and y (see Section 2).

More formally, let us consider a composition xi = (xi1, . . . , xiD)t, i = 1, . . . , n, with n the number of
observations, and let Mi ⊂ {1, . . . , D} denote the set of indexes referring to the missing cells of xi. Then
Oi = {1, . . . , D}\Mi refers to the observed parts of xi. For imputing a missing cell xij , for any j ∈ Mi, we
consider among all remaining compositions those which have non-missing parts at positions j and Oi, and
compute the k-nearest neighbors xi1 , . . . ,xik

to the composition xi using the Aitchison distance. The j-th
cell of all k-nearest neighbors is of interest for imputation. First we have to adjust these cells by factors
comparing the size of the parts in Oi. The adjustment factors can be taken as

fiil
=

∑
o∈Oi

xio∑
o∈Oi

xilo
for l = 1, . . . , k. (5)

Using these factors as weights for the observations will make the k-nearest neighbors comparable. The
imputed value replacing the missing cell xij is

x∗ij = median{fii1xi1j , . . . , fiik
xikj} . (6)

By taking the median we obtain robustness to outliers in the j-th parts of the k-nearest neighbors.
Although the choice of the adjustments in (5) is coherent with the definition (1) of compositional data,

a more robust version could be preferable. In the example and in the simulations below we will thus use the
adjustment factors

f∗iil
=

median
o∈Oi

xio

median
o∈Oi

xilo
for l = 1, . . . , k, (7)

which will lead to more stable results for contaminated data.
knn imputation is numerically stable (no iterative scheme is required), but it has some limitations. First

of all, the optimal number k of nearest neighbors has to be determined. Ideally, this number can be found
within a simulation, by randomly setting observed cells to missing, estimating these missings based on
different choices for the number k, and measuring the error between the imputed and the originally observed
values. The k producing the smallest error can be considered as optimal. A further limitation concerns small
sample sizes. It can happen that when searching for the nearest neighbors using the available information (in
fact using subcompositions), the Aitchison distance can lead to nearest neighbors that contain much worse
information for estimating the missing values than data points being further away. This, however, could
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also happen when using the Euclidean distance for standard multivariate data (Troyanskaya et al., 2001)
for searching the nearest neighbors. Therefore, whenenver small sample sizes occur, one has to be aware of
this problem with the knn approach. Fortunately, most practical data sets nowadays are of reasonable size.

Finally, knn imputation does not fully account for the multivariate relations between the compositional
parts. This is only considered indirectly when searching for the k-nearest neighbors.

From this point of view, the quality of the imputation may be improved by a model-based imputation
procedure, as introduced in the following section.

3.2. Iterative model-based imputation
Our focus is on an iterative regression-based procedure. In each step of the iteration, one variable is

used as a response variable and the remaining variables serve as the regressors. Thus the multivariate
information will be used for imputation in the response variable. Since we deal with compositional data we
cannot directly use the original data in regression, but we have to work in a transformed space. For this
purpose we choose the ilr transformation with the concept based on balances, because of its advantageous
properties. However, already for constructing the balances a data matrix with complete information is
needed, see Equation (4). This can be overcome by initializing the missing values with knn imputation, as
described above. A further difficulty is that several (or even all) variables have to be used for constructing
a balance. Thus, if the initialization of the missings was poor, one can expect a kind of error propagation
effect. In order to avoid this, we have to choose the balances carefully. The choice of the balances by
Equation (4) is an attempt in achieving the highest possible stability with respect to missing values. For
example, the missing values that are replaced in the first variable x1 will only affect the first balance z1, but
they have no influence on the remaining balances. Thus, using such a sequential binary partition will cause
that as few as possible balances are affected by the missing values.

Considering a data matrix with n observations and D parts, Equation (4) can be rewritten for the i-th
composition xi = (xi1, . . . , xiD)t, i = 1, . . . , n, as ilr(xi) = zi = (zi1, . . . , zi(D−1))t, where

zij =

√
D − j

D − j + 1
ln

D−j

√∏D
l=j+1 xil

xij
, for j = 1, . . . , D − 1 . (8)

The corresponding inverse transformation is ilr−1(zi) = xi = (xi1, . . . , xiD)t, with

xi1 = exp

(
−
√

D − 1
D

zi1

)
, (9)

xij = exp

(
j−1∑
l=1

1√
(D − l + 1)(D − l)

zil −

√
D − j

D − j + 1
zij

)
, for j = 2, . . . , D − 1, (10)

xiD = exp

(
D−1∑
l=1

1√
(D − l + 1)(D − l)

zil

)
(11)

(with possible normalization of the compositional parts to a chosen constant sum).
An iterative algorithm based on regression can be summarized as follows:

Step 1: Initialize the missing values using the knn algorithm based on Aitchison distances, as described
above.

Step 2: Sort the variables according to the amount of missing values. In order to avoid complicated
notation, we assume that the variables are already sorted, i.e. M(x1) ≥ M(x2) ≥ . . . ≥ M(xD),
where M(xj) denotes the number of missing cells in variable xj . Note that xj denotes now the j-th
column of the data matrix.

Step 3: Set l = 1.
7



Step 4: Use the ilr transformation (8) to transform the compositional data set.

Step 5: Denote ml ⊂ {1, . . . , n} the indices of the observations that were originally missing in variable xl,
and ol = {1, . . . , n}\ml the indices corresponding to the observed cells of xl. Furthermore, zol

l and
zml

l denote the l-th balance with the observed and missing parts, respectively, corresponding to the
variable xl. Let Zol

−l and Zml

−l denote the matrices with the remaining balances corresponding to the
observed and missing cells of xl, respectively. Additionally, the first column of Zol

−l and Zml

−l consists
of ones, taking care of an intercept term in the regression problem

zol

l = Zol

−lβ + ε (12)

with unknown regression coefficients β and an error term ε.

Step 6: Estimate the regression coefficients β in Equation (12), and use the estimated regression coefficients
β̂ to replace the missing parts zml

l by
ẑml

l = Zml

−l β̂. (13)

Step 7: Use the updated balances for back-transformation to the simplex with Equations (9)-(11). As a
consequence, the values that were originally missing in the cells ml in variable xl are updated. Note
that also the non-missing cells are updated, but the ratios between them do not change.

Step 8: Carry out Steps 4–7 in turn for each l = 2, . . . , D.

Step 9: Repeat Steps 3–8 until the Euclidean distance between the empirical covariance matrices computed
from the ilr transformed data according to Equation (8) from the present and the previous iteration
is smaller than a certain boundary.

Although we have no proof of convergence, experiments with real and artificial data have shown that the
algorithm usually converges in a few iterations, and that after the second iteration no significant improvement
is obtained.

Note that the choice of the balances by Equation (8) is of advantage in Step 5 in the iterative procedure,
because already for l = 1, the information of variable x1 with the highest amount of missings is only
contained on the left hand side of (12), but not in the explanatory variables on the right hand side.

The estimation of the regression coefficients in Step 6 can be done in the classical way by using least-
squares (LS) estimation. However, in presence of outliers we recommend using robust regression which is
able to reduce the influence of outlying observations for estimating the regression parameters in Equation
(12) (see, e.g., Maronna et al., 2006). In our experiments we used least trimmed squares (LTS) regression
because it is highly robust and fast to compute (Rousseeuw and Van Driessen, 2006). Note that robust
regression also protects against poorly initialized missing values, because the ilr transformation (8) can lead
to contamination of all other cells in the corresponding observation.

4. Numerical study with a data example

The methods described in the previous section are applied to a data set used in Aitchison (1986), p. 395.
This data set contains household expenditures on five commodity groups of 20 single men. The variables
represent housing (including fuel and light), foodstuff, alcohol and tobacco, other goods (including clothing,
footwear and durable goods) and services (including transport and vehicles). Thus they represent the ratios
of the men’s income spent on the mentioned expenditures. Since this data set is complete, we set the first
observation and the third part to missing. The observed value in this cell is 147 HK$ (former Hong Kong
dollar).

Additionally, we modify the third observation to see the influence of an outlier on the results of the
imputation. Using the procedure of Filzmoser and Hron (2008) one can see that this observation already
represents an outlier in the data set. We multiplied the value in the third column by the factors 1 (i.e. the
original data set), 2 and 10 to represent a person which is a possible alcoholic. This observation is then
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an outlier corresponding to both, the Euclidean and Aitchison geometry. This kind of outlier is denoted as
outlier 1 in the following. In a second outlier scenario, the third row of the original table was multiplied by
the factors 1, 2 and 10 to obtain the second kind of outlier which is denoted as outlier 2 in the following.
Depending on the factor, the third person has in general more money to spend, but the proportions remain
the same. Therefore this multiplication will not change anything in the Aitchison geometry, but it can affect
the estimation in the Euclidean geometry (see Section 2).

The missing value is now estimated with various imputation techniques. The results are shown in Table 1.
We apply methods that take the compositional nature of the data into account (geometric mean imputation,
iterative LS in the ilr space, iterative LTS (ilr), imputation with the alr-EM algorithm, and knn using the
Aitchison distance). For comparison we also use methods that ignore the compositional nature of the data
(arithmetic mean, EM algorithm, iterative LS without transformation, iterative LTS without transformation,
knn based on the Euclidean distance).

The resulting values in Table 1 demonstrate that methods that account for the compositional nature of
the data lead to an improvement of the estimation. Focusing on the outlier 1 scenario, the more extreme
the outlier, the worse the results using standard methods without transformation and non-robust methods
in the ilr space (geometric mean and LS (ilr)). For the outlier 2 situation, the value of the factor does
not change anything in the Aitchison geometry. Therefore, the iterative procedures based on LS and LTS
regression in the ilr-space, knn imputation based on Aitchison distances, and the alr-EM algorithm give the
same results as for the original data. When working in the appropriate space, the model-based procedures
are able to improve the initialized values from knn imputation (for knn we used k = 4 which gave the best
results). The best result is obtained for LS (ilr) with factor 2 in scenario outlier 1. Although in this case
the outlier has spoiled the regression hyperplane(s), the estimation has been improved by accident, because
moving the outlier even further away (factor 10) leads to a severe underestimation.

Table 1: Estimations of the missing value in cell [1, 3] of the expenditures data set (observed value is 147). The considered
imputation methods are geometric and arithmetic mean imputation (gmean and mean), iterative LS and LTS procedure
with and without ilr transformation, EM algorithm for alr-transformed (alr-EM) and non-transformed (EM) data, and knn
imputation based on Aitchison and Euclidean distances. original corresponds to results for the original data, outlier 1 is for
an outlying observation in both the Aitchison and Euclidean geometries, outlier 2 is for an outlier only in the Euclidean space.
The numbers 1, 2, and 10 are the multiplication factors for generating the outliers. The final values displayed in the table were
obtained as proper members of the equivalence class of the corresponding composition using Equation (5).

observed value: 147 original outlier 1 outlier 2
method \ factor 1 2 10 2 10
gmean 289.6 300.3 326.9 289.6 289.6
alr-EM 157.8 155.4 150.1 157.8 157.8
knn (Aitch.) 152.1 152.1 152.1 152.1 152.1
LS (ilr) 150.8 148.1 142.2 150.8 150.8
LTS (ilr) 150.8 150.3 150.3 150.8 150.8
mean 330.2 368.4 673.6 368.4 673.6
EM 190.2 214.9 798.4 163.5 195.6
knn (Eucl.) 155.0 155.0 155.0 155.0 155.0
LS (no transf.) 161.0 179.2 324.5 161.3 160.3
LTS (no transf.) 161.3 158.6 158.6 161.4 153.6

Let us remark that by far the worst results are obtained for the univariate imputation methods arithmetic
mean imputation and geometric mean imputation, although in the latter case the geometry on the simplex
is taken into account. The standard EM algorithm produces more satisfactory results, but the outlier has a
big influence on the quality of the estimation.

Although one cannot draw general conclusions from this simple numerical study, it gives a first impression
about the performance of different imputation methods. In the next section we will consider more general
situations using simulated data. Also a more detailed comparisons between the observed and the imputed
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values will be made based on the Aitchison distance and on the covariance structure.

5. Simulation study

For simulating compositional data we will use the so-called normal distribution on the simplex. A random
composition x follows this distribution if, and only if, the vector of ilr transformed variables z = ilr(x)
follows a multivariate normal distribution on RD−1 with mean vector µ and covariance matrix Σ (see, e.g.,
Pawlowsky-Glahn et al., 2007; Mateu-Figueras and Pawlowsky-Glahn, 2008). Thus, x ∼ ND

S (µ,Σ) denotes
that a D-part composition x is multivariate normally distributed on the simplex. Note that normality on
the simplex is independent from the chosen balances for the ilr transformation.

In a first simulation study we generate n = 100 realizations from the random variable x ∼ N 3
S(µ,Σ)

with

µ =
(

0
2

)
and Σ =

(
1.05 0.95
0.95 1.05

)
.

Using the spectral decomposition, the matrix Σ can be re-written as

Σ =
(

1
1

)
(1, 1) + 0.05

(
1

−1

)
(1,−1).

Thus, the main variability of the generated data is along one direction, and the variability along the orthog-
onal direction is small. The resulting covariance matrix thus is poorly conditioned. Although this choice
seems quite artificial, situations where only one out of many directions contains an essential portion of vari-
ability are realistic in compositional data sets (Kovács et al., 2006). Typical examples are the Arctic lake
sediment and Aphyric Skye lavas data sets (Aitchison, 1986, p. 359, 360). Each observation is then multi-
plied by a factor generated from the uniform distribution U(0, 1) on the interval (0, 1). This multiplication
does not change the equivalence class of the compositional data.

In order to see the influence of outliers on the different imputation methods, n1 + n2 out of the n
observations will be replaced by the following types of outliers:

Outlier group 1: n1 observations are simulated from N 3
S(µ1,Σ), with µ1 = (6, 0)t, and they are multiplied

by a factor generated from U(0, 10).

Outlier group 2: n2 observations are taken from the distribution N 3
S(µ,Σ), and they are multiplied by a

factor coming from U(0, 10).

Within the simulation scheme the numbers of outliers in both groups will be the same, and they will be
increased from 0 to 40, i.e. n1 = n2 = 0, 1, . . . , 40.

The role of the outlier groups is similar to the two types of outliers in the numerical study of Section
4. Outlier group 1 consists of observations that are potential outliers in the Euclidean space as well as in
the Aitchison space, whereas outlier group 2 will not have any effect in the Aitchison geometry due to the
properties of equivalence classes for compositions (see Section 2).

The amount of missing values is fixed but different for each variable. 20% of the values in the first
variable, and 10% in the second variable are set to be missing completely at random. Missing values are
only generated in the non-outlying data group (also in the subsequent simulations), because here a fair
comparison of different (classical and robust) methods is possible.

The advantage of this design in low dimension is that it is possible to visualize the generated three-
part compositions in a ternary diagram. A ternary diagram is an equilateral triangle X1X2X3 such that a
composition x = (x1, x2, x3)t is plotted at a distance x1 from the opposite side of vertex X1, at a distance
x2 from the opposite side of vertex X2, and at a distance x3 from the opposite side of vertex X3 (see, e.g.,
Aitchison, 1986). Figure 3 (left) shows a simulated data set where each of the outlier groups represents
5% of the observations. The 5 observations from outlier group 1 are shown with symbol +, the 5 points
from outlier group 2 have symbol 4, and the remaining regular points are plotted with small dots. The
points + from outlier group 1 are close to the boundary of the ternary diagram, and the points 4 from
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outlier group 2 are spread over the main data cloud. Note that the points 4 do not appear as outliers in
the ternary diagram because the different sums of the parts cannot be visualized. Figure 3 (right) shows
the two dimensions of the ilr transformed data. Here the shifted center of the points + from outlier group
1 is clearly visible, whereas the points 4 are not acting as outliers in this space.

x1 x2

x3

−2 0 2 4 6

−
1

0
1

2
3

4

z1

z 2

Figure 3: Simulated data set with 5 points from outlier group 1 (symbol +) and 5 points from outlier group 2 (symbol 4).
Left plot: 3-part compositions plotted in the ternary diagram; right plot: data after ilr transformation.

The choice of the parameters µ and Σ in the simulation study determines the shape of the raw (com-
positional) data on the simplex. The further away µ is from the null vector (indicates equilibrium on the
simplex), the closer the compositions are to the border of the simplex. The choice of the covariance matrix
Σ determines how elongated the data points appear in the ternary diagram.

The original and the imputed data values are compared by two different criteria:

Compositional error variance: Let M ⊂ {1, . . . , n} denote the index set referring to observations including
at least one missing cell, and nM = |M | be the number of such observations. The compositional error
variance is defined as

1
nM

∑
i∈M

d2
A(xi, x̂i) (14)

where xi denotes the original composition (before setting cells to missing), and x̂i denotes the com-
position where only the missing cells are imputed (see also Mart́ın-Fernández et al., 2003).

Difference in covariance structure: We denote S = [sij ] as the sample covariance matrix of the non-outlying
original ilr transformed observations zij , using for example the transformation from Equation (8)
(another ilr basis would not change our criterion introduced in the following). Further, S̃ = [s̃ij ]
denotes the sample covariance matrix computed with the same ilr transformed observations where all
missing cells have been imputed. The difference in covariance structure is based on the Euclidean
distance between both covariance estimations, namely as

1
D − 1

√√√√D−1∑
i=1

D−1∑
j=1

(sij − s̃ij)
2 =

1
D − 1

‖S − S̃‖. (15)
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Thus the compositional error variance measures closeness of the imputed values in the Aitchison geometry,
whereas the influence of the imputation to the multivariate data structure is expressed by the difference in
covariance structure.

For each considered percentage of outliers (0% to 40% per outlier group, in steps of 1%) we simulated
1000 data sets according to the above scheme, and estimated the missing values with different techniques.
Then the average for the above quality criteria is computed. The results are displayed in Figure 4, and they
confirm the findings of the numerical study in Section 4. The left column of the pictures in Figure 4 shows
the results for the non-transformed data (the imputation is done in the Euclidean space), the right column
is for the transformed data (the imputation is done in the Aitchison geometry). The top row of the pictures
shows the average of the compositional error variance, the bottom row presents the average difference in
covariance structure. Since we use the same scale, it is easy to compare the pictures of one row. If the
compositional nature of the data is ignored (left column), the results generally get worse. An exception are
the knn results for the difference in covariance structure, which are similar when using the Euclidean or the
Aitchison distance. For kNN the best results were achieved for k = 8, but other choices have a rather small
effect on the outcome.

When working in the proper geometry (right column of the pictures in Figure 4), the initial kNN
imputation can be improved considerably with the iterative model-based imputation. If no outliers are
present, the use of LS-regressions or LTS-regressions within the model-based procedure leads to comparable
results. However, in presence of outliers the robust imputation algorithm shows clear advantages over LS.
The iterative LTS procedure remains very stable up to about 35% outliers.

Both quality measures, the compositional error variance and the difference in covariance structure, are
adequate in the context of compositional data. Using corresponding measures based on the Euclidean
geometry is inappropriate in this case, which was a reason why we outlined the difference between the
Euclidean and the Aitchison geometry in detail. The methods applied in the left column of Figure 4 are
based on the Euclidean distance, but still the data are compositional data. Thus, for reasons of comparability
with methods for the Aitchison geometry, we kept the same vertical axes as for the pictures in the right
column of Figure 4.

Since the previous simulation study is limited to low dimensionality and to a special choice of the
covariance matrix, we want to provide deeper insight with more general situations. Thus, in a second and
third simulation setup n = 100 realizations from the random variable x ∼ N 10

S (µ,Σ) are generated (higher
dimension). µ is chosen as the null vector (equilibrium on the simplex), and all diagonal elements of Σ are
equal to 1. The off-diagonal elements of Σ are chosen as 0.9 for the second setup, and 0.1 for the third setup.
We thus can expect that the second setup will be advantageous for the model-based procedures, but that the
third setup is particularly difficult because of the low correlations. Only outliers of type 1 are considered,
and they are sampled from N 10

S (µ1,Σ), with µ1 = (6, 0, . . . , 0)t. The missing values are generated with
MCAR. For the second setup, the percentages of missing values in variables 1 to 10 were chosen as 20%,
10%, 5%, 2%, . . . , 2%, 0%, respectively. In the third setup they are taken as 5%, only the last variable is
without missings (which is important for the alr-EM algorithm).

Figure 5 shows the results from 1000 simulated data sets corresponding to the second (left column) and
the third (right column) simulation configuration. The results of only those imputation methods are shown
which take the compositional nature of the data into account; results of the other methods are generally
worse, although no outlier group 2 is considered. For the second setup (Figure 5, (a) and (c)), the iterative
LS method yields the best results in the uncontaminated case. In presence of up to 30% outliers, the iterative
LTS method shows the best performance. Outliers have a large effect on all other methods to both, the
compositional error variance and the difference in covariance structure. The most difficult situation, the
third simulation setup, leads to a similar behavior of all considered imputation methods (Figure 5, right
column). In presence of outliers the iterative LTS method performs slightly better.

Finally, in our simulation the missings were generated according to an MCAR situation. We also tested
the MAR situation, leading to analogous conclusions. The reason is that multivariate imputation methods
such as kNN and the proposed model-based approach can deal with MAR, but univariate mean imputation
techniques which have shown very poor performance already for MCAR cannot deal with the MAR situation
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Figure 4: Simulation results (average of the compositional error variance and the difference in variation) for kNN imputation,
model-based imputation using iterative LS and LTS regressions and EM/alr-EM algorithm. For (a) and (c) the imputation is
done in the Euclidean space (no transformation), for (b) and (d) the imputation methods are applied in the Aitchison geometry.
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Figure 5: Simulation results (average of the compositional error variance and the difference in variation) for kNN imputation,
model-based imputation using iterative LS and LTS regressions and alr-EM. (a) and (c) shows the results from the second
setup, (b) and (d) presents those from the third setup.
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either.
We also investigated other imputation methods in the Euclidean and in the Aitchison geometry, such as

univariate approaches based on arithmetic and geometric mean, the EM algorithm (Dempster et al., 1977),
iterative procedures based on principal component analysis (PCA) (Serneels and Verdonck, 2008) and their
robust counterparts (Fritz and Filzmoser, 2008), Bayesian PCA (Oba et al., 2001), and probabilistic PCA
(Bishop, 1999). Also various other well-known imputation methods for which an implementation in R (R
development core team, 2008) is available were tested (Troyanskaya et al., 2001; Kim et al., 2005; Scholz
et al., 2005) (additional methods would be available in R, but sometimes the code is erroneous). All these
methods give worse results, and in order to avoid confusion on the plots they are not shown in Figure 4 and
5 . In addition, we tested several variants for kNN imputation (as listed in Section 3.1), in combination with
different measures of location (arithmetic mean, median) for the aggregation of the k-nearest neighbors,
leading to poorer performance.

6. Conclusions

In general, the estimation of missing values in multivariate data can be done more reliably with mul-
tivariate rather than with univariate imputation techniques. However, such procedures are depending on
a realistic estimation of the multivariate data structure, because they are either model-based, covariance-
based, distance-based, or use a combination of these approaches. The estimation of either the covariance
matrix or the distance matrix is sensitive to outliers or data inhomogeneities. Even worse, the underlying
geometry of the data plays an essential role for the estimation. In the context of compositional data one
has to account for the fact that only relative information in form of ratios between the variables is relevant.
In other words, one has to work in the Aitchison geometry rather than in the usual Euclidean geometry
(Aitchison, 1986).

We have proposed two imputation methods for estimating missing values in compositional data. The first
method uses the information of the k-nearest neighbors, being defined via the Aitchison distance (Aitchison
et al., 2000). In principle, this method is not robust against outliers, since an outlying cell in an observation
will change the distance. On the other hand, if there are other observations without outlying cells that
include valuable information for imputation, the estimation of the missing value might not get much worse.
Moreover, one can increase k for kNN imputation in order to collect enough reliable information from the
neighbors. This relative robustness of kNN imputation is also visible in the simulation results (see Figure 4
and 5). In presence of contamination the robust adjustment according to Equation (7) led to better results
than the adjustment according to Equation (5) in all our tests.

The second proposed method uses kNN imputation to initialize the missing cells. Then regressions are
performed in an iterative manner, where in each step one variable serves as the response variable, and the
remaining variables as the regressors. This scheme allows to estimate the missing cells in the response with
the multivariate information contained in the regressors. However, the regressions have to be done in the
appropriate geometry, and therefore we switch to the ilr space (Egozcue et al., 2003) with a special choice
of the ilr basis. For homogeneous, outlier-free data one can use least-squares regressions, but in presence of
outliers we recommend using robust regressions, like LTS regression (Rousseeuw and Van Driessen, 2006).
The numerical study (Section 4) and the simulations (Section 5) have demonstrated that the initial kNN
estimation can be essentially improved by this approach. The simulation study has shown that not only the
distances between the true and the estimated missings remain very stable, even in presence of outliers, but
also the multivariate data structure is well preserved. Our model-based imputation procedure outperformed
also other multivariate imputation techniques, even if they are applied in the appropriate geometry.

The simulation was carried out for various different parameter configurations. Three of these simulation
setups are presented in this paper whereas one configuration (the third) could be considered as the worst
case, especially for our proposed iterative model based imputation technique, because the correlations be-
tween the parts are very low, the amount of missing values is equal in each variable, and moderate outliers
were generated only in one dimension. Nevertheless, all our results lead to the conclusion that the pro-
posed iterative method has comparable performance to other imputation methods in the worst case, but
outperforms existing imputation methods in less extreme situations.
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An implementation of our proposed procedures in R (R development core team, 2008) is available in the
package robCompositions at the Comprehensive R Archive Network, see http://cran.r-project.org/.
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