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Abstract

Environmental sciences usually deal with compositional (closed) data. When-
ever the concentration of chemical elements is measured, the data will be
closed, i.e. the relevant information is contained in the ratios between the
variables rather than in the data values reported for the variables. Data
closure has severe consequences for statistical data analysis. Most classical
statistical methods are based on the usual Euclidean geometry – composi-
tional data, however, do not plot into Euclidean space because they have their
own geometry which is not linear but curved in the Euclidean sense. This has
severe consequences for bivariate statistical analysis: correlation coefficients
computed in the traditional way are likely to be misleading, and the infor-
mation contained in scatterplots must be used and interpreted differently
from sets of non-compositional data. As a solution, the ilr transformation
applied to a variable pair can be used to display the relationship and to com-
pute a measure of stability. This paper discusses how this measure is related
to the usual correlation coefficient and how it can be used and interpreted.
Moreover, recommendations are provided for how the scatterplot can still
be used, and which alternatives exist for displaying the relationship between
two variables.
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1. Introduction

The consequences of working with closed data in univariate data anal-
ysis have recently been demonstrated (Filzmoser et al., 2009b). Most im-
portantly, the classical standard deviation should not be calculated for the
original variables and used in connection with closed data. Histograms and
density traces are frequently used to study the structure of univariate data
and to provide an idea about their distribution. Due to the special geo-
metrical properties of compositional data – they are not represented in the
standard Euclidean space but rather have curvilinear properties (from the
Euclidean point of view) and plot on the simplex (Aitchison, 1986; Egozcue
and Pawlowsky-Glahn, 2006) – these graphics will invariably provide a wrong
impression of the data distribution when used with the raw, untransformed
data. The best available transformation for compositional data (almost all
data presented in environmental sciences are compositional) is the isometric
logratio (ilr) transformation as suggested by Egozcue et al. (2003). It allows
the correct representation of compositional data in Euclidean space (Filz-
moser et al., 2009b), which is appropriate and necessary whenever distances
between observations are of importance because it reflects the standard ge-
ometry everybody is used to. Only when following such a transformation
is it possible to get a realistic impression of the underlying distribution of
a single variable and to choose the appropriate statistical tools for further
data analysis (e.g., robust methods if there are still outliers). Because envi-
ronmental data are often very right skewed, the graphical inspection of the
data has most often been done with log-transformed data. Filzmoser et al.
(2009b) could show that the log transformation will provide results that are
almost equal to the ilr transformation up to element concentrations of 10
wt.-%. This fortunate property of the log transformation is, however, lost
when entering bivariate data analysis.

This paper will investigate the consequences of working with composi-
tional data during bivariate data analysis. Here the user is most often inter-
ested in plots showing the strength of the relationship between two variables
or in the correlation between a pair of variables in a dataset. However, the
traditional interpretation of these plots assumes an underlying Euclidean ge-
ometry. Just as in the univariate case, the compositional data must first
be transformed in order to get an unbiased impression of the relationship
between two variables. In many cases a simple log transformation of each
variable is used before proceeding with a scatterplot of a variable pair, or
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prior to calculating the Pearson correlation coefficient. This procedure is in-
correct for compositional data, because the log transformation results in an
incorrect representation of the bivariate data. The problem was recognised
many years ago in classical geochemistry, studying the relation between ma-
jor and trace elements in rocks. The problem has been discussed in some
text books (e.g. Rock, 1988, –“the problem looms particularly large in geol-
ogy”), however, without presenting a real solution. Some authors have more
intuitively tried to avoid closure via plotting scattergrams of ratios rather
than of single variables (e.g. Miesch et al., 1966; Pearce, 1968) and in Russia
correlation diagrams in which major elements are expressed as ratios to the
total O content of a rock were used even earlier (Podolsky, 1962; Ivanov,
1963). Such ratios are unconstrained, however, their common denominators
introduce other correlation problems (Rock, 1988). Aitchison (1986) lays the
foundations of how to work with compositional data, however, this work is
written at a level that a non-mathematician will have difficulties to under-
stand. Due to the fact that classical statistics are all that is taught in most
undergraduate, earth and environmental sciences classes, the consequences
of continuing with data analysis in the wrong geometry have not been fully
understood and have never reached the wider geo- and environmental science
community.

1.1. Transformations for compositional data

The key reference to the statistical analysis of compositional data is
Aitchison (1986). Thus, for more than 20 years the nature of this special
type of data and how to deal with it has been known but little is done
about it. Some expert groups are aware of the problem and are working
on it, but have difficulties in reaching the wider scientific community. One
problem may be that not only the statistical treatment but also the vocab-
ulary is somewhat different from the standard case: The term “variables”
is replaced by “compositional parts”, or simply by “parts”. Accordingly,
a D-part composition is a row vector x = (x1, . . . , xD) in which all com-
ponents are positive real numbers carrying only relative information. The
latter property distinguishes this type of data from ordinary multivariate
data, in which the information is absolute. For example, a person’s height
or weight is usually given by absolute numbers, while the concentration of
chemical elements in the soil is provided as proportion of a whole, e.g. as
parts per million (ppm). When measuring all components of the soil sample,
they would sum up to 1 or 100%, or one million ppm. Due to this constant
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sum constraint inherent in the data, the geometrical space is not the usual
(Euclidean) space, but the so-called simplex sample space (Aitchison, 1986;
Egozcue and Pawlowsky-Glahn, 2006). It is important to realise that this is
also valid if not all possible compositional parts are available, i.e. even when
the the sum of the compositional parts is smaller than one. In this case
one speaks about subcompositions. The geometry of compositional data is
nowadays known under the name Aitchison geometry. As a consequence, the
distance between two observations is not measured by the Euclidean distance
that is used in daily life, but by the so-called Aitchison distance (Aitchison
et al., 2000). Standard statistical procedures, like drawing a histogram, or
computing the arithmetic mean, have thus to be based on the Aitchison ge-
ometry (Filzmoser et al., 2009b). Fortunately, there is a convenient way to
transform compositional data from the simplex sample space to the usual
Euclidean space, namely by the family of logratio transformations (Aitchi-
son, 1986; Egozcue et al., 2003). There are two transformations that provide
a one-to-one relationship from the simplex to the standard Euclidean space
with good geometric properties: the centered logratio (clr) transformation
(Aitchison, 1986) and the previously mentioned ilr transformation (Egozcue
et al., 2003). The clr transformation results in a multivariate observation
y = (y1, . . . , yD) and is defined as

y =

ln
x1√∏D
i=1 xi

. . . . , ln
xD√∏D

i=1 xi

 . (1)

Thus, each compositional part is divided by the geometric mean of all parts,
and the logarithm provides the representation in the Euclidean space. Al-
though this transformation is frequently used in practice, it has two severe
drawbacks: (a) the sum of the resulting parts is zero, i.e. y1+. . .+yD = 0, and
(b) the transformation is subcompositionally incoherent (Aitchison, 1986).
The latter property means that when different subsets of variables (parts) are
considered (e.g. because different sets of elements are reported by different
laboratories), the clr-transformed results differ in general. This has serious
consequences for bivariate data analysis, because usually a data set consists
of more than two variables, but any chosen bivariate subset of interest would
not reflect the original data. The ilr transformation, which chooses an or-
thonormal basis on the hyperplane formed by the clr transformation provides
a solution to this problem. In other words, the ilr transformation results in a
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multivariate observation z = (z1, . . . , zD−1) in (D−1)-dimensional Euclidean
space, and the new ilr variables are “technical” constructions according to a
chosen basis, like

z = (z1, . . . , zD−1), zi =

√
i

i + 1
ln

i

√∏i
j=1 xj

xi+1

, i = 1, . . . , D − 1, (2)

based on the original data. If only two parts, e.g. the two-part subcomposi-
tion (x1, x2), are considered, Equation (2) simplifies to

z =
1√
2

ln
x1

x2

. (3)

The ilr variable z is only univariate, but it includes all the relevant informa-
tion between x1 and x2 which is in fact contained in their (log)ratio.

Figure 1 visualises the functionality of the ilr transformation for two-part
compositions. In both pictures compositional data summing up to a number
between 0 and 1 (filled circles) are depicted. Since only the ratio between the
two parts of an observation is relevant, it is possible to vary the points along
the straight lines from the origin without any loss of information. Thus,
the data points could also be projected on the 135◦ line where both parts
sum up to 1. Applying the ilr transformation gives the new axis parallel to
this line, and for each data the new position on the ilr axis can be traced.
In the left picture the distances between the data points on the ilr axis are
irregular, while in the right picture they are regular. The input data leading
to these patterns are, in the first case, data for which the ratios between the
parts are regular, i.e. 0.1, 0.2, . . . , 0.9, 1/0.1, 1/0.2, . . . , 1/0.9, and, in the
second case they are multiples, i.e. 1, 2, 4, 8, 16, and 1/2, 1/4, 1/8, 1/16.
The points on the ilr axis contain only univariate information, which can be
summarised by the boxplot indicated in the figure. Specifically the length of
the box representing the spread of the points is informative as a measure of
the stability of the two compositional parts.

A disadvantage of the scale used in the ilr space (Figure 1) is that the
numbers are difficult to interpret. For example, a ratio of x1/x2 = 10 would
plot at position (1/

√
2) ∗ ln(10) = 1.63. It will thus be more convenient to

rescale the axis according to log(x1/x2), compare Equation (3). The ratio
x1/x2 = 10 will then plot at log(10) = 1, indicating the orders of magnitudes
(number of powers) by which x1 and x2 differ. This scale will be used in all
subsequent plots for the ilr space.
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Figure 1: Geometrical explanation of the ilr transformation for two-part compositions.
Left picture: regular increase of the ratios; right picture: multiple increase of the ratios.

1.2. Stability measure for compositional parts

Considering Figure 1 for identifying the strength of the relationship be-
tween the two compositional parts, it is obvious that the correlation coeffi-
cient as usually defined is no longer appropriate. This problem was discussed
many years ago (Pearson, 1897; Chayes, 1960), but it is still often neglected.
In both data examples shown, the usual correlation coefficient would be neg-
ative, but because any of the data points could be shifted along the indicated
lines without loss of information, this coefficient is meaningless. Instead, a
measure for the univariate ilr-transformed data is required, and this has al-
ready been defined for logratios by Aitchison (1986) using the concept of the
variation matrix as a measure of stability. Consider the parts x1 and x2, and
their logratio expressed by the ilr variable z by Equation (3). Then var(z)
serves as a measure of stability of the two parts, where “var” stands for the
variance. Low variability means that the ratio x1/x2 is nearly constant, i.e.
for all observations the two parts show about the same ratio. On the other
hand, high variability reflects very different ratios of the two parts among the
observations. One could normalise the measure of variability to the interval
[0,1] by defining

cor(x1, x2) = exp(−var(z)), (4)
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see Buccianti and Pawlowsky-Glahn (2005). A variability tending to zero
causes a value tending to 1, and large variability relates to a result approach-
ing zero. The notation of the result refers to a correlation coefficient of the ilr
variable, which will be denoted as ilr correlation in the following. However,
it is not a correlation in the usual sense but just a normalization of the ilr
variance.

Although these concepts were presented in the specialised literature sev-
eral years ago, it is not yet clear how to deal with them in practice. Are
the results generally different from those achieved by the traditional way of
analyzing data, e.g., calculating the usual correlation coefficient for variable
pairs? When will differences occur? The goal of this paper is to allow the
reader to get a certain feeling for these relatively new concepts and for the
consequences of the continued use of unsuitable techniques with the data
at hand. Both approaches are compared for a number of practical exam-
ples and new plots are introduced that can help to give insight into the real
relationship between variable pairs.

2. Correlation coefficients based on different transformations

Correlation coefficients result in numbers lying in the range −1 to +1,
which express the relationship between two variables. The Pearson correla-
tion is the traditional way to compute a correlation coefficient, and it mea-
sures the linear relationship between two variables (see, e.g., Reimann et al.,
2008). Since environmental data frequently show a skewed distribution, the
variables are often log-transformed prior to computing the Pearson correla-
tion coefficient. The question is, however, whether such correlation coeffi-
cients will really provide useful and reliable information for compositional
data, where only ratios contain the relevant information and not the values
of the single variables themselves.

The correlation coefficient is considered as an indication of the causal re-
lationship between two variables. It is well known that this is not necessarily
true (e.g. the example of the spurious correlation between number of ba-
bies and storks). There may exist a third, ”lurking”, variable that the other
two variables are independently related to and that causes a high correla-
tion between otherwise unrelated variables. For compositional data it is, in
principle, possible to take into account all variables, because if they can be
measured they would sum up to 1. In this case, such artificial correlations
as those described before, can never appear. However, since ratios between
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the parts need to be considered, the situation becomes difficult in another
sense. For example, the traditional correlation coefficient can only be applied
to balances, resulting from an ilr transformation (see Filzmoser and Hron,
2009).

Figure 2 shows scatterplots of the log-transformed variables (upper row)
with plots of the ilr-transformed variables (lower row). The ilr transformation
results in univariate variables, plotted on the vertical axes (the horizontal
axes correspond to the index of the observations). The underlying data
are taken from the Kola moss layer, a data set with about 600 samples
of terrestrial moss analyzed for the concentration of several (39) chemical
elements (see Reimann et al., 2008). The data are available in the R-package
StatDA as data frame moss (see Filzmoser and Steiger, 2009).

On top of each figure information about the variable relationships is
printed: in the top row the Pearson correlation coefficients of the log-trans-
formed data are provided, while in the bottom row the (empirical) variance
of the ilr-transformed variables is given, together with the ilr correlation mea-
sure, see Equation (4). The variable pairs were selected in order to observe
different scenarios for the log-transformed data: high correlation (upper left),
lack of correlation (inner two in upper row), and negative correlation (upper
right). For the vertical axes of the ilr-transformed data the same scale was
used in order to emphasize the differences in variability: the two figures on
the lower left show ilr variables with low variability (high ilr correlation),
while those in the two figures on the lower right show high variability (low ilr
correlation). At first glance, the results for the ilr correlations are surprising
and counter-intuitive: there seems to be no relationship to the correlations
from the log-transformed data. Using the example plots of Figure 2, it is
possible to distinguish three situations from a non-compositional point of
view:

• Positive correlation (upper left picture of Figure 2): Co and Cu
increase by the same order of magnitude, they differ approximately by a
factor of 100. In other words, their ratio is almost constant which leads
to an ilr variable with very small variance. However, high correlation
of the log-transformed (or untransformed) data does not necessarily
lead to small ilr variance. For instance, if both variables show a strong
linear relationship, but their ranges are very different, the ilr variance
will get higher, because the ratio between the variables is instable.

• Lack of correlation (both upper middle pictures in Figure 2): Both
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Figure 2: Log-transformed (upper row) and ilr-transformed (lower row) variable pairs from
the Kola moss layer, together with measures of association.

Ca and Zn vary by about one and a half orders of magnitude, leading
to a small ilr variance. On the other hand, Ni varies by six orders of
magnitude, while Rb varies much less. Consequently, their ratio leads
to high variability.

• Negative correlation (upper right picture of Figure 2): As in the
other cases, only the stability of the ratio between the variables is a
useful measure of relationship. The stability is determined by the ilr
variance, which depends on the difference in orders of magnitude of the
single variables.

Summarizing, the correlation coefficient computed from the closed data does
not reflect the stability of the ratios of the variables (ilr variance). This,
however, is the only relevant information when investigating the relationship
between pairs of compositional parts. If both variables show only small varia-
tion (like Ca and Zn), the stability is automatically high (small ilr variance).
If both variables show high variation (Co and Cu), then the stability can
only be high (high ilr correlation) if the ratios are of similar size.

The 39 variables of the Kola moss data are now used in Figure 3 to com-
pare the correlation coefficients of the log-transformed, the clr-transformed,
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and the ilr-transformed data. In total there are 39*38/2=741 different vari-
able pairs. The left-hand picture compares the Pearson correlation coeffi-
cients for the clr-transformed data with those of the log-transformed data.
Each point in the plot refers to a variable pair, and thus there are 741 points
in the plot. The point cloud is rather unstructured. Only the highest corre-
lations appear to be high for both transformations, but generally the corre-
lations for the log-transformed and clr-transformed data are quite different.
The middle picture compares the Pearson correlation of the clr-transformed
data with the correlation of the ilr-transformed data, see Equation (4). Again
there is no relationship between both measures. Finally, the right-hand pic-
ture compares the Pearson correlation of the log-transformed data with the
correlation based on the ilr-transformed variables, with no clear relationship
between the outcomes. This exercise has been carried out with other envi-
ronmental science data sets, and the picture is essentially always the same:
the correlations based on different versions of the transformation are gen-
erally very different. Even the correlations of the log-transformed and the
clr-transformed data are, in general, not comparable. This demonstrates
that working in the wrong geometry will usually give wrong answers, which
will then lead to a completely different interpretation of the results of such
a dataset.
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Figure 3: Comparison of the correlation coefficients for different transformations of the
Kola moss data. Each point represents the correlation of a variable pair.

Note that the use of other correlation coefficients for the original log-
transformed data, like Spearman’s rank or Kendall’s tau, or even a robust
correlation coefficient (see, e.g., Reimann et al., 2008), does not solve the
problem. For example, because the data points can vary along the straight
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lines from the origin without any loss of information (Figure 1), the ranks of
the observations for the single variables become meaningless, and Spearman’s
rank correlation would yield just an arbitrary number, being close to the
Pearson correlation in case of log-normal distribution.

3. Correlation replaced by stability

The stability measure mentioned in Section 1.2 is based on an estimation
of the variance of the logratio of two compositional parts. Other than the
classical estimation by the empirical variance, more robust versions which are
less influenced by outlying observations, using the MAD (median absolute
deviation) or the IQR (interquartile range), are possible (see, e.g., Reimann
et al., 2008). The MAD is defined as

MAD(z) = 1.483 ·mediani|zi − z̃| (5)

where z̃ = median(z1, . . . , zn) is the median of the observations, and the
squared MAD is a very robust measure of variance.

Since ratios of parts account for the essential information of compositions,
and since the variance is considered as the basic statistical information, the
stability measure provides key information about how and in which way the
data vary. So far, however, the focus has been on bivariate data analysis and
on the stability measure resulting from the ilr variable of the two composi-
tional parts, even if the full data matrix included more than two variables.
In a multivariate analysis, different procedures should be used (see Section
5).

In order to develop some “feeling” for what the stability measure may
mean for real data, the Kola moss data set is used again, and an investigation
of the pair-wise relationships between Ca and all other available elements is
carried out. Note that the focus is still on the relationship between the pairs,
and not on the multivariate data. The resulting ilr-transformed variables
are shown in Figure 4 in form of boxplots, where the boxes are arranged by
decreasing values of the medians. Each boxplot represents the relationship
of a variable pair according to the ilr transformation from Equation (3), and
thus is constructed like the boxplots presented in Figure 1. The scale on
the vertical axis is already according to the orders of magnitudes of variation
between the pairs, see end of Section 1.1. The numbers on top of the plot refer
to the ilr correlation based on the squared MAD. Almost all values plot above
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zero, and thus the element Ca is more dominant in the composition, which is
not surprising considering that Ca is a major element in plants. Compared to
U, Ca is, on average, more than 5 orders of magnitude higher. The boxplots
reveal many outliers which are informative with respect to the data quality
and homogeneity. Some example pairs are shown in Figure 5: The boxplot of
the pair Ca-Sc, with many outliers on both sides, is problematic because of
the data quality of Sc. Similarly, rounding effects of Y cause various boxplot
outliers. On the other hand, the boxplot for Ca-Ni includes no outliers and
shows a wide box, which results in a relatively homogeneous data cloud in
Figure 5. Since Ni covers several more orders of magnitude than Ca, the
stability is small. Nickel is one of the main elements emitted by industry
in the survey area which causes an unusual variability. In contrast, the
elements Ca and K vary in about the same range of only one and a half
orders of magnitude, which leads to a high stability (small box, few outliers).
All major plant nutrients show this behaviour (note the order of elements on
horizontal axis).
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Figure 4: Boxplot comparison of the pairwise relationships of Ca from the Kola moss data
to all other available elements in this layer.
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Figure 5: Scatterplots of selected variable pairs (log-transformed) from Figure 4.

4. How to use scatterplots

A scatterplot is a bivariate plot presenting the observations of a variable
pair. The scatterplot is very informative because it can reveal groups and
outliers in the data, and it provides a graphical impression of the relationship
between the variables. In the context of compositional data, however, care
has to be taken because of the inappropriate geometry of scatterplots when
using the original or the log-transformed data. According to the arguments
provided in the previous sections, the shape of the point cloud in such a
scatterplot does not refer to a measure of correlation between the variables.
One could actually question whether it then still makes sense at all to draw
and study scatterplots with closed data.

A plot of a univariate ilr variable includes the relevant information on the
relation between the two variables. Is there any “loss of information” if the
scatterplot of the closed data is completely omitted and ignored?

Figure 6 shows, for selected elements of the Kola moss data set, a mod-
ified scatterplot matrix, where the upper right part shows scatterplots of
the log-transformed variables, and the lower left part presents boxplots for
the ilr-transformed pairs according to Figure 4. Obviously, the “traditional”
scatterplots show a lot of structure, which is lost in the boxplots. The struc-
ture might be caused by subpopulations in the data relating to various effects
on the regional element distribution like contamination or sea spray (see, e.g.,
Reimann et al., 2008). The stability measure does not directly reveal such
phenomena: they might just lead to a certain reduction of stability and thus
to an increase of the boxes (see above, Ca/Ni in Figure 5).

The scatterplot of the log-transformed data provides an impression of the
bivariate data in the wrong geometry. Even worse, the single variables are
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Figure 6: Scatterplot matrix for six selected elements of the Kola moss data: traditional
scatterplots of the log-transformed variables in the upper right part, and boxplots of the
ilr variables in the lower left part. The numbers on top of the boxplots provide the ilr
correlation.
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already expressed in the wrong scale (see Filzmoser et al., 2009b), and the
scatterplot does not account for the ratios between the parts, which is con-
sidered as the relevant information contained in compositional parts. Is it
thus even “allowed” to inspect such a bivariate plot? When looking at the
scatterplot Cu versus Ni in Figure 6, it can be seen that samples showing
high concentrations of Cu also have high Ni concentrations. If the maps for
Cu and Ni would be compared, they would essentially give the same impres-
sion. This is important information for the practitioner who wants to know
the distribution of the chemical elements in the survey area, and both ele-
ments are actually emitted in large amounts by the Russian nickel industry
(Reimann et al., 1998). Thus the observation in the scatterplot as such obvi-
ously provides a correct result. Though it is true that the stability between
Cu and Ni is quite high, this does not automatically mean that their maps
show the same structure. The ilr correlation between Mo and Sb is even
higher (0.94), but the scatterplot looks very different. In fact, it reveals a
group of observations in the lower right part with a different behaviour. Is
it “allowed” to focus on this group and, e.g., to go back to their locations
in the maps of Mo and Sb? The answer is yes, because this observation is
not related to a statistical correlation between the elements. Rather than
looking at correlation, the scatterplot is used as a tool for exploratory data
analysis here, in order to detect unusual data behaviour. It would thus be
incorrect to discuss a high correlation between the log-transformed element
concentrations of Mo and Sb, and to point out deviations from this corre-
lation (e.g. the group of observations with unusually high Sb values). Such
an interpretation would be misleading because the reported “correlation” ig-
nores the remaining parts of the composition, which may be responsible for
the relationship. An exploratory procedure discovers groups in the bivariate
data, and usually aims to find an explanation by going back to the univariate
information.

Whenever using a scatterplot one thus needs to be very aware that the
points as such are presented in an incorrect geometry. Thus other grouping
information could still be hidden or deviations can be incorrectly emphasized.
On the other hand, the explorative approach only tries to discover atypical
data behaviour. This can be done as long as no confirmatory procedure
like a statistical test with model assumptions is used, or a regression line
is added indicating the strength of the linear relation. In this exploratory
sense, and only in this sense, scatterplots still contain useful information.
This information should, however, never be interpreted in statistical terms.
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The plot needs to be verified using other graphics, e.g. maps, to understand
and interpret the underlying geochemical processes.

5. Multivariate extensions

Bivariate statistical analyses–even when they are combined–cannot re-
place a multivariate data analysis. A typical example was shown in Figure
6 with the scatterplot matrix. Although relationships between all pairs are
investigated, it is difficult to generate an “overall picture” of the multivariate
relationships. This is not surprising, because the same problem is encoun-
tered also in the normal case, using well-behaved (non-compositional) data.
A standard tool for investigating and presenting the multivariate data struc-
ture is the biplot which is based on the overall correlation matrix (see, e.g.,
Reimann et al., 2008). It has just been demonstrated above that the bivari-
ate correlation does not make sense when working with compositional data
- can then a procedure like principal component analysis (PCA) or factor
analysis, building on the multivariate correlation matrix make any sense?

For compositional data it is also possible to construct a biplot, but here
the basic question is how to transform the data. It is not sufficient to put to-
gether all correlations resulting from the pairwise ilr transformations, i.e. the
numbers on top of the plots in Figure 6, and to apply the usual procedure for
constructing the biplot. Here it is necessary to transform the complete data
matrix appropriately, and this can be done by the ilr transformation shown
in Equation (2). The exact procedure for constructing the biplot is presented
in Filzmoser et al. (2009a); it is important to note that the interpretation of
the biplot differs from the usual interpretation (see Aitchison and Greenacre,
2002). This method was applied to all available elements (with reasonable
data quality) from the Kola moss layer. The biplot is thus constructed with
31 elements, and the scatterplots presented in Figure 6 form a subset of this
complex data set. The results for the compositional biplot are shown in Fig-
ure 7 (right). The first two principal components express about 51% of the
total variability, and thus they can not reveal all the multivariate informa-
tion (one would have to inspect further principal components). Nevertheless,
some characteristic processes in the data become immediately visible: Co,
Cu and Ni are the main elements emitted by industry in the survey area, and
also As and Ag belong to this association of smelter-related elements (lower
right quadrant); an association of Pb, Tl, Th, U, Mo, Al, and Si (upper left
quadrant) reflects the deposition of terrigenous dust on the mosses; and a
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Mg, K, P, Ca, S, Zn and Mn association is characteristic of biological pro-
cesses in the mosses. The association Na, B and Sr indicates the input of
marine aerosols along the coast. Thus, major spatial and biological processes
in the survey area determine the first two principal components.

Since the stabilities of the ratios of the compositional parts form the input
to the compositional biplot shown in Figure 7 (right), it is possible to verify
the element associations at least for the element selection presented in the
scatterplot matrix in Figure 6 (lower left part). For example, the ratios of the
variable pairs Cu-Ni, Cu-Ag, and Ni-Ag show high stability and thus they
are closely related in the biplot. In contrast, the pairs Mo-Cu and Cr-Ni refer
to low stability, expressed by larger distances between the rays representing
the variables in the biplot.
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Figure 7: Biplots for the Kola moss data set based on the log-transformed variables (left)
and on the ilr-transformed data (right).

For comparison, also the (wrong) biplot based on the log-transformed
moss data is shown (Figure 7, left). This is the version one would see in the
vast majority of environmental applications. The difference to the ilr version
is obvious. Most importantly, in the “classical” biplot almost all the variables
are arranged only in a half-plane. This is a typical indication of working in
the wrong geometry with closed data: in the plot using the ilr-transformed
data the effect of opening the data is immediately visible. Still, the classical
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procedure works as it is supposed to work: the configuration of the variables
in this biplot approximates the correlation matrix of the log-transformed data
in the best possible way. This can even be verified by the element subset
shown in the upper right part of the scatterplot matrix (Figure 6). However,
due to using closed data the correlations based on the log-transformed data
do not reflect the real underlying variable relationships, and thus the biplot
is misleading. Without knowing the processes that become so clearly visible
when using the ilr-transformed data, the user might arrive at a completely
wrong interpretation, e.g. that the majority of elements are co-emitted by
industry.

Note that both biplots shown in Figure 7 are robust, i.e. they have been
constructed with the robust correlation matrix of the log-transformed and
ilr-transformed data, respectively (for details, see Filzmoser et al., 2009a).
This allows us to focus on the homogeneous data majority, and reduces the
influence of data outliers. Nevertheless, even a robust analysis performed on
the log-transformed data is not able to “repair” the artifacts of the geometry.

There are many other multivariate methods for presenting the multivari-
ate data structure of compositional data. Most importantly, they all have
to be based on an appropriate transformation, like the ilr transformation,
applied to the complete data matrix. A difficulty with this transformation
is the interpretation of the resulting ilr variables (Egozcue and Pawlowsky-
Glahn, 2005) which can be considered as mathematical constructions, see
Equation (2). For an interpretation in terms of the original variables the
results of the multivariate analysis have to be back-transformed, usually to
the clr space. This was also the case in Figure 7 (right), and thus the “usual”
interpretation of compositional biplots (see Aitchison and Greenacre, 2002)
is facilitated.

Filzmoser et al. (2009c) proposed factor analysis for compositional data.
In contrast to principal components, the factors are supposed to be inter-
pretable in terms of the original variables, and they can often be assigned
to certain processes in the data. Maps of the factor scores will then show
the regional distribution of these processes (for details, see Filzmoser et al.,
2009c).

6. Discussion

The discussion about an appropriate transformation of compositional
data needs to be based on the geometry inherent in the data, and not on

18



properties of the statistical distribution of the observed data values. In other
words, although a log transformation of the variables may often result in
a more symmetric statistical distribution, sometimes even in a distribution
that looks similar to a normal distribution, this does not mean that the log
transformation is suitable for the subsequent statistical analysis of environ-
mental data. The log transformation can and should be used only in the
univariate case, and if the observed values for a variable are small enough
(see Filzmoser et al., 2009b), but it is inappropriate for investigating bivariate
or multivariate relationships. There are many papers describing the special
geometry of compositional data (see, e.g., Egozcue and Pawlowsky-Glahn,
2006). The relatively new ilr transformation allows the representation of
compositional data in the standard Euclidean space and does not result in
singularity problems. The only reason why the data should be transformed
to Euclidean space is because practically all the statistical “standard tools”
are designed for this space, and they can lead to wrong conclusions when
used in another space.

When using the ilr transformation to transfer the compositional data
into Euclidean space, bivariate plots become univariate. Now the variability
of the ilr-transformed variables provides information about the relationship
between two variables. The ilr transformation can be viewed as a non-linear
transformation resulting in univariate information. The distances between
the data points correspond to the Aitchison distance reflecting the geometry
of compositional data (Egozcue and Pawlowsky-Glahn, 2006), but the scale
of the new univariate data is unfortunately not straightforward to interpret.
Rescaling the axis according to the simple logratio, and using the logarithm to
the basis 10, allows an interpretation in terms of the difference of the original
variables expressed in orders of magnitude. The larger the variability, the
smaller is the ilr correlation between the compositional parts. The smaller
the variability, the more stable is one variable with respect to the other one,
and thus the ilr correlation measure gets higher. Variability can therefore
be expressed as stability of one compositional part on the other one. This
stability may also be observed spatially in the case of spatial data. Highly
varying ratios of two elements in a survey area indicate low stability, and
consequently they result in low ilr correlation.

One of the simplest visualization tools, the scatterplot, representing the
data pairs measured on two variables in one plot, cannot be interpreted in
the usual way. It should only be used as an exploratory tool in order to
detect unusual data behaviour or data groups, but not in a confirmatory
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sense. The tendency of the point cloud in a scatterplot does not reflect the
correlation as for traditional non-compositional data and the plots should
not be used to find linear (or curve-linear) relationships. The traditional
way of linear or non-linear regression relating a response variable with an
explanatory variable is not meaningful for compositional data since the data
points only include relative information.

It is important to note that the compositional nature is inherent in the
data structure even if the sum of the considered elements is not constant or
does not equal 100 percent. For example, when adding the element concen-
trations of all the variables used in the biplots in Figure 7, the sum for the
samples is on average about 12,000 mg/kg, i.e. the element concentrations
form only about 1% of the complete sample. This is even more extreme in
the bivariate case, where only two variables are of interest for the statistical
analysis. The inappropriateness of the usual Euclidean geometry for compo-
sitional data, and the inappropriateness of statistical methods relying on this
geometry has been demonstrated for both the bivariate and the multivariate
case.

7. Conclusions

The fact that compositional (i.e. practically all environmental) data are
not represented in the standard Euclidean space leads to severe consequences
during data analysis, which become especially serious in the bivariate case.
The scatterplot cannot be interpreted in the usual way, though it can still
be used in a truly exploratory data analysis sense. Note that bivariate plots
of different ratios, the classical solution to the closure problem in petrology,
do make sense. Correlation coefficients based on raw or log-transformed
compositional data should not be calculated, the resulting values have no
statistical meaning. As a consequence, tests for lack of correlation are not
meaningful either for compositional data. It is not even clear how such a test
could be adapted appropriately for compositional data since any such test
should be based on the variance (or standard deviation) of the corresponding
ilr variable. Multivariate data analysis can provide a solution to the loss of
classical bivariate correlation analysis. Once the data are opened (i.e. ilr-
transformed) standard techniques like PCA or factor analysis can again be
used to study the relation between all variables in the multivariate space
even though these techniques are based on correlations.
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