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For almost 30 years it has been known that compositional (closed) data have special geometrical properties.
In environmental sciences, where the concentration of chemical elements in different sample materials is
investigated, almost all datasets are compositional. In general, compositional data are parts of a whole which
only give relative information. Data that sum up to a constant, e.g. 100wt.%, 1,000,000 mg/kg are the best
known example. It is widely neglected that the “closure” characteristic remains even if only one of all
possible elements is measured, it is an inherent property of compositional data. No variable is free to vary
independent of all the others.
Existing transformations to “open” closed data are seldom applied. They are more complicated than a log
transformation and the relationship to the original data unit is lost. Results obtained when using classical
statistical techniques for data analysis appeared reasonable and the possible consequences of working with
closed data were rarely questioned. Here the simple univariate case of data analysis is investigated. It can be
demonstrated that data closure must be overcome prior to calculating even simple statistical measures like
mean or standard deviation or plotting graphs of the data distribution, e.g. a histogram. Some measures like
the standard deviation (or the variance) make no statistical sense with closed data and all statistical tests
building on the standard deviation (or variance) will thus provide erroneous results if used with the original
data.

©2009 Elsevier B.V. All rights reserved.
1. Introduction

A classical example for a closed array or closed number system is a
data set in which the individual variables are not independent of each
other but are related by being expressed as a percentage or parts per
million—as almost all environmental data are. Compositional data
have been historically defined as summing up to a constant, but
nowadays they have a broader definition, as they are considered to be
parts of a whole which only give relative information (see Buccianti
and Pawlowsky-Glahn, 2005, for an example). This definition thus
also includes data that do not sum up to a constant. The problems of
undertaking statistical analyses with “closed number systems” have
been discussed much in specialized literature for more than 30 years,
mostly in connection with multivariate data analysis (e.g. Chayes,
1960; Butler, 1976; Le Maitre, 1982; Woronow and Butler, 1986;
Aitchison, 1986, 2008). However, the mathematical formalism is
difficult and the consequences of using classical statistics for com-
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positional data have thus never reached the wider environmental
community. Data closure has often been treated as a topic for
mathematical freaks, and intuitively it has been stated that this issue
might have consequences only for multivariate data analysis or if
major elements are considered in data analysis. Using practical
examples, this paper demonstrates what happens if classical statis-
tical methods are applied indiscriminately to environmental data in
the simple univariate case.

The first step in statistical data analysis of environmental data
should be to “look” at the data with appropriate graphical tools
(Reimann et al., 2008). Typically, a histogram is inspected in order to
obtain an idea about the data distribution, or a boxplot is drawn to
show the median, skewness and tailedness of the distribution and to
identify data outliers. In addition it will be of interest to estimate
mean, variance, and probably further statistical data summary
measures that characterize the observed data.

One basic question when performing these standard tasks is
whether the original data or transformed data should be used. In
environmental sciences many data are strongly right-skewed, a
histogram of the original data may be almost uninformative due to
the presence of some extreme outliers. Calculating the arithmetic
mean for right-skewed data will result in a biased (too high) estimate
of environmental (compositional) data: Problems and possibilities,
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of the central value. If a log transformation is used for such data the
histogram of a right-skewed distribution will be much closer to
symmetry or may even show the shape of a normal distribution. Since
the normal distribution plays an important role in classical statistical
estimation, it will be tempting to now compute the arithmetic mean
for the log-transformed data, and transform the results back to the
original data scale to obtain a better-suited estimate of the central
value than the arithmetic mean of the original data.

For univariate data it is always possible to use a transformation,
like the Box–Cox transformation (Box and Cox, 1964), which brings
the data (majority) as close as possible to normality. Location esti-
mates can then be computed for the transformed data, and back-
transformed to the original scale. Even outlier boundaries (Reimann
and Garrett, 2005) can be calculated using, for example, a log-scale
and can then be back-transformed to the original data scale.

However, although statistical requirements of data symmetry or
normality may appear to be fulfilled following such a transformation,
it is questionable whether this approach is meaningful given the
compositional nature of the data. If each sample was analyzed for all
possible chemical elements, the concentrations would sum up to
100%, or to 1,000,000 mg/kg. Thus the constraint of constant sum has
to have certain consequences, even for the statistical analysis of a
single element. This implies that compositional data can never be seen
as truly univariate data, even if only one component is measured. The
scientist always observes one component and the remainder, being
the composition of all remaining components. If all variables were
measured one could omit one data dimension (variable) without any
loss of information due to the constant-sum constraint. As a con-
sequence, the data are not represented in the Euclidean space, and
thus Euclidean geometry is inappropriate for such data. In fact, this
kind of data is known under the name compositional data or closed
data (Aitchison, 1986), and the constant-sum constraint implies a
special geometry, the so-called Aitchison geometry on the simplex,
being appropriate for the simplex sample space of the data.

Euclidean geometry plays an important role, even in univariate
statistical data analysis. Already for the apparently simple construc-
tion of a histogram one counts the number of data points falling into
certain intervals with equal length, measured by the Euclidean dis-
tance. Therefore, a histogram may not reveal the true distribution as
inherent in the data. Another typical example of the use of Euclidean
geometry in statistical calculations is the arithmetic mean. It is the
value with the smallest overall sum of squared Euclidean distances to
each data point. If Euclidean geometry is not valid, the arithmetic
mean is quite likely to be a poor estimate of the data center.

Generally speaking, the decision to transform the available data,
and which transformation to use, should be based on the assumed
geometry inherent to the data, and not on the shape of the histogram.
The geometry inherent to the data should be chosen using criteria
based on data scale and interpretability. If in that scale the shape of
the histogram clearly deviates from normal distribution, more
appropriate statistical estimators and models than classical (Gauss-
ian) statistics need to be used.

This paper investigates the question of how to approach the
univariate analysis of compositional data and what effect different
transformations will have on the results. The log transformation is of
special interest because it is most frequently used for analyzing
environmental data (Reimann et al., 2008).

2. Transformations for compositional data

Compositional data are surprisingly frequent, e.g. in environmental
sciences, geochemistry, chemistry, biology, technical sciences, or in
official statistics. They are defined as compositional parts (variables,
elements) that are positive and sum up to a constant c (after rescaling
the data or if all possible parts aremeasured), usually chosen as 1 or 100,
in case of percentages.More formally, anobservation x=(x1,..., xD) is, by
Please cite this article as: Filzmoser P, et al, Univariate statistical analysi
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definition, a D-part composition if, and only if, all its D components are
strictly positive real numbers, and if all the relevant information is
contained in the ratios between them (Aitchison, 1986). Then the
formerdefinition is a consequenceof thismore formal one. It is tempting
to argue that for univariate data analysis, there is only D=1 part, and
thus that this concept can be ignored. However, the values of the
considered element are parts of thewhole, and the information that has
to be analyzed is the proportion of the element in the complete sample,
forming 100%. The data unit (mg/kg, ppm—parts per million, etc.)
expresses this fraction, and the values would not change if the sample
had twice the volume(assumingequal distributionof the element in the
sample). The above definition must also be considered for univariate
data. Even a single variable carries, in fact, all the relevant information in
the ratio on the whole.

If the values of only one variable are available or of interest, it is
actually unclear what “ratio” means. An observation x=(x1,..., xD)
would thus have to be considered as a composition with D=2 parts,
namely the part that has been observed and the remaining part,
including the contributions of all the other variables. Summarizing the
information of several variables in a single part is called amalgamation
(Aitchison, 1986). Amalgamation is a non-linear projection in the
Aitchison geometry, and the result will in general depend on which
variables are summarized (for more details see Discussion). For this
the notation, x=(x,1−x) can thus be used, assuming that the part x is
given as a fraction of the whole with constant sum c=1 (this can be
easily adjusted if the unit is %, mg/kg, etc.).

Various possibilities for data transformation of compositional data
have been introduced in the literature; the most widely used is the
family of one-to-one logratio transformations (Aitchison, 1986). The
additive logratio (alr) transformation considers log transformations of
the ratios formed by the compositional parts. For a D-part composi-
tion x the alr transformation is defined as:

alrðxÞ = ln
x1
xj

;…; ln
xj−1

xj
; ln

xj+1

xj
;…; ln

xD
xj

 !
ð1Þ

where j is an element of the set {1,..., D}. Thus, one part with index j is
selected as the denominator for building the logratios. The alr
transformation has often been criticized as being subjective, since
the results depend on the choice of the part that is used as
denominator (Aitchison, 1986). This subjectivity of alr is avoided by
the centered logratio (clr) transformation, defined for a D-part
composition x as:

clrðxÞ = ðy1;…; yDÞ = ln
x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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i = 1xi
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In the case of D=2 parts the formula for alr is:

alrðxÞ = ln
x

1−x

� �
= lnðxÞ− lnð1−xÞ: ð3Þ

Thus, the choice of the denominator in alr is unique. The clr
transformation would even yield two variables, the logratio of each
part with the geometric mean—a further problem for univariate data
analysis. Isometric logratio (ilr) transformations (Egozcue et al., 2003)
are another useful class of logratio transformations with good
theoretical properties. For a D-part composition x, an ilr transforma-
tion can be chosen as z=(z1,..., zD−1)=ilr(x) with:

zi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D−i

D−i + 1

r
ln

xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∏D

j = i + 1xj
D−i
q ; for i = 1;…;D−1: ð4Þ
s of environmental (compositional) data: Problems and possibilities,

http://dx.doi.org/10.1016/j.scitotenv.2009.08.008


3P. Filzmoser et al. / Science of the Total Environment xxx (2009) xxx–xxx

ARTICLE IN PRESS
Note that z has only D−1 components. For D=2 parts the result is:

z = ilrðxÞ =
ffiffiffi
1
2

r
ln

x
1−x

� �
; ð5Þ

resulting in a univariate variable.
Here alr and ilr transformation gives a very similar result, differing

only by the factor
ffiffiffiffiffiffiffiffi
1=2

p
. Note that the result is also similar to the logit-

transformation,which is definedwith the factor 1/2, andwhich ismainly
used for data consisting of proportions (Johnson and Wichern, 2007).

The factor is not important for univariate data analysis: the form of
the histogram does not change, boxplot boundaries remain un-
changed, and the back-transformed arithmetic mean will be exactly
the same. The major difference is in the theoretical properties. The
most important property of the ilr transformation is its isometry,
meaning that it relates the geometry on the simplex directly to the
usual Euclidean geometry (Egozcue and Pawlowsky-Glahn, 2006).

Fig. 1 shows four compositional data points, drawn on the left
vertical axis. The distance between the points 0.1 and 0.2 is the same as
the distance between 0.5 and 0.6, namely 0.1. This, however, is the
Euclidean distance which is not meaningful for compositional data: the
proportion 0.2 is twice asmuch as 0.1, while 0.6 is greater than 0.5 only
by a factor of 1.2. This difference has to be reflected by an appropriate
distancemeasure. Using the information of the remaining parts leads to
the horizontal axis “1−x” in Fig. 1. The data points can be projected to
the bivariate space with the constant-sum constraint, i.e. to the dashed-
dotted line. This is, in fact, the correct presentation, because all the
information on data points and constraints is included. Working in this
space (along the dashed-dotted line) corresponds to working in the
Aitchison geometry, the simplex sample space. Clearly, the Euclidean
distance is still not appropriate, because boundary points behave
differently frompoints in the center. An appropriate distancemeasure in
this geometry is the Aitchison distance (Aitchison et al., 2000), defined
for two compositions x=(x1,..., xD) and y=(y1,..., yD) as:

dAðx; yÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D
∑
D−1

i=1
∑
D

j= i + 1
ln
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xj
− ln
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yj

 !2
vuut : ð6Þ

In the example discussed, two compositions are considered, x=
(x,1−x) and y=(y,1−y), and the Aitchison distance is:

dAðx; yÞ =
ffiffiffi
1
2

r j ln x
1−x

� �
− ln

y
1−y

� � j : ð7Þ

Accordingly, the original values 0.1 und 0.2 lead to an Aitchison
distance of 0.57, while the values 0.5 and 0.6 result in exactly half this
distance.
Fig. 1. Four data points on axis “x” with indicated distance between two pairs of points
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The log transformation (axis “ln(x)” in Fig. 1) is a first approach to
emphasizing the different behaviors of the two pairs of data points.
Thus, the transformed points 0.5 and 0.6 appear to be much closer than
the other data pair. However, the distances 0.18 and 0.69 (measured in
the Euclidean sense) differ substantially from the Aitchison distances.

Building the ratio “x/(1−x)” is a further step: the logarithm of this
ratio is especially interesting and is visualized in Fig. 1 (right). It can be
seen that – aside from the factor

ffiffiffiffiffiffiffiffi
1=2

p
– the Euclidean distance

between two points corresponds exactly to formula (7) for the
Aitchison distance. It would be exactly the same if the ilr transfor-
mation (5) was used instead of “ln(x/(1−x))”. This equality is called
the isometric property of the ilr transformation, namely that for any
two compositions x and y the relation:

dAðx; yÞ = dEðilrðxÞ; ilrðyÞÞ ð8Þ

holds, where dE denotes the Euclidean distance. Thus, of the indicated
transformations only the ilr transformation yields an appropriate
transformation from the Aitchison geometry to Euclidean space,
where the Euclidean distance measure reflects the distances from the
Aitchison geometry.

Omitting the scaling factor
ffiffiffiffiffiffiffiffi
1=2

p
from the ilr transformation (5)

results in formula (3) for the alr transformation. Although the isometric
property, represented by Eq. (8), is no longer fulfilled with alr, this has
no consequences for univariate data analysis. However, for bivariate or
multivariate data analysis this issuebecomesmuchmore important. The
ilr transformation can be easily extended according to Eq. (4) to the
multivariate case, and it keeps all the advantageous properties, while an
extension of the alr transformation according to Eq. (1) has severe
shortcomings (Pawlowsky-Glahn et al., 2008).

Thus the ilr transformation yields a correct representation of
compositional data in Euclidean space where standard statistical
methods can be applied. In the univariate case, however, the alr or the
logit-transformation can also be used: a scaling factor is the only
difference in relation to the ilr transformation. The log transformation
leads to a geometrical representation that is inconsistent with the
Aitchison geometry, and statistical methods applied in this space can
be expected to provide erroneous results.

3. Consequences for univariate statistical graphics

3.1. Histogram

One of the most popular statistical graphics is the histogram. The
histogram provides knowledge about the statistical distribution of the
investigated variable. This knowledge is important for selecting
appropriate estimators for center and spread, or for the choice of
appropriate statistical tests (parametric or nonparametric).
. Different transformations are used, which change the distance between the pairs.

of environmental (compositional) data: Problems and possibilities,
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The histogram is usually constructed by selecting equidistant
intervals via the Euclidean distance measure, and counting the number
of data points falling into each interval. Since only the ilr transformation
allows for a correct geometrical presentation of compositional data in
Euclidean space, the histogram has to be constructed with the ilr-
transformed data. Alternatively, the alr transformation is suitable –

although not consistentwith the Aitchison geometry – since the form of
the resulting histogram remains unaltered.

Fig. 2 shows the concentration of SiO2 in European subsoils
(Salminen, 2005). The left column of the figure presents a collection of
plots from Exploratory Data Analysis (EDA), including the histogram.
The figure shows three different representations of the data: the
original SiO2 data (top), the log-transformed data (middle), and the
ilr-transformed data (bottom). For the transformed data the original
data scale is provided on top of the plots. While the original data are
left-skewed, the log-transformed data are evenmore left-skewed. The
ilr transformation results in a more symmetric image of the data, but
the form of the histogram is clearly different from a normal dis-
tribution. Several data points far away from the center might be
considered as outliers. Thus, when estimating center and spread of the
data it is advisable to use robust estimates.
Fig. 2. EDA plots (left column) and CP-plots (right column) of SiO2 (measured in wt.%) in su
row: ilr-transformed data.
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3.2. Density trace

The density trace can be considered as a smooth form of the
histogram (Scott, 1992). For its construction the selection of a certain
band-width or window width and a weight function is necessary.
When estimating the density at a certain point, the window is
centered at this point and all values falling in this range are considered
for the estimation, with influence according to the weight function.
The weight function is symmetric, in the easiest case it is a rectangular
function, and thus thewhole concept of density estimation is based on
symmetric distances relying on Euclidean geometry.

The histograms shown in Fig. 2 are combined with density traces.
The ilr-transformed data allow a realistic view of the underlying density
function, the two other presentations are in an inappropriate geometry.

3.3. Boxplot

Several different definitions of the boxplot exist in the literature.
Here the original definition given by Tukey (1977) will be used. The
boxplot ismainly based on sorted data (median,medians of the halves),
and their position remains unchanged under log transformation or
bsoils of Europe. Upper row: original data; middle row: log-transformed data; bottom

s of environmental (compositional) data: Problems and possibilities,
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logratio transformations. However, the definition of the inner fence is
based on the concept of symmetry, relying on Euclidean geometry.
Therefore, a correct indication of potential outliers is only possible
following an ilr (or alr) transformation. The boxplots shown in Fig. 2 for
the original, the log-transformed and the ilr-transformed data differ
considerably in the position of the whiskers, and accordingly, in the
number of indicated outliers. Only the ilr transformation reveals
potential upper outliers. Although the position of the median and the
values defining the box do not change, their representation in the
correct geometry is important. For the ilr-transformed data the median
appears in the middle of the box, indicating the symmetry of the inner
half of the data, while in an inappropriate geometry the non-centered
median in the box would be interpreted as asymmetric data behavior.

3.4. Plots of the distribution function

The empirical cumulative distribution function (ECDF) is a step
function with jumps of height 1/n at each of the n data points. This
function is thus easy to construct. It has favorable statistical
properties, because it converges (for n to infinity) to the theoretical
underlying cumulative distribution function (e.g., Ross, 2002).
Convergence, however, is only guaranteed in Euclidean geometry
but not in the simplex. Thus, as in the previous graphical representa-
tions, the ilr-transformed variable, yielding a correct presentation of
the data in Euclidean space, has to be used for the ECDF plot.

The ECDF plot of normally distributed data shows an S-shape. It is
therefore difficult to judge if they deviate from this typical S-shape for
the data at hand. Thus it is more advisable to transform the probability
scale in such a way that normally distributed data would lie on a
straight line in the plot. Deviations from a line are much easier to
detect than deviations from an S-shape. The requested transformation
takes quantiles of the hypothetical normal distribution, and one can
directly scale either according to the quantiles (quantile–quantile
(QQ-) plot) or according to the probabilities (cumulative probability
(CP-) plot), see Reimann et al. (2008).

The comparison with probabilities of the (standard) normal
distribution in the CP-plots in Fig. 2 (right) shows that none of the
plots indicates normal distribution because of systematic deviations
from the straight line. Even the ilr-transformed data show severe
deviations in the tails of the distribution. Use of statistical methods or
tests that assume normal distribution should thus be avoided.

4. Consequences for univariate summary statistics

Summary statistics are the key characteristics that describe the
distribution of a variable. Usually measures of center and spread of a
variable are most important. Whether additional information, like
skewness and kurtosis, certain quantiles or a test for normality is
needed, depends on the context.

4.1. Center of the distribution

The most commonway of estimating the center of a distribution is
to use the arithmetic mean. This estimator is known to be the best
linear unbiased estimator (BLUE) of the “center” of the underlying
theoretical distribution in terms of Euclidean geometry. The arithme-
tic mean is not only easy to compute but is also a meaningful
approximation of the “true” center of the distribution. However, using
the arithmetic mean needs care:

(a) The arithmetic mean should not be directly applied to com-
positional data because it relies on Euclidean geometry.

(b) In environmental sciences it is rarely possible to assume a
“true” underlying data distribution, rather a mixture of several
distributions caused by several sub-populations, and/or arte-
facts will govern the data distribution.
Please cite this article as: Filzmoser P, et al, Univariate statistical analysis
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With respect to (a), a popular strategy is to compute the arithmetic
mean for the log-transformeddata, and to back-transform the result. This
approach corresponds to computing the geometric mean for the original
compositions. Although the direct use of the geometric mean in the
simplex sample space appears to bemeaningful, the remaining part(s) is
ignored. The resulting estimate does not form a composition because it is
not adjusted to the remainingpart(s) (thegeometricmeanof thevariable
under consideration and the geometric mean of the rest have to sum up
to 1 in order to form an appropriate composition).

These problems are avoided when using a logratio transformation,
preferably the ilr transformation (5). After the computation of the
arithmetic mean, say zP, of the ilr-transformed data, it is possible to
back-transform the result to the original space with:

x =
expð

ffiffiffi
2

p
zÞ

expð
ffiffiffi
2

p
zÞ + 1

: ð9Þ

This corresponds to the geometric mean of the original data
sample x, but adjusted to the remaining part, 1−x. The result is again
a BLUE—here in the sense of the Aitchison geometry (Pawlowsky-
Glahn and Egozcue, 2002). Note that in the univariate case the same
result would be obtained by using the alr- or logit-transformation.

Referring to (b) the task is not to estimate the location parameter
of an underlying distribution, but rather to estimate the center in a
robust way with less influence of outliers. Using the median for this
purpose has the advantage of obtaining a highly robust estimate
which, in this special case, is also not affected by the mentioned
logratio transformations (the position of the median remains the
same under strictly monotone transformations). Note that again, for
the computation of the median, the remaining part 1−x is ignored.
The correct procedure would consider both parts for determining the
median, and transform the result back. However, since in this case the
sum of both parts is 1, the result is the same as for computing the
median directly. In a more general situation (more compositional
parts, not constant sum), the direct computation of the median can be
misleading. Other robust estimators for location, like M-estimators
(Maronna et al., 2006), have to be computed for the ilr-transformed
data, and back-transformed to the original space. Such estimators can
also be used with more than two compositional parts.

As an example, three selected elements (Na2O, SiO2, Ni) in the Kola
C-horizon data (Reimann et al., 2008) are considered. The data are
visualized in Fig. 3 in the form of EDA plots. The distribution of Na2O
(left column) is left-skewed, and it remains left-skewed when using
the log or the ilr transformation. SiO2 and both of its transformations
(middle column) are relatively symmetric. In contrast, Ni is heavily
right-skewed, but both ln(Ni) and ilr(Ni) look symmetric.

Estimations of the center of the three elements are provided in
Table 1. “mean” is the arithmetic mean of the original data, while
“mean-log” and “mean-ilr” stand for the arithmetic mean of the log-
and ilr-transformed data, respectively, back-transformed to the
original space. “median” is for the median of the (original) data.

The results in Table 1 reflect the non-robustness of the arithmetic
mean, because outliers causing skewness of the distribution heavily
attract the estimation. This is visible especially for the log- and ilr-
transformed values of Na2O, and for the original values of Ni, where
the results differ substantially from the median. If the distribution is
close to symmetry, as for SiO2 and its transformations, all estimators
give about the same result. This once more underlines that graphical
inspection of the data distribution – preferably of the ilr-transformed
data – is required before selecting an appropriate estimator.

4.2. Variance of the distribution

The variance, or its square root, the standard deviation or spread,
characterizes the concentration of the data around the central value.
The traditional estimator of the variance is the well-known sample
of environmental (compositional) data: Problems and possibilities,
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variancewhich has good theoretical properties but relies on Euclidean
geometry. A further difficulty in the context of compositional data is
that it is no longer possible to compute the sample variance, e.g. for
the log-transformed data, and to back-transform the result, because
the log transformation changes the distances of the observations from
the center asymmetrically.
Table 1
Results for three selected elements from the Kola C-horizon data: arithmetic mean of the
original (“mean”), the log-transformed (“mean-log”), and the ilr-transformed (“mean-
ilr”) data.
Results for the transformed data are back-transformed to the original space.

Mean Mean-log Mean-ilr Median

Na2O [wt.%] 3.05 2.84 2.85 3.31
SiO2 [wt.%] 67.31 67.07 67.53 67.89
Ni [mg/kg] 23.40 18.46 18.46 18.60

Please cite this article as: Filzmoser P, et al, Univariate statistical analysi
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With compositional data, any measure of spread should inform
about the stability of the part x relative to the remainder 1−x, i.e.
about the variability of the ratio x/(1−x). Here again the ilr
transformation leads to a meaningful result, where the sample

variance of the ilr-transformed data z = ilrðxÞ =
ffiffiffi
1
2

r
ln x

1−x

� �
is

computed.This concept is, in fact, a special case for D=2 composi-
tional parts. In the more general case of D≥2 compositional parts, this
estimator is known under the name total variance estimator, defined
for a random composition x=(x1,..., xD) as:

totvarðxÞ = 1
D
∑
D−1

i=1
∑
D

j= i + 1
var ln

xi
xj

 !
ð10Þ

(Pawlowsky-Glahn et al., 2008). The total variance estimator is
unbiased and converges in probability to the true variance of
s of environmental (compositional) data: Problems and possibilities,
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compositions around the center of their distribution (Hron and
Kubáček, 2009). Instead of using the sample variance for “var” in
Eq. (10) one can also take more robust alternatives, like the squared
median absolute deviation (MAD). Note that the result does not
depend on a data unit, and thus it can be considered as a measure of
data homogeneity (stability). Small values indicate higher stability. In
the case D=2 this refers to an approximately constant ratio between
x and 1−x.

The coefficient of variation, which is defined as standard deviation
divided by the arithmetic mean, is often considered as a measure of
precision as it expresses variability independent of the data
measurement units. For compositional data such a measure is not
needed (it would not even make sense), because instead the variance
of the ilr-transformed data can be directly used.

For the above example (elements Na2O, SiO2, Ni of the Kola C-
horizon, see Fig. 3), different measures of spread are computed.
Table 2 shows the results for the empirical standard deviation (SD)
and the MAD for the original (columns 1 and 2), the log-transformed
(columns 3 and 4), and the ilr-transformed (columns 5 and 6) data. As
already observed in Table 1, SD andMAD lead to very different results,
especially for skewed (transformed) data. Although it is possible to
apply SD and MAD to the original and log-transformed data, the
results do not account for the compositional nature of the data. Thus
the focus should be on the last two columns of Table 2, where the
result of SD-ilr for Na2O is unreliable due to lower outliers. Classical
and robust estimators lead to comparable results in the other cases.
Accordingly, the homogeneity (stability) of Na2O and SiO2 in the
survey area is considerably higher than that of Ni.

4.3. Quantiles, percentiles

Quantiles and percentiles are based on order statistics, and as for
the median, the order of the data values does not change under a log
transformation or the considered logratio transformations. One can
thus directly compute the desired quantiles or percentiles from the
original compositional data. The interpretation is as usual, namely
that the α-quantile (α %-percentile) is the value where a fraction α of
the data is below and the fraction 1−α is above this value. Note that
the direct computation of quantiles and percentiles without using any
transformation is only possible in this special case where x and the
remainder is assumed to sum up to 1. In a more general situation
(more than two parts) this procedure can be misleading (see
discussion above for the median).

5. Accounting for other compositional parts

5.1. A second approach for univariate data analysis

The approach discussed so far assumes that for the variable of
interest, say x1, only the relationship to the remainder shall be
investigated. If the values of additional variables x2,..., xD are known,
and if the relationship of one variable to each of the other existing
variables needs to be considered, an alternative approach to
univariate data analysis can be used. This second approach can be
seen as a generalization of the first approach from above for two
Table 2
Results for three selected elements from the Kola C-horizon data: empirical standard
deviation (SD) andmedian absolute deviation (MAD) of the original (“SD”, “MAD”), the
log-transformed (“SD-log”, “MAD-log”), and the ilr-transformed (“SD-ilr”, “MAD-ilr”)
data.

SD MAD SD-log MAD-log SD-ilr MAD-ilr

Na2O 0.91 0.68 1.55 1.22 0.32 0.15
SiO2 5.51 4.70 1.09 1.07 0.18 0.15
Ni 21.10 11.56 1.96 1.86 0.48 0.44

Please cite this article as: Filzmoser P, et al, Univariate statistical analysis
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reasons: (a) For a considered variable x1 the remainder was assumed
to be 1−x1 in the first approach, since nothing is known about other
parts, or because the interest is only in a single part and its relative
relationship to the rest of the whole. Now the remainder is subdivided
into all known parts. (b) For the second approach it is not necessary
that x1 and the remaining parts sum up to 1, i.e. the information of all
considered parts is incomplete. In this case, xD can be defined as the
remainder 1−(x1+x2+...+xD−1) which provides the completed
information to the whole.

Due to the definition of compositional data, all the relevant informa-
tion about x1 is contained in the ratios to each of the remaining parts
x2,..., xD. Accordingly, this relative information for all remaining parts
needs to be considered also for univariate data analysis. The ilr
transformation from Eq. (4) can be used for this purpose. The ilr
variable:

z1 =

ffiffiffiffiffiffiffiffiffiffiffi
D−1
D

r
ln

x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∏D

j = 2xj
D−1
q ; ð11Þ

contains all the relative information between x1 and x2,..., xD, because
none of z2,..., zD−1 includes x1. Note that this separation of the
information into a single ilr variable is not possible for x2 or any of the
remaining parts, because there the relative information to x1 is
missing. If, on the other hand, x2 is of interest for univariate analysis,
one can use Eq. (11) by replacing x1 with x2. In this way, each
compositional part can be expressed by a single ilr variable which can
be used for univariate analysis. The resulting ilr variables can,
however, not be used for multivariate analysis, because they do not
correctly represent the multivariate data information.

This approach of constructing single ilr variables for the compo-
sitional parts seems to be similar to the result of the clr transforma-
tion, defined in Eq. (2). However, here a univariate analysis of the
single clr variables is not reasonable. The clr variables together are, by
definition, singular, y1+...+yD=0, and thus any regular selection of
the variables is not meaningful. Furthermore, when considering e.g.
part x1, the variable y1 does not contain all the relative information on
the remaining parts, since y2,..., yD also contain information about x1
(they include x1 in the denominator). This argument is valid for any of
the parts.

5.2. Univariate graphics and data distribution

The ilr variable constructed according to Eq. (11) can be directly
used for plotting the histogram, density trace, boxplot, or CP-plot, and
it can also be directly used for tests referring to the data distribution.
The results will, in general, be different from the first approach
because now the relative information on each of the other observed
parts is included. A further complication arises when it comes to
visualizing the original data scale in the plots, compare Figs. 2 and 3
(legends on the top). For this purpose the inverse ilr transformation to
Eq. (11) is needed, which is given by:

x1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∏D

j = 2xj
D−1
q

exp

ffiffiffiffiffiffiffiffiffiffiffi
D−1
D

r
z1

( )
: ð12Þ

Thus, as for the construction of z1, information of all parts x2,..., xD
is required for the back-transformation to the original scale.

5.3. Univariate summary statistics

The estimation of the univariate center is not straightforward. It is
possible to compute the arithmetic mean of z1, but it is not clear how
to use Eq. (12) for back-transformation.

The problem is to find an appropriate adjustment of the result in
order to accommodate the sum of the original parts which can, in
of environmental (compositional) data: Problems and possibilities,
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general, be different from 1. One solution is to directly compute
geometric means g1,..., gD for the parts x1,..., xD , and adjust the result
to a desired constant c by:

x1 =
c

∑D
j = 1gj

g1: ð13Þ

A further approach is to take the median, but also then it is
necessary to adjust the result. This can be done in a similar way to
Eq. (13), which requires the computation of the medians for each
variable. It should be noted that the median could be problematic
because it is solely based on ordering of the variable of interest, and it
does not account for the relationships to other variables. This is also
the case for other order-based measures, like quantiles or percentiles.

Another procedure, accounting for even more information, is to
estimate the mean of a part by using the complete ilr transformation
of all parts x1,..., xD, see Eq. (4). For this multivariate data repre-
sentation there is a unique inverse transformation, which can be used
for the back-transformation of the arithmetic mean. The resulting
value of this rather complex procedure, adjusted to a constant c, is the
same as given by Eq. (13). A robust counterpart for estimating the
center should also be based on the complete ilr space, see Filzmoser
and Hron (2008). Robust location estimation (e.g. Maronna et al.,
2006) can be done in this space, and the result needs to be back-
transformed to the original space, adjusted by a constant.

As for the first approach for univariate data analysis, the variance can
be estimated from the ilr variable z1 from Eq. (11), and it serves as a
stability measure. Small values of var(z1) indicate approximately
constant ratios to the parts x2,..., xD. However, although the total variance
is the sumof the variances of the ilr variables,∑D

i = 1varðziÞ = totvarðxÞ
(Pawlowsky-Glahn and Egozcue, 2001), it is not possible to relate it
directly to the contributions of x1 from the total variance,

totvarðxÞ jx1 =
1
D
∑
D

i=2
var ln

x1
xi

� �
:

For example, for D=3 it holds that:

varðz1Þ =
1
3
var ln

x1
x2

� �
+

1
3
var ln

x1
x3

� �
−1

6
var ln

x2
x3

� �

Thus, for a small value of var(z1) we need stability of x1 to both x2
and x3, but at the same time instability between x2 and x3. The
variance var(z1) therefore accounts in some sense for multivariate
stability.

6. Discussion

The problem of working with compositional data has been widely
discussed (though often neglected) for multivariate data analysis (e.g.
Chayes, 1960; Butler, 1976; Le Maitre, 1982; Woronow and Butler,
1986; Aitchison, 1986, 2008). In environmental sciences the prob-
lematic aspects of working with closed data even when using
univariate data analysis have been ignored. Examples presented
above demonstrate that the compositional nature of environmental
data must be considered for practically all aspects of statistical data
analysis. The inherent problem is that a compositional variable cannot
be treated separately from the rest of the total composition of a
sample. The relevant information is hidden in the ratios to the
remainder and not in the analytical values themselves. An interpre-
tation and statistical evaluation of the observed values are thus only
meaningful if the relationship to the values of the remaining variables
is taken into account. For univariate data analysis it is not quite clear
how the remaining parts need to be considered, and which ratios
should be used.
Please cite this article as: Filzmoser P, et al, Univariate statistical analysi
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Two different approaches were introduced, both are based on the
ilr transformations that allow work in standard Euclidean geometry
which is the very basis for most statistical techniques. In the first
approach the “remainder” to an observed variable x, is taken as 1−x,
while in the second approach the ratios to all remaining observed
variables are considered. Thus, for the first approach, it is implicitly
assumed that the remainder consists of all other variables that could
be measured in a sample (therefore their sum with x is 1), even
though these variables are not of direct interest. In the second
approach there is also interest in the relationship to several other
variables, which do not necessarily need to lead to a constant sum 1.
Due to the above definition of compositional data, the second
approach includes more detailed information but is mathematically
more difficult to handle. The results from both approaches are, in
general, different because summarizing the information of several
variables in a single part, i.e. the amalgamation, is not coherent with
the Aitchison geometry on the simplex. Therefore it is also important
to note that one will not get compatible results when using the
information given by a variable x compared to the remainder 1−x, or
compared to other parts, say y or z. For more discussion on this topic,
see Mateu-Figueras and Daunis-i-Estadella (2008) and Egozcue and
Pawlowsky-Glahn (2005).

For the practitioner it is difficult to judge which of the two
approaches is more useful for the data at hand. The first approach can
even be simplified if the data values of the variable of interest are
small, say smaller than 0.1. In this case, lnðx = ð1−xÞÞ≈ lnðxÞ because
the denominator is close to 1. Accordingly, univariate graphical
representations would be very similar for log-transformed and ilr-
transformed data. Also the arithmetic mean, or a test for normality
would give essentially the same result. This may thus present the
preferable (easier) approach for univariate data analysis.

In practice, several variables have been measured, and often they
do not sum up to 1. For the first approach the information on the
additional measured variables is simply ignored. This loss of
information has not only disadvantages, because other aspects need
to be considered as well.

Many data sets – and this is especially true for environmental data –
contain outliers, missing values, and values below the detection
limit. The more variables measured, the higher is the chance that a
particular (multivariate) observation is plagued with one of these data
problems.

Thus, the more variables used as ratio variables in the second
approach, the greater is the likelihood for inclusion of erroneous
information. In this sense, additional information is not always an
advantage, and it is recommended to rather remove variables
including severe data problems. Because additional variables are
used in the denominator of the relation there is a danger that
unreliable small values can cause huge errors. Although the second
approach accounts for more information, there are more technical
difficulties for the univariate analysis due to the more complex
procedure. The second approachmay have to wait until we are able to
analyze a sample completely, for all its components with sufficient
precision and low enough detection limits. Even then, it will remain a
challenge to interpret the results from a univariate statistical analysis,
because all the other considered variables will have an influence that
may not be easy to unravel. Thus it may be a better approach to use
multivariate data analysis directly, to understand the relationships
between the variables in multivariate space, based on the correct
geometry (e.g. ilr-transformed data).

Plotting histograms or calculating arithmetic mean and standard
deviation, and applying statistical tests to the raw data will lead to
erroneous results. All these familiar procedures can however, be
carried out with the ilr-transformed data, and afterwards back-
transformed into the original data scale. The standard deviation,
however, cannot be back-transformed. Thus, computing the standard
deviation (or variance) for the original compositional data, or for
s of environmental (compositional) data: Problems and possibilities,
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transformed data (and back-transformed result) does not make any
sense. The standard deviation is replaced by a unitless number,
resulting from the ilr-transformed data, and it represents stability or
homogeneity of the measurements.

Statistical data analysis techniques for environmental data often
include the standard deviation as a central element (statistical tests,
etc.). All results relying on the standard deviation can be misleading
when applied in an inappropriate geometry.

For multivariate data analysis the ilr transformation from Eq. (4)
should be used. This transformation has good theoretical properties
and it represents the multivariate data structure in a new geometry. A
simple log transformation, variable by variable, or any other trans-
formation of the single variables is no longer sufficient.

With modern computing possibilities at hand (van den Boogaart
et al., 2009; Templ et al., 2009) there is no longer any excuse for using
mathematically wrong techniques in the analysis of environmental
data.
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