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Abstract

The Wilks’ Lambda Statistic (likelihood ratio test, LRT) is a commonly used tool
for inference about the mean vectors of several multivariate normal populations.
However, it is well known that the Wilks’ Lambda statistic which is based on the
classical normal theory estimates of generalized dispersions, is extremely sensitive to
the influence of outliers. A robust multivariate statistic for the one-way MANOVA
based on the Minimum Covariance Determinant (MCD) estimator will be presented.
The classical Wilks’ Lambda statistic is modified into a robust one through sub-
stituting the classical estimates by the highly robust and efficient reweighted MCD
estimates. Monte Carlo simulations are used to evaluate the performance of the test
statistic under various distributions in terms of the simulated significance levels,
its power functions and robustness. The power of the robust and classical statistics
is compared using size-power curves, for the construction of which no knowledge
about the distribution of the statistics is necessary. As a real data application the
mean vectors of an ecogeochemical data set are examined.
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1 Introduction

One-way multivariate analysis of variance (MANOVA) deals with testing the
null hypothesis of equal mean vectors across the g considered groups. The
setup is similar to that of the one-way univariate analysis of variance (ANOVA)
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but the intercorrelations of the independent variables are taken into account,
i.e. the variables are considered multivariate. Under the classical assumptions
that all groups arise from multivariate normal distributions, many test statis-
tics are discussed in the literature, one of the most widely used being the
likelihood ratio test. This test statistic is better known as Wilks” Lambda in
MANOVA. The Wilks’ Lambda is reported as part of the test output in al-
most all statistical packages. However, this measure which uses the classical
normal theory as well as the inference based on it, can be adversely affected
by outliers present in the data. The non-robustness of the Wilks’ Lambda
statistic in the context of variable selection in linear discriminant analysis was
demonstrated already in Todorov (2007a). In the one-sample case, where the
Hotelling’s T2 statistic is the standard tool for inference about the center of
a multivariate normal distribution, a robust version based on the Minimum
Covariance Determinant Estimator was proposed by Willems et al. (2002).

The effect of outliers on the quality of the hypothesis test based on the clas-
sical Wilks’ Lambda statistics will be illustrated in the examples in Section 6
and in the simulation study in Section 5. Therefore we propose to use ro-
bust estimators instead of the classical ones for computing Wilks” Lambda
statistic. For this purpose we will use the Minimum Covariance Determinant
(MCD) estimator of Rousseeuw (1985) which is one of many possible robust
estimators of multivariate location and scatter (see Hubert et al., 2008, for
an overview). Furthermore a fast algorithm for approximating the MCD esti-
mator is available - the FAST MCD of Rousseeuw and Van Driessen (1999).
The adaptations of the MCD estimator for estimating the common covari-
ance matrix will be summarized in Section 2. Since the distribution of the
robust Wilks” Lambda statistic based on MCD differs from the classical one
it is necessary to find a good approximation for this distribution. In Section 3
we construct an approximate distribution based on a Monte Carlo study and
examine its accuracy.

Monte Carlo simulations are used to evaluate the performance of the proposed
test statistic under various distributions in terms of the simulated significance
levels, its power functions and robustness. The power of the robust and classi-
cal statistic is compared using size-power curves, for the construction of which
no knowledge about the distribution of the statistic is necessary (see Davidson
and McKinnon, 1998). Section 5 describes the design of the simulation study
and its results and in Section 6 illustrative examples are presented.

The nonrobustness of the normal theory based test statistic has led many
authors to search for alternatives. One such example is the rank transformed
Wilks’ Lambda proposed by Nath and Pavur (1985). This test statistic is out-
lined briefly in Section 4 and its performance is also evaluated in the Monte
Carlo simulation.



2 The robust Wilks’ Lambda statistic

Let x1x, ok, - - - , Tp, i be ng, independent and identically distributed p-dimensional
observations from a continuous p-variate distribution with distribution func-
tion Fj(w) where k = 1,2,...,¢ and the number of groups g > 2. If all ¢
distributions are exactly the same but only their locations differ we have

Fi(u) = F(u — py)
Then the hypothesis we want to test is that all Fj are identical, i.e.
Ho:py=py=...=py,
against the alternative hypothesis
H, : p; # p; for at least one i # j

Under the classical assumptions that all groups arise from multivariate normal
distributions, many test statistics are discussed in the literature, one of the
most widely used being the likelihood ratio test. This test statistic is better
known as Wilks’ Lambda in MANOVA. The Wilks’ Lambda statistic is the
ratio of the within generalized dispersion to the total generalized dispersion.
The within generalized dispersion is the determinant of the within-group sums
of squares and cross-products matrix W and the total generalized dispersion
is the determinant of the total sums of squares and cross-products matrix T
(see e.g. Johnson and Wichern, 2002, chapter 6, p. 299). This statistic (1)
where det(A) means the determinant of A,

_ det(W)
A= det(T) (1)

takes values between zero and one.

In order to obtain a robust procedure with high breakdown point for infer-
ence about the means in the one-way MANOVA model we construct a robust
version of the Wilks’ Lambda statistic by replacing the classical estimators
by the reweighted MCD estimators. The Minimum Covariance Determinant
(MCD) estimator introduced by Rousseeuw (1985) looks for a subset of h ob-
servations with lowest determinant of the sample covariance matrix. The size
of the subset h defines the so called trimming proportion and depending on
the desired robustness it is chosen between half and the full sample size. The
MCD location estimate M is defined as the mean of that subset and the MCD
scatter estimate C is a multiple of its covariance matrix. The multiplication
factor is selected so that C is consistent at the multivariate normal model and
unbiased at small samples - see Pison et al. (2002). This estimator is not very



efficient at normal models, especially if A is selected so that maximal break-
down point is achieved, but in spite of its low efficiency it is the mostly used
robust estimator in practice, mainly because of the existing efficient algorithm
for computation as well as the readily available implementations in most of
the well known statistical software packages like R, S-Plus, SAS and Matlab.
This was also the main reason for choosing the MCD estimator in the present
work. To overcome the low efficiency of the MCD estimator, a reweighed ver-
sion is used.

We start by finding initial estimates of the group means m{ and the com-
mon covariance matrix Cy based on the reweighted MCD estimate. There are
several methods for estimating the common covariance matrix based on a high
breakdown point estimator.

The easiest one is to obtain the estimates of the group means and group
covariance matrices from the individual groups (myg, Cy),k = 1,...,g and
then pool them to yield the common covariance matrix

o Zi;l ni,Cy,

C =
Zi:l N —4g

(2)

This method, using MVE and MCD estimates, was proposed by Todorov et al.
(1990) and Todorov et al. (1994) and was also used, based on the MVE esti-
mator by Chork and Rousseeuw (1992). Croux and Dehon (2001) applied this
procedure for robustifying linear discriminant analysis based on S estimates.
A drawback of this method is that the same trimming proportions are applied
to all groups which could lead to loss of efficiency if some groups are outlier
free.

In the context of discriminant analysis, another method was proposed by He
and Fung (2000) for S estimates and later adapted by Hubert and Van Driessen
(2004) for MCD estimates. Instead of pooling the group covariance matrices,
the observations are centered and pooled to obtain a single sample for which
the covariance matrix is estimated. It starts with obtaining the individual
group location estimates ti,k = 1,...,g as the reweighted MCD location
estimates of each group. These group means are swept from the original ob-
servations to obtain the centered observations

Z ={zi}, Zi =X —t (3)
The common covariance matrix C is estimated as the reweighted MCD co-

variance matrix of the centered observations Z. The location estimate § of Z
is used to adjust the group means m;, and thus the final group means are

m; =t, +0 (4>



This process could be iterated until convergence, but since the improvements
from such iterations are negligible (see He and Fung, 2000; Hubert and Van Driessen,
2004) we are not going to use it.

The third approach is to modify the algorithm for high breakdown point es-
timation itself in order to accommodate the pooled sample. He and Fung
(2000) modified Ruperts’s SURREAL algorithm for S estimation in case of
two groups. Hawkins and McLachlan (1997) defined the Minimum Within-
group Covariance Determinant estimator (MWCD) which does not apply the
same trimming proportion to each group. Unfortunately their estimator is
based on the Feasible Solution Algorithm (see Hawkins and McLachlan, 1997,
and the references therein), which is extremely time consuming compared to
the FAST-MCD algorithm. Hubert and Van Driessen (2004) proposed a mod-
ification of this algorithm taking advantage of the FAST-MCD, but it is still
necessary to compute the MCD for each individual group. A thorough inves-
tigation and comparison of these methods is worth doing, but in this work,
for the sake of facilitating the computations we choose the method of pooling
the observations.

Using the obtained estimates m) and Cy we can calculate the initial robust
distances (Rousseeuw and van Zomeren, 1991)

RDY, = \/(xi — m)!Cy ™ (x4 — mY). (5)

With these initial robust distances we can define a weight for each observa-
tion Xz, ¢ = 1,...,np and k = 1,...,¢g by setting the weight to 1 if the
corresponding robust distance is less or equal to /X2 o975 and to 0 otherwise,
ie.

Wi = {1 RD?k < \/X§,0.975 (6)

0 otherwise.

With these weights we can calculate the final reweighted estimates, namely
the group means my, the within-groups sum of squares and cross-products
matrix Wpg, the between-groups sum of squares and cross-products matrix
Bpr and the total sum of squares and cross-products matrix T = Wgx + By
which are necessary for constructing the robust Wilks” Lambda statistic Ag
as defined in equation (1).



Nk

my = (Z WipXik) [Vg, M= (i vpmy,) /v

i=1

g
Wgr= Z Z Wik (Xie — M) (Xt — mk)t (7)
k=1i=1
g

BR:; vp(my — m)(my, — m)’

g ng
Tr=>_ > wi(xy —m)(x; —m)' = Wi + By
k=11=1

where 1, are the sums of the weights within group k for k=1,...,g and v is
the total sum of weights:

ng g
I/k:Zwik and v = Z’/k
i=1 k=1

Substituting these Wx and Tg into equation (1) we obtain a robust version
of the test statistic A given by

_ det(Wg)
A= Gt ®

For computing the MCD and the related estimators the FAST-MCD algorithm
of Rousseeuw and Van Driessen (1999) will be used as implemented in the R
package rrcov - see Todorov (2007b).

3 Approximate distribution of Ay

The distribution of A is considered by Anderson (1958) as a ratio of two
Wishart distributions but it is so complicated that except for some special
cases it is hardly usable in practice. One of the most popular approximations
is Bartlett’s x? approximation given by

—(n—1—(p+9)/2)lnA =~ x5, 1 9)

where n = >°_, nj. Analogously to this x? approximation of the classical
statistic we can assume for Ay the following approximation:

LR = —ZTLAR ~ ng (10)

and then express the multiplication factor d and the degrees of freedom of the
x? distribution ¢ through the expectation and variance of Ly



E[Lg] = dq (11)
Var[Lg] = 2d*q

d— BlLgt
q
E[Lg)?

1= Var[Lg]

Since it is not possible to obtain the mean and variance of the robust Wilks’
Lambda statistic Ag analytically, they will be determined by simulation. These
values will be used to approximate the true distribution of Ag.

For a given dimension p, number of groups g and sample sizes of each group
ik =1,...,g, samples X = {x;,...,x,} of size n = ¥ n;, from the stan-
dard normal distribution will be generated, i.e. x; ~ N(0,1I,). For each sample
the robust Wilks’ Lambda statistic A based on the reweighted MCD will be
calculated. After performing m = 3000 trials, mean and variance of Ag will
be obtained as

1 &
ave(Ag) = — S AW
) = 2 3o
1 & ;
var(Ag) = ] Z(A%) — ave(Ag))?
j=1

Substituting these values into equation (11) we can obtain estimates for the
constants d and ¢ which in turn will be used in equation (10) to obtain the
approximate distribution of the robust Wilks’ Lambda statistic Ag.

Now we will investigate the accuracy of this approximation. For several values
of the dimension p, the number of groups g and the sample sizes of each group
ng,k =1,...,9, m = 3000 samples from standard normal distribution will
be generated and for each of them Ag will be calculated. The empirical dis-
tribution of these statistics will be compared to the approximate distribution
given by equation (10) by QQ-plots, some of which are shown in Figure 1. The
usual cutoff values of a test, the 95%, 97.5% and 99% quantiles are shown in
these plots by vertical lines. It is seen from the plots that the approximation
is very precise for large and small sample sizes, as well as for large dimensions
(p = 10), for equal and unequal groups sizes.
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Figure 1. QQ-plots for the robust Wilks’ Lambda statistics: Lr = —In(Ag)/d for
two groups and several values for p and n = > ng.

4 Rank transformed Wilks’ Lambda statistic

An alternative proposal for the Wilks” Lambda statistic was made by Nath
and Pavur (1985) which uses the ranks of the observations. The testing pro-
cedures obtained through the so called rank transformation are known to
perform better then their classical counterparts especially when contamina-
tion is expected in the data. The Wilks’ Lambda statistic is calculated on the
ranks of the original data and is referred to as rank-transformed statistic. For
performing the test the distribution of the statistic is approximated with that
of the normal-theory statistic. Further details can be found in the above men-
tioned reference. In this work the rank transformed Wilks’ Lambda statistic
will be included in the simulation study and the results will be compared to
the MCD based statistic.

5 Monte Carlo simulations

In this section a Monte Carlo study is undertaken to asses the performance of
the proposed statistic. The assessment of the performance of any test statistics



involves two measures - the attained significance level and the power of the
test. Additionally we will investigate the behavior of the robust statistic in
the presence of outliers and will compare the results to the classical as well as
to the rank transformed Wilks’ Lambda statistic.

5.1 Significance Levels

First we study the attained significance level (i.e., type I error rate or size) of
the proposed robust test. We will consider several dimensions p = {2,4, 6,8, 10},
numbers of groups g = {2,3} and sample sizes ng, k = 1,..., 9. Equal as well
as unequal group sizes are investigated. The sample sizes for two and three
groups are selected as shown in Table 1. Only the cases where p > 2 % ny

for all k =1,..., g were considered, since otherwise the MCD estimate is not
computable.
Table 1

Selected group sizes for the simulation study.

Two groups Three groups
(n1,n2) (n1,n2,n3)
(10,10) (10,10,10)
(20,20) (20,20,20)
(30,30) (30,30,30)
(50,50) (50,50,50)

(100,100)  (100,100,100)
(200,200) (20,20,10)
(20,10) (30,30,10)
(30,10) (50,50,20)
(50,10) (100,50,20)

Under the null hypothesis Hy in one-way MANOVA we assume that the ob-
servations come from identical multivariate distributions, i.e. Hy : p; = py =
... = p,. Since the considered statistics are affine equivariant, without loss
of generality we can assume each location vector p, to be a null vector,
ie. pp, = (0,...,0)" and the covariance matrix to be I,. Thus we generate
n = Y.7_, ny p-variate vectors distributed as N,(0,1I,) and calculate the clas-
sical statistic A, the robust version based on MCD estimates Agr and the
rank transformed Wilks’ Lambda statistic A,q,;. This is repeated m = 3000
times and the percentages of values of the test statistics above the appropri-
ate critical value of the corresponding approximate distribution are taken as
an estimate of the true significance level. The classical Wilks’ Lambda and
the rank transformed Wilks’ Lambda are compared to the Bartlett approxi-
mation given by equation (9) while the MCD Wilks’ Lambda is compared to



the approximate distribution given in equation (10). Note that the approxi-
mate distribution of the robust test was simulated only once, by estimating
the parameters d and ¢ from equation (11) via average and variance of Ly
(see above). This is a simplification, and a more precise procedure would be
an approximation of the distribution for each of the 3000 simulated samples.
This, however, would not only be computationally very expensive, it would
also hardly make a difference to the simplified procedure.

The true significance levels « are taken to be 0.10, 0.05 and 0.01 which together
with the number of replications m = 3000 yields the two standard deviation
intervals around the nominal levels as follows: (0.089, 0.111), (0.042, 0.058),

(0.006, 0.014) respectively - here the standard error is \/(a(l — «)/3000).

In Table 2 the results for two groups are shown. It is clearly seen that the
difference between the actual cutoff and the nominal value is very small, i.e.
the approximations are capable to keep the significance levels across all inves-
tigated combinations of dimension p and sample sizes. Although the results of
the robust test are slightly worse than these of the classical test and the rank
transformed test they are satisfactory, having in mind the gained advantage in
case of non-normal data. The results for three groups are similar. A complete
set of results is available from the authors upon request.

Instead of showing further tables, we will make use of the P wvalue plots pro-
posed by Davidson and McKinnon (1998), which give a more complete picture
of how the test statistics follow the approximate distribution under the null
in the simulated samples. Figure 2 shows plots of the empirical distribution
function of the p-values for the classical and robust Wilks” Lambda statistics
in the case of two groups, for several values of dimension p and sample size ny.
The corresponding results for three groups are similar. The rank transformed
statistic A,qnk is not shown since it closely follows the classical statistic. The
most interesting part of the P value plot is the region where the size ranges
from zero to 0.2 since in practice a significance level above 20% is never used.
Therefore we limited both axis to p-value < 0.2. We expect that the results
in the P value plot follow the 45° line since the p-values are distributed uni-
formly on (0,1) if the distribution of the test statistic is correct. Deviations
from this line suggest that the empirical distribution differs from the one used
to establish the critical values. It is seen that only for very small sample sizes
the robust Wilks’ Lambda is considerably below the 45° line. Otherwise the
robust test works very well and follows closely the 45° line.

10



Table 2
Significance levels of the test statistics A, Ap and A4, for multivariate normal
distributions in the case of two groups for several values of the dimension p and the
sample size n = n; +ng (m = 3000 Monte Carlo replications, true significance level
a=0.1, 0.05 and 0.01).

a=0.1 a = 0.05 a=0.01
P ni o n2 A Ar Meank A Ar MNank A Ar MNank
2 10 10 | 0.097 0.073 0.101 | 0.050 0.039 0.051 | 0.010 0.008 0.013
2 20 20 | 0.099 0.086 0.103 | 0.053 0.043 0.053 | 0.009 0.015 0.010
2 30 30 | 0.100 0.099 0.099 | 0.050 0.050 0.049 | 0.007 0.012 0.009
2 50 50 | 0.101 0.088 0.100 | 0.046 0.042 0.050 | 0.006 0.007 0.009
2 100 100 | 0.093 0.087 0.092 | 0.043 0.046 0.046 | 0.010 0.008 0.009
2 200 200 0.109 0.116 0.111 | 0.057 0.059 0.058 | 0.009 0.013 0.013
2 20 10 | 0.095 0.079 0.097 | 0.047 0.041 0.049 | 0.010 0.011 0.011
2 30 10 | 0.097 0.080 0.098 | 0.050 0.042 0.046 | 0.013 0.008 0.010
2 50 201 0.102 0.100 0.101 | 0.055 0.051 0.058 | 0.013 0.011 0.013
2 100 10 | 0.099 0.090 0.097 | 0.049 0.046 0.049 | 0.010 0.010 0.009
4 10 10 | 0.098 0.109 0.105 | 0.049 0.062 0.053 | 0.009 0.012 0.011
4 20 20 | 0.094 0.083 0.101 | 0.046 0.041 0.050 | 0.009 0.013 0.011
4 30 30 |0.104 0.084 0.104 | 0.051 0.043 0.054 | 0.011 0.011 0.012
4 50 50 | 0.107 0.091 0.105 | 0.058 0.048 0.060 | 0.011 0.010 0.011
4 100 100 | 0.105 0.118 0.106 | 0.051 0.063 0.057 | 0.012 0.013 0.009
4 200 200 | 0.088 0.088 0.091 | 0.042 0.047 0.043 | 0.012 0.012 0.014
4 20 10 | 0.097 0.084 0.096 | 0.048 0.044 0.053 | 0.009 0.018 0.011
4 30 10 | 0.088 0.066 0.094 | 0.046 0.034 0.047 | 0.010 0.011 0.009
4 50 20| 0.098 0.090 0.095 | 0.053 0.047 0.050 | 0.011 0.013 0.013
4 100 10 | 0.100 0.106 0.098 | 0.050 0.055 0.046 | 0.009 0.011 0.009
6 20 20| 0.098 0.082 0.102 | 0.047 0.047 0.050 | 0.009 0.016 0.009
6 30 30 | 0.099 0.090 0.094 | 0.054 0.048 0.058 | 0.013 0.014 0.014
6 50 50| 0.106 0.095 0.106 | 0.052 0.047 0.053 | 0.013 0.011 0.011
6 100 100 | 0.109 0.103 0.105 | 0.056 0.051 0.058 | 0.011 0.011 0.009
6 200 200 | 0.108 0.100 0.105 | 0.0561 0.046 0.052 | 0.010 0.008 0.011
6 50 20 |1 0.109 0.100 0.116 | 0.052 0.050 0.053 | 0.010 0.013 0.011
8 20 20 0.102 0.089 0.100 | 0.0561 0.051 0.049 | 0.012 0.014 0.012
8 30 30 | 0.101 0.087 0.102 | 0.049 0.048 0.060 | 0.011 0.013 0.012
8 50 50| 0.112 0.095 0.105 | 0.055 0.049 0.058 | 0.012 0.011 0.013
8 100 100 | 0.096 0.097 0.096 | 0.049 0.047 0.048 | 0.011 0.008 0.012
8 200 200 | 0.092 0.093 0.093 | 0.047 0.049 0.048 | 0.007 0.009 0.008
8 50 20 |1 0.095 0.105 0.096 | 0.047 0.058 0.046 | 0.009 0.019 0.010
10 30 30 | 0.100 0.085 0.109 | 0.049 0.049 0.052 | 0.012 0.014 0.011
10 50 50 | 0.097 0.097 0.096 | 0.052 0.048 0.054 | 0.010 0.010 0.012
10 100 100 | 0.098 0.101 0.104 | 0.050 0.048 0.052 | 0.013 0.013 0.011
10 200 200 | 0.112 0.111 0.110 | 0.055 0.057 0.058 | 0.015 0.016 0.016
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Figure 2. P value plots for the Wilks’ Lambda statistic A (dashed line) and the
robust Wilks” Lambda statistic A (solid line) for two groups and several values for
pand n =Y ng. The 45° line is given too, represented by a dotted line. The results
for Apank closely follow those of A and therefore they are not shown.

5.2 Power comparisons

In order to asses the power of the robust Wilks’ Lambda statistics we will
generate data under an alternative hypothesis (H, : not all g,k =1,...,¢g
are equal) and will examine the frequency of incorrectly failing to reject Hy
(i.e. the frequency of type II errors). The same combinations of dimensions p,
number of groups g and sample sizes ni, k = 1,...,g as in the experiments
for studying the significance levels will be used. There are infinitely many
possibilities for selecting H, but for the purpose of the study we will use the
following fixed alternatives: all groups 7, k = 1, ..., g, come from multivariate
normal distribution with the same spherical covariance matrix I,; the mean
of the first group is the origin, the mean of the second group is at distance
d = 1 along the first coordinate, the mean of the third group is at distance
d = 1 along the second coordinate and so on. With this simple model the
number of groups can be at most p + 1 but this is not a restriction since
we will consider only two and three groups. More precisely, the data sets are
generated from the following p-dimensional normal distributions, where each
group 7, k =1,..., ¢, has a different mean p; and all of them have the same
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covariance matrix L,

T~ Np(uk71p)7 k= 17 e g, (12)

with

p, = (0,...,0,d,0,...,0)!

The classical and the robust test statistics are computed and the rejection
frequency (out of m = 3000 runs) where the statistic exceeds its appropriate
critical value is the estimate of the power for the specific configuration.

The power of the two statistics can be visually compared by simulating size—
power curves under fixed alternatives, as proposed by Davidson and McKinnon
(1998). Constructing size-power plots does not require knowledge of the dis-
tribution of the test statistic. For other recent applications of the size-power
see Siani and de Peretti (2006) and Gelper and Croux (2007). The size-power
curves are simulated in the following way: (i) First m = 3000 data sets under
the null hypothesis are generated. For each of them the test statistics are com-
puted and the obtained values are sorted in increasing order. The 7 value of
this ordered sequence is denoted by ;. If the critical value is chosen as ¢; then
the quantity s; = (m — j)/(m + 1) equals the size of the test; (ii) After that
m = 3000 data sets are generated under the fixed alternative hypothesis and
for each of them the test statistics are computed. For a certain critical value
8, the power of the test f; is estimated by the fraction of test statistics that
exceed 6;; (iii) The pairs (s, f;),j = 1,..., m representing the power vs. the
size of the test are plotted as size—power curves.

The size—power curve should lie above the 45° line, the larger the distance
between the curve and the 45° line the better. The most interesting part of
the size-power curve is the region where the size ranges from zero to 0.2 since
in practice a significance level above 20% is never used. In Figure 3 the size-
power curves for several values of the dimension p and the sample sizes ny
in case of two groups are shown. The results for three groups are similar. It
is clearly seen that in all of the investigated combinations of dimensions p
and sample sizes both curves are far above the 45° line with the line of the
robust statistic being slightly below the classical one. Thus the loss of power
for the robust statistic is acceptable throughout the investigated range of di-
mensions and sample sizes. The size-power curves for the rank transformed
Wilks” Lambda statistic A4, are similar to those of the classical test statistic
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and therefore not shown.
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Figure 3. Size-power curves for the Wilks’ Lambda statistic A (dashed line) and the
robust Wilks” Lambda statistic A (solid line) for two groups and several values for
p and n = > ng. The 45° line is represented by a dotted line. The results for A4k
closely follow those of A and therefore they are not shown.

5.3 Robustness comparisons

Now we will investigate the robustness of the one-way MANOVA hypothesis
test based on the proposed robust version of the Wilks’ Lambda statistic
Ag. For this purpose we will generate data sets under the null hypothesis
Hoy:py=py=... = p, and will contaminate them by adding outliers. More
precisely the data will be generated from the following contamination model:

T ~ (1 —e)N,(0,1,) + eN,(fx;,,0.25°L,), k=1,...,g, (13)

= (VQy, ..., vQ,)

Qp = Xg;o.om/]?,
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where ¢ = 0.1 and v = 5. By adding v(@), to each component of the outliers
we guarantee a comparable shift for different dimensions p, see Rocke and
Woodruff (1996). The same combinations of dimensions p, numbers of groups
g and sample sizes ng, k = 1,...,¢g, as in the experiments for studying the
significance levels will be used.

Again we generate n = >¢_, n; p-variate vectors and calculate the classical
statistic A, the robust version based on MCD estimates Ar and the rank trans-
formed Wilks’ Lambda statistic A,,,. This is repeated m = 3000 times and
the percentages of values of the test statistics above the appropriate critical
value of the corresponding approximate distribution are taken as an estimate
of the true significance level. We present the results for three groups with P
value plots in Figure 4. Similar results are obtained for two groups.

The difference between the actual cutoff based on Az and the nominal value
remains acceptably small for the different combinations of dimension p and
sample size ng, k = 1,..., g. Furthermore this difference is much smaller com-
pared to the classical Wilks’ Lambda statistic A and the rank transformed
statistic. Note that a deviation below the 45 line, as often observed for the
robust test, refers to a conservative test.

6 Example

We will illustrate the application of the proposed robust statistic with the Oslo
transect data (see Reimann et al., 2007, and the references therein). Samples of
different plant species were collected along a 120 km transect running through
the city of Oslo, Norway, and the concentrations of 25 chemical elements for
the sample materials are reported. The factors that influenced the observed
element concentrations in the sample materials were investigated. For our
example we will consider only the lithology as a factor. This factor has four
levels which are listed in Table 3. The last column shows the number of objects
in each group.

We select the variables P, K, Zn and Cu that represent elements from the group
of the nutrients and expect that the lithology strongly influences the take in
of the plants when compared to the effect of the plant species themselves,
i.e. we expect that the multivariate group means are significantly different.
After removing the observations with missing values we remain with a data
matrix of n = 332 rows and p = 4 columns. Since geochemical data are usually
right skewed we log-transform the variables. The left panel of Figure 5 shows
the scatter plot matrix of the log-transformed data together with histograms
of each variable and the right panel presents the box plots for the different
groups. In Figure 6 the scatter plot matrices of each group are presented sepa-
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Figure 4. Robustness comparisons - P value plots for Wilks’ Lambda statistic A
(dashed line), robust Wilks’ Lambda statistic Ar (solid line) and rank transformed
Wilks’ Lambda statistic A,k (long-dashed line) for three groups and several values
for p and n =Y ng. The 45° line is represented by a dotted line.

Table 3
Oslo transect data: Names of the lithology groups. The last column shows the num-
ber of objects in each class.

Lithological group #

1 CAMSED  Cambro-Silurian sedimentary rocks 98
GNEISS_O Precambrian gneisses - Oslo 89
GNEISS_R  Precambrian gneisses - Randsfjord 32
MAGM Magmatic rocks of the Oslo Rift 113

W N

rately. The classical and robust 97.5% tolerance ellipses clearly show that the
data are not normally distributed and that outliers are present.

Let us denote the means of the four groups by p, py, 15 and p, and perform
a one-way MANOVA| testing the hypothesis Hy : py = py = p5 = py. The
classical Wilks’ Lambda statistic for this data set yields A = 0.9755 which
corresponds to a p-value of 0.7757. This suggests that the hypothesis of equal
means cannot be rejected at the 10% significance level. On the other hand
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Figure 5. Scatter plot matrix of the log—transformed Oslo Transect Data (left panel)
and box plots of the same data (right panel).

the robust Wilks’ Lambda statistic yields A\ = 0.8947 which corresponds to
a p-value of 0.0025 and we can reject the null hypothesis even at the 1% sig-
nificance level.

This example as well as all computations presented in Section 5 were performed
with the package rrcov (Todorov, 2007b) in the statistical environment R (R
Development Core Team, 2007). The data set from Reimann et al. (2007) dis-
cussed here (as well as many other data) are provided as example data sets
in rrcov and can be loaded by the data command. We can log-transform the
(numerical part of the) data set, choose the desired variables and groups and
perform the test using the formula interface of the function Wilks.test().
The default method is the classical Wilks’ Lambda (method="c").

One-way MANOVA (Bartlett Chi2)
data: O0OsloTransect
Wilks’ Lambda = 0.9755, Chi2-Value
p-value = 0.7757
sample estimates:
P K Zn Cu

8.12, df = 12.00,

CAMSED 6.456762 8.093613 3.948710 1.421572
GNEIS_O 6.540716 8.003046 3.982276 1.446860
GNEIS_R 6.386443 7.863500 3.934097 1.317420
MAGM 6.517899 7.982188 4.043223 1.401263

To perform the robust test we need to specify method="mcd". It will take some
time while performing the simulations for finding the multiplication factor and
the degrees of freedom for the approximate distribution. These parameters will
be returned in the resulting object too and can be reused for analysis of data
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Figure 6. Log-transformed Oslo Transect Data: Scatter plot matrices of each group
separately with classical (dashed line) and robust (solid line) 97.5% tolerance ellipses
in the upper triangle, classical (in parentheses) and robust correlations in the lower
triangle and histograms on the diagonal.

with the same dimension, number of groups and number of observations in
each group.
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Robust One-way MANOVA (Bartlett Chi2)
data: OsloTransect
Wilks’ Lambda = 0.8947, Chi2-Value
p-value = 0.002473
sample estimates:
P K Zn Cu

30.019, df = 11.791,

CAMSED 7.246640 9.109288 4.092121 1.628208
GNEIS_0 7.400005 9.012718 4.067534 1.672883
GNEIS_R 7.252277 8.875761 4.056851 1.506315
MAGM 7.394440 9.014556 4.153965 1.626010

7 Conclusions

A robust version of Wilks” Lambda statistic was introduced by replacing the
classical estimates for mean and covariance with robust counterparts. The
MCD estimator was chosen for this purpose, and an approximate distribution
of the robust test statistic was derived with simulations. In further Monte
Carlo studies the significance level and the power of the new test was com-
pared with the classical and the rank transformed Wilks” Lambda test. Various
different situations were investigated by changing the dimension, the group
sizes, and the number of groups. Only a selection of the results is shown in
the paper which, however, are typical representative outcomes. These allow to
conclude that the significance level of the robust test is reasonably precise in
case of normal distribution but also in case of deviations from normal distri-
bution. In the latter case it turned out that the actual size of the robust test
is in general much closer to the nominal size than the classical and the rank
transformed Wilk’s Lambda test. Furthermore, as indicated by the size-power
curves, the robust test does not loose much power compared to the classical
and to Wilk’s Lambda test.

The new test has been implemented as the function Wilks.test in the R
package rrcov, with the options classical, rank transformed and robust test
statistic. Moreover, also the Hotelling 77 test has been implemented as func-
tion T2.test in the same package, and it can be used for comparison with
two groups.
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