16.4.1 Fitting a Robust Regression Model

Call:
ltsReg.formula(formula = log10(Be) ~ Al_XRF + Ca_XRF + Fe_XRF +
K_XRF + Mg_XRF + Mn_XRF + Na_XRF + P_XRF + Si_XRF, data = xdat)

Residuals (from reweighted LS):
Min 1Q Median 3Q Max
-0.38606 -0.09557 0.00000 0.07821 0.38443

Coefficients:
Estimate Std. Error t value Pr(>|t|)
Intercept 6.697e+00 4.375e-01 15.310 < 2e-16
Al_XRF -1.486e-05 1.287e-06 -11.548 < 2e-16
Ca_XRF -1.538e-05 1.655e-06 -9.293 < 2e-16
Fe_XRF -9.510e-06 1.280e-06 -7.430 4.10e-13
K_XRF 1.670e-05 1.919e-06 8.705 < 2e-16
Mg_XRF -6.227e-06 2.218e-06 -2.807 0.005174
Mn_XRF 1.501e-04 3.191e-05 4.703 3.24e-06
Na_XRF -5.799e-06 1.831e-06 -3.167 0.001625
P_XRF -9.688e-05 2.580e-05 -3.755 0.000191
Si_XRF -1.782e-05 9.250e-07 -19.268 < 2e-16

Residual standard error: 0.1469 on 557 degrees of freedom
Multiple R-Squared: 0.785, Adjusted R-squared: 0.7816
F-statistic: 226 on 9 and 557 DF, p-value: < 2.2e-16
# Tab. 16.3.: LTS fit for Be
library(StatDA)
data(chorizon)
data(kola.background)
attach(chorizon)
X=chorizon[,"XCOO"]
Y=chorizon[,"YCOO"]

# robust
set.seed(104)
res=ltsReg(log10(Be) ~ Al_XRF+Ca_XRF+Fe_XRF+K_XRF+Mg_XRF+Mn_XRF+Na_XRF+P_XRF+Si_XRF, data=xdat)

sink("tab-16-3.txt")
print(summary(res))
sink()