16.3.2 Inferences from the Regression Model

Call:
lm(formula = log10(Be) ~ Al_XRF + Ca_XRF + Fe_XRF + K_XRF + Mg_XRF +
Mn_XRF + Na_XRF + P_XRF + Si_XRF + Ti_XRF)

Residuals:
Min 1Q Median 3Q Max
-0.654727 -0.111566 -0.009193 0.097057 0.673126

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.452e+00 5.050e-01 8.816 < 2e-16 ***
Al_XRF -9.974e-06 1.568e-06 -6.361 4.00e-10 ***
Ca_XRF -1.505e-05 2.008e-06 -7.495 2.42e-13 ***
Fe_XRF -8.097e-06 1.500e-06 -5.397 9.81e-08 ***
K_XRF 1.371e-05 2.295e-06 5.971 4.07e-09 ***
Mg_XRF -5.322e-06 2.498e-06 -2.131 0.03352 *
Mn_XRF 1.935e-04 4.011e-05 4.825 1.78e-06 ***
Na_XRF -5.609e-07 2.111e-06 -0.266 0.79058
P_XRF -7.349e-05 3.256e-05 -2.257 0.02437 *
Si_XRF -1.280e-05 1.074e-06 -11.923 < 2e-16 ***
Ti_XRF 3.487e-05 1.117e-05 3.121 0.00189 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.19 on 594 degrees of freedom
Multiple R-Squared: 0.6954, Adjusted R-squared: 0.6903
F-statistic: 135.6 on 10 and 594 DF, p-value: < 2.2e-16
# Tab. 16.1.: LS fit for Be
library(StatDA)
data(chorizon)
data(kola.background)
attach(chorizon)
X=chorizon[,"XCOO"]
Y=chorizon[,"YCOO"]

res=lm(log10(Be) ~ Al_XRF+Ca_XRF+Fe_XRF+K_XRF+Mg_XRF+Mn_XRF+Na_XRF+P_XRF+Si_XRF+Ti_XRF)

sink("tab-16-1.txt")
print(summary(res))
sink()