11.8 Correlation Results Following Additive Logratio or Centred

# Fig.11.6.: Plot correlation matrix with log-ratio transformation
library(StatDA)
data(chorizon)

x=chorizon[,c("Al2O3","CaO","Fe2O3","K2O","MgO","MnO","Na2O","P2O5","SiO2","TiO2")]


pdf("fig-11-6.pdf",width=7,height=7)

par(mfrow=c(1,1),mar=c(4,4,2,0))

x1=x/x[,"TiO2"]
x1.obj=log10(x1[,1:9])

CorCompare(cor(x1.obj),cor(log10(x[,1:9])),
labels1=dimnames(x)[[2]],labels2=dimnames(x)[[2]],
method1="additive logratio transformation",method2="log-transformation",
ndigits=2)

dev.off()


# Fig.11.7.: Plot correlation matrix with log-centring transformation
library(StatDA)
data(chorizon)

x=chorizon[,c("Al2O3","CaO","Fe2O3","K2O","MgO","MnO","Na2O","P2O5","SiO2","TiO2","LOI")]

pdf("fig-11-7.pdf",width=7,height=7)

par(mfrow=c(1,1),mar=c(4,4,2,0))

xgeom=10^apply(log10(x),1,mean)
x2=x/xgeom
x2.obj=log10(x2)

CorCompare(cor(x2.obj[,1:10]),cor(log10(x[,1:10])),
labels1=dimnames(x)[[2]],labels2=dimnames(x)[[2]],
method1="centred logratio transformation",method2="log-transformation",
ndigits=2)


dev.off()